IDT74LVC245A

3.3V CMOS OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

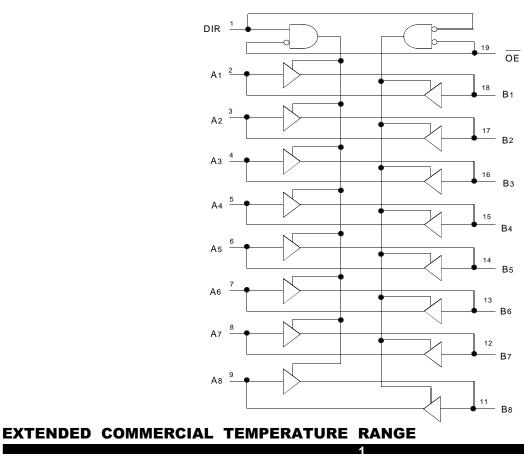
- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- VCC = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC245A:

- High Output Drivers: ±24mA
- Reduced system switching noise

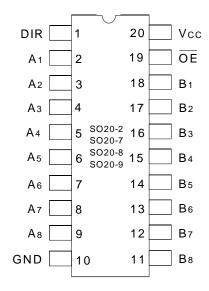
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

This octal bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The direction control pin (DIR) controls the direction of data flow. The output enable pin (\overline{OE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.


The LVC245A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

APRIL 1999

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Іоит	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
lcc	Continuous Current through	±100	mA
lss	each Vcc or GND		
			8LVC

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
Ci/o	I/O Port Capacitance	$V_{IN} = 0V$	6.5	8	pF
	Capacitalice				8LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output Enable Input (Active LOW)
DIR	Direction Control Input
Ax	Side A Inputs or 3-State Outputs
Вх	Side B Inputs or 3-State Outputs

FUNCTION TABLE (1)

Inputs		
ŌĒ	DIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z State

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40° C To $+85^{\circ}$ C

Symbol	Parameter	1	est Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—	_	۷
		Vcc = 2.7V to 3.6V		2	—	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	—	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	1
lih lil	Input Leakage Current	VCC = 3.6V	VI = 0 to 5.5V	-	—	±5	μA
Іогн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	—	±10	μA
lozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo	≤ 5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -1	8mA	-	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100		mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	-	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	—	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0. other inputs at Vcc o		—	_	500	μA 8LVC Link

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc – 0.2	—	V
		Vcc = 2.3V	IOH = - 6mA	2	_	
		Vcc = 2.3V	Юн = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	Iol = 0.1mA	_	0.2	V
		Vcc = 2.3V	Iol = 6mA	—	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	IOL = 24mA	—	0.55	1
						8LVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

			Vcc = 2.5V±0.2V	Vcc = 3.3V±0.3V	Unit
Symbol	Parameter	Test Conditions	Typical	Typical	
Cpd	Power dissipation capacitance per transceiver outputs enabled	CL = 0pF, f = 10Mhz	_	47	pF
Cpd	Power dissipation capacitance per transceiver outputs disabled		_	2	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.5V±0.2V		Vcc = 2.7V		Vcc = 3.3V±0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	_	—	—	7.3	1.5	6.3	ns
t PHL	Ax to Bx, Bx to Ax							
tрzн	Output Enable Time	_	—	_	9.5	1.5	8.5	no
tPZL	OE to Ax or Bx							ns
t PHZ	Output Disable Time	_	—	_	8.5	1.7	7.5	no
tPLZ	OE to Ax or Bx							ns
tsк (о)	Output Skew ⁽²⁾	_	_	_	_		1	ns

NOTES:

1. See test circuits and waveforms. TA = -40° C to + 85°C.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC245A 3.3V CMOS OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

EXTENDED COMMERCIAL TEMPERATURE RANGE

tPHL

tPHL .

DISABLE

tPLZ ◄

Vін

Vт

0V

- Vт Vol

Vн

Vт

0V

Vін

Vт

0V

VLOAD/2

Vol

Vон

0V

IVC Link

VOL+VLZ

Voн-Vнz

LVC Link

νон

TEST CIRCUITS AND WAVEFORMS PROPAGATION DELAY

SAME PHASE

OUTPUT

tpi H

tplh

ENABLE AND DISABLE TIMES

ENABLE

tPZL

tPZH

SWITCH

CLOSED

OPEN

VLOAD/2

Vт

0V

tPHZ <

INPUT TRANSITION

OPPOSITE PHASE

INPUT TRANSITION

CONTROL

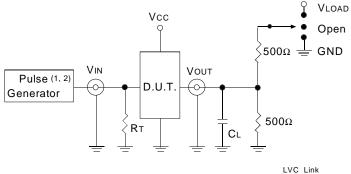
INPUT

OUTPUT

LOW

HIGH

OUTPUT SWITCH


NORMALLY

NORMALLY

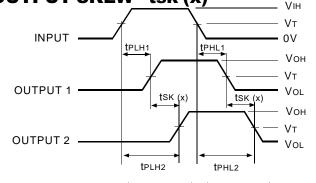
TEST CONDITIONS

$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
6	6	2 x Vcc	۷
2.7	2.7	Vcc	۷
1.5	1.5	Vcc/2	۷
300	300	150	mV
300	300	150	mV
50	50	30	pF
	6 2.7 1.5 300 300	6 6 2.7 2.7 1.5 1.5 300 300 300 300	6 6 2 x Vcc 2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

- CL= Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.


NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

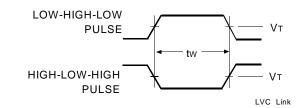
SWITCH POSITION

Vload
GND
Open 8LVC Link

OUTPUT SKEW - tsk (x)

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

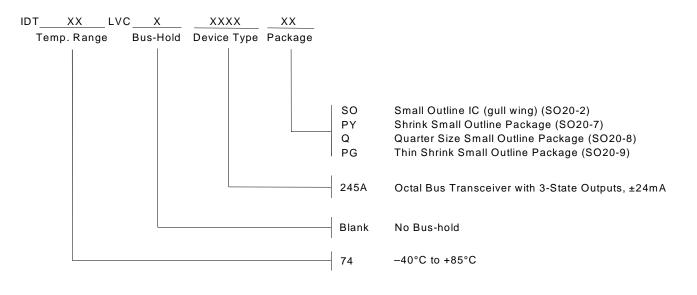
NOTES:


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

NOTE: 1. Diagram shown for input Control Enable-LOW and input Control

- Disable-HIGH.
- SET-UP, HOLD, AND RELEASE TIMES

Vін DATA Vт INPUT 4 0V -tsu Vін TIMING Vт INPUT 0V **t**RFM νн ASYNCHRONOUS' Vт CONTROL - 0V Ин SYNCHRONOUS - Vt CONTROL 4 0V tн LVC Link


PULSEWIDTH

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.