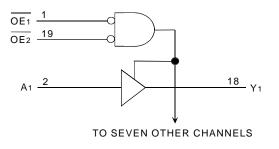


3.3V CMOS OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- VCC = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion


Drive Features for LVC541A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM

FUNCTION TABLE⁽¹⁾

Inputs			Outputs
OE 1	Inputs OE2	Ах	Yx
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z

NOTE:

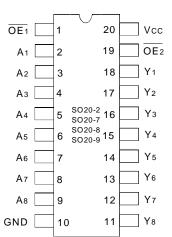
1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

DESCRIPTION:


The LVC541A octal buffer/driver is built using advanced dual metal CMOS technology. This device is ideal for driving bus lines or buffer memory address registers. This device features inputs and outputs on opposite sides of the package that facilitate printed circuit board layout. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output enable ($\overline{OE1}$ or $\overline{OE2}$) input is high, all eight outputs are in the high-impedance state.

The LVC541A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OE1, OE2	Output-enable Inputs (Active LOW)
Ax	Data Inputs
Yx	Data Outputs

EXTENDED COMMERCIAL TEMPERATURE RANGE

DECEMBER 1999

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	$V_{I} < 0 \text{ or } V_{O} < 0$		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		81 VC

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
Ci/o	I/O Port	$V_{IN} = 0V$	6.5	8	рF
	Capacitance				8LVC Link

NOTE:

1. As applicable to the device type.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C To +85^{\circ}C$

Symbol	Parameter	-	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—	_	V
		Vcc = 2.7V to 3.6V		2	—		
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		-	—	0.7	V
		Vcc = 2.7V to 3.6V		-	—	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	—	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	—	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	VCC = 0V, VIN or VO $\leq 5.5V$		_	—	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 1	I8mA	_	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		-	100		mV
Iccl Iccн	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	—	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
ΔΙcc	Quiescent Power Supply Current Variation	One input at Vcc - 0 other inputs at Vcc o		_	—	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc - 0.2	—	V
		Vcc = 2.3V	Iон = - 6mA	2	_	
		Vcc = 2.3V	Iон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	Iol = 6mA	—	0.4	
			Iol = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	—	0.4	
		Vcc = 3.0V	Iol = 24mA	—	0.55	8LVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, T_A = 25^{\circ}C

			Vcc = 2.5V±0.2V	Vcc = 3.3V±0.3V	Unit
Symbol	Parameter	Test Conditions	Typical	Typical	
Cpd	Power dissipation capacitance per transceiver outputs enabled	CL = 0pF, f = 10Mhz	_	33	pF
Cpd	Power dissipation capacitance per transceiver outputs disabled		_	2	

SWITCHING CHARACTERISTICS (1)

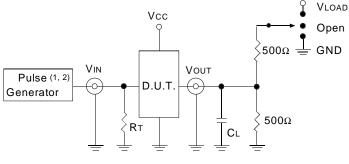
		Vcc = 2.	5V±0.2V	Vcc =	= 2.7V	Vcc = 3.	3V±0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh tphl	Propagation Delay Ax to Yx	_			5.6	1.5	5.1	ns
tpzh tpzl	Output Enable Time OEx to Yx	_	_	_	7.5	1.5	7	ns
tphz tplz	Output Disable Time OEx to Yx	_	_	_	7.7	1.5	7	ns
tsk(o)	Output Skew ⁽²⁾	—	_		_	—	1	ns

NOTES:

1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC541A 3.3V CMOS OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS


EXTENDED COMMERCIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS PROPAGATION DELAY

TEST CONDITIONS

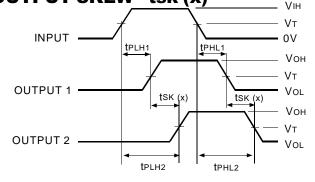
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
Vih	2.7	2.7	Vcc	۷
VT	1.5	1.5	Vcc/2	۷
Vlz	300	300	150	mV
Vhz	300	300	150	mV
Cl	50	50	30	pF VC Link

TEST CIRCUITS FOR ALL OUTPUTS

LVC Link

DEFINITIONS:

- CL= Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

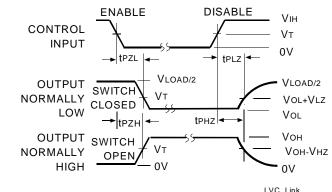

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Vload
GND
Open 8LVC Link

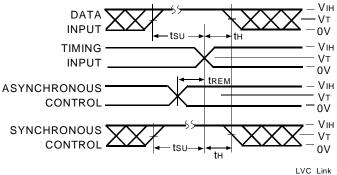
OUTPUT SKEW - tsk (x)

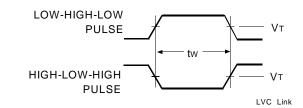

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

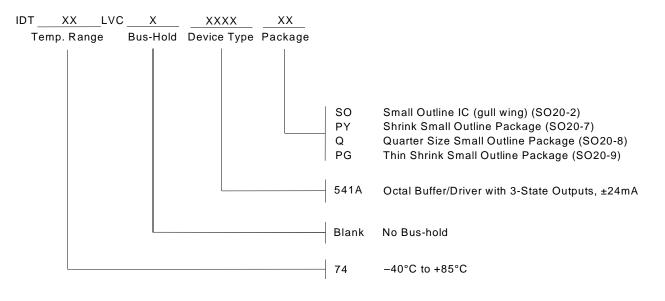
SAME PHASE		VIH VT VT OV
OUTPUT	F	VOH — VT
OPPOSITE PHASE		VOL VIH VT OV LVC Link


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES


PULSEWIDTH

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.