

3.3V CMOS OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- VCC = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC652A:

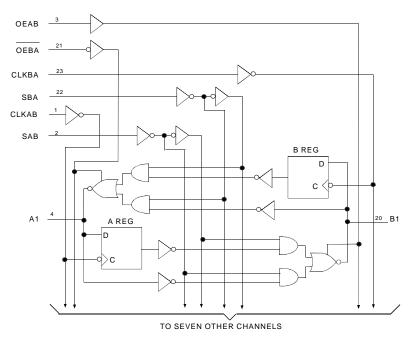
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- · 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

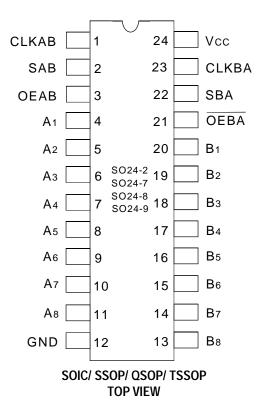
The LVC652A octal bus transceiver/register is built using advanced dual metal CMOS technology. The device consists of a bus transceiver circuit, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.


Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data.

Data on the A or B data bus, or both, is stored in the internal D-type flipflops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the select- or enable-control pins. When the SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input.

The LVC652A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.


Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

APRIL 1999

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM(3)	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
			8LVC

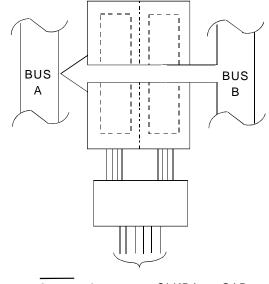
NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

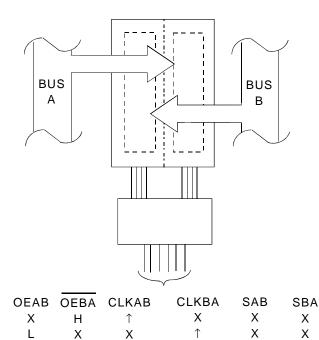
3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)


Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
Ci/o	I/O Port	$V_{IN} = 0V$	6.5	8	pF
	Capacitance				8LVC Link

NOTE:

1. As applicable to the device type.


PIN DESCRIPTION

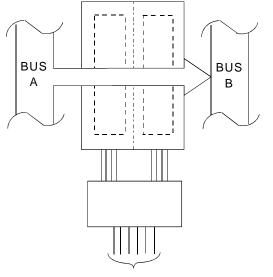
Pin Names	Description
OEAB, OEBA	Output-enable Inputs
SAB, SBA	Output Data Source Select Inputs
CLKAB, CLKBA	Clock Pulse Inputs
Ах	Data Register A Inputs
	Data Register B Outputs
Вх	Data Register B Inputs
	Data Register A Outputs

OEAB	OEBA	CLKAB	CLKBA	SAB	SBA
L	L	Х	Х	Х	L

REAL-TIME TRANSFER BUS B TO BUS A

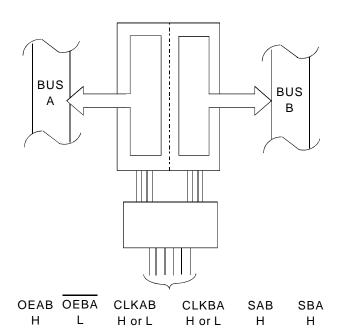
STORAGE FROM A, B, OR A AND B

↑


↑

L

Н


Х

Х

OEAB	OEBA	CLKAB	CLKBA	SAB	SBA
Н	Н	Х	Х	L	Х

REAL-TIME TRANSFER BUS A TO BUS B

TRANSFER STORED DATA TO A AND/OR B

FUNCTION TABLE (1)

Inputs			Data	I/O ⁽²⁾	Operation or Function			
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data
Х	Н	\uparrow	H or L	Х	Х	Input	Unspecified ⁽³⁾	Store A, hold B
Н	Н	\uparrow	\uparrow	X ⁽³⁾	Х	Input	Output	Store A in both registers
L	Х	H or L	\uparrow	Х	Х	Unspecified ⁽³⁾	Input	Hold A, store B
L	L	Ŷ	1	Х	X ⁽³⁾	Output	Input	Store B in both registers
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Х	H or L	Х	Н	Output	Input	Stored B data to A bus
Н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	H or L	Х	Н	Х	Input	Output	Stored A data to B bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't care

Z = High-Impedance

↑ = LOW-to-HIGH Transition

2. The data-output functions can be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data input functions are always enabled, i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

3. Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C To +85°C

Symbol	Parameter	Te	est Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
Vil	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	-	-	±5	μA
Іогн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo ≤	5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18	mA	-	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Iccl Iccн	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	-	-	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation		One input at Vcc - 0.6V, other inputs at Vcc or GND		—	500	μA 8LVC Link

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc – 0.2		V
	Vcc = 2.3V	Iон = – 6mA	2	_	
	Vcc = 2.3V	Iон = – 12mA	1.7	_	
	Vcc = 2.7V		2.2	_	
	Vcc = 3.0V		2.4	_	
	Vcc = 3.0V	Iон = – 24mA	2.2	_	
Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
	Vcc = 2.3V	IoL = 6mA	—	0.4	
		Iol = 12mA	—	0.7	
	Vcc = 2.7V	I _{OL} = 12mA	—	0.4	
	Vcc = 3.0V	Iol = 24mA	—	0.55	1
	Output HIGH Voltage	Output HIGH Voltage Vcc = 2.3V to 3.6V Vcc = 2.3V Vcc = 2.3V Vcc = 2.3V Vcc = 2.3V Vcc = 2.7V Vcc = 3.0V Vcc = 3.0V Vcc = 3.0V Output LOW Voltage Vcc = 2.3V to 3.6V Vcc = 2.3V Vcc = 2.3V Vcc = 2.3V Vcc = 2.3V Vcc = 2.3V Vcc = 2.3V	$\begin{array}{l} \mbox{Output HIGH Voltage} & Vcc = 2.3V \ to \ 3.6V & IoH = -0.1mA \\ \hline Vcc = 2.3V & IoH = -6mA \\ \hline Vcc = 2.3V & IoH = -12mA \\ \hline Vcc = 2.7V & Vcc = 3.0V & IoH = -12mA \\ \hline Vcc = 3.0V & IoH = -24mA \\ \hline Output LOW Voltage & Vcc = 2.3V \ to \ 3.6V & IoL = -24mA \\ \hline Vcc = 2.3V & IoL = 0.1mA \\ \hline Vcc = 2.3V & IoL = 0.1mA \\ \hline IoL = 12mA & IoL = 12mA \\ \hline Vcc = 2.7V &$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V \pm 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per transceiver Outputs enabled	CL = 0pf, f = 10Mhz	84	pF
Cpd	Power Dissipation Capacitance per transceiver Outputs disabled		9.5	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2	.5±0.2V	Vcc = 2.7V		Vcc = 3.3V±0.3V			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
fmax		_	-	80	—	100	-	MHz	
t PLH	Propagation Delay	—	_	_	7.8	1.5	7.4	ns	
t PHL	Ax or Bx to Bx or Ax								
t PLH	Propagation Delay	_	_	_	8.4	1.5	8	ns	
t PHL	CLKAB, CLKBA to Ax or Bx								
t PLH	Propagation Delay	_	_	_	9.6	1.5	8.7	ns	
t PHL	SAB or SBA to Bx or Ax								
tрzн	Output Enable Time	_	_	_	8.9	1.5	7.4	ns	
tPZL	OEBA to Ax								
tрнz	Output Disable Time	_	_	_	8.1	1.5	7.5	ns	
tPLZ	OEBA to Ax								
tрzн	Output Enable Time	_	_	_	8.6	1.5	7.1	ns	
t PZL	OEAB to Bx								
tрнz	Output Disable Time	_	_	_	7.7	1.5	7.4	ns	
t PLZ	OEAB to Bx								
tw	Pulse Duration CLKAB, CLKBA HIGH or LOW	_	-	3.3	_	3.3	_	ns	
tsu	Setup Time, data before CLKAB \uparrow , CLKBA \uparrow	_	-	1.9	—	1.9	_	ns	
tн	Hold Time, data after CLKAB \uparrow , CLKBA \uparrow	_		1.5	_	1.7	_	ns	
tsк(0)	Output Skew ⁽²⁾	_	_	_	_	_	500	ps	

NOTES:

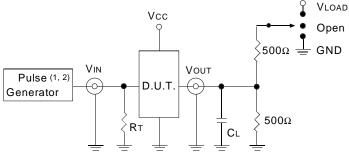
1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

^{2.} Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC652A 3.3V CMOS OCTAL BUS TRANSCEIVER AND REGISTER

EXTENDED COMMERCIAL TEMPERATURE RANGE

Vін


Vт

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

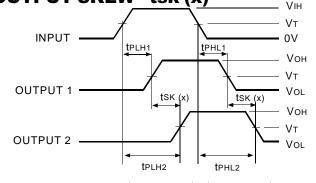
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
Vih	2.7	2.7	Vcc	۷
VT	1.5	1.5	Vcc/2	۷
Vlz	300	300	150	mV
Vhz	300	300	150	mV
Cl	50	50	30	pF VC Link

TEST CIRCUITS FOR ALL OUTPUTS

LVC Link

DEFINITIONS:

- CL= Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

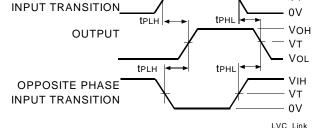

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

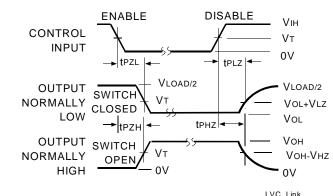
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open 8LVC Link

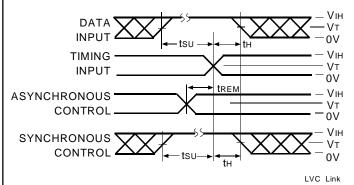
OUTPUT SKEW<u>-tsk (x)</u>

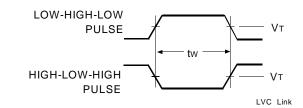

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

NOTES:


1. For tsκ(o) OUTPUT1 and OUTPUT2 are any two outputs.

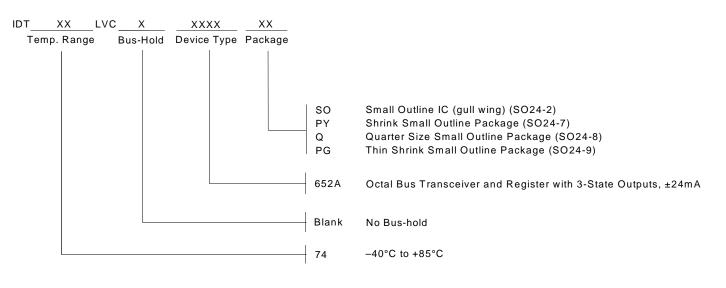
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSE WIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.