

3.3V CMOS IDT74LVC16601A 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3 STATE OUTPUTS, 5 VOLT TOLERANT I/O

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- VCC = $3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC16601A:

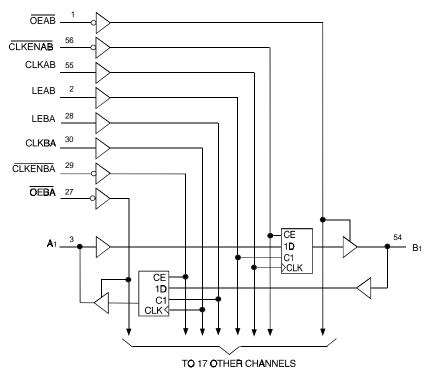
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

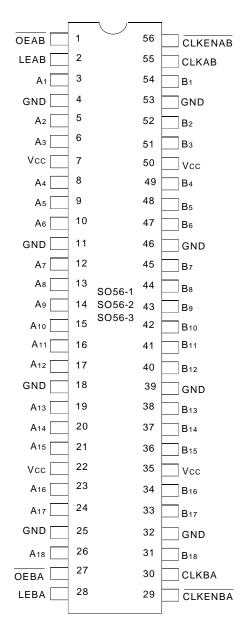
The LVC16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. This 18-bit universal bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.


Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs.

For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CLKAB. Output enable $\overline{\text{OEAB}}$ is active low. When $\overline{\text{OEAB}}$ is low, the outputs are active. When $\overline{\text{OEAB}}$ is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses $\overline{\text{OEBA}}$. LEBA, CLKBA and $\overline{\text{CLKENBA}}$.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVC16601A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-B Output Enable Input (Active LOW)
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA	B-to-A Clock Enable Input (Active LOW)

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM(3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

LVC Link

NOTE

1. As applicable to the device type.

FUNCTION TABLE (1, 2)

	Inputs						
CLKENAB	OEAB	LEAB	CLKAB	Ах	Вх		
Х	Н	Χ	Χ	Χ	Z		
Х	L	Н	Χ	Ш	L		
Х	L	Н	Χ	Н	Н		
Н	L	L	Х	Χ	B ₀ ⁽³⁾		
L	L	L	1	L	L		
L	L	L	1	Н	Н		
L	L	L	L	Х	B ₀ ⁽³⁾		
L	L	L	Н	Х	B ₀ ⁽⁴⁾		

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH Transition
- A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA and CLKENBA.
- Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Tes	t Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_O \le 5.5$	V	_	_	±50	μΑ
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = - 18mA		_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Іссь Іссн	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V other inputs at Vcc or GNI			_	500	μΑ

NOTES

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test (Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	I _{OH} = -0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	I _{OH} = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	I _{OL} = 24mA	_	0.55	1
	1	1	I	I	1	LVC I

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

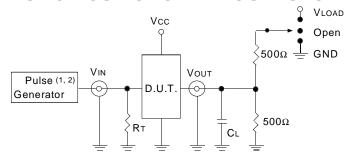
OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	C _L = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled			pF

SWITCHING CHARACTERISTICS (1)

				: = 2.7V	Vcc = 3.3	3V±0.3V	
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
tPLH tPHL	Propagation Delay Ax to Bx or Bx to Ax		_	5.4	_	4.6	ns
tplh tphl	Propagation Delay LEBA to Ax, LEAB to Bx		_	6.2	_	5.2	ns
tplh tphl	Propagation Delay CLKBA to Ax, CLKAB to Bx	(_	6.3	_	5.3	ns
tPZH tPZL	Output Enable Time OEBA to Ax, OEAB to Bx		_	6.8	_	5.6	ns
tPHZ tPLZ	Output Disable Time OEBA to Ax, OEAB to Bx		_	6	_	5.2	ns
tsu	Set-up Time, HIGH or LOW Ax to CLKAB, Bx to CLKBA		1.5	_	1.5	_	ns
tн	Hold Time HIGH or LOW Ax after CLKAB, Bx after C		0.8	_	0.8	_	ns
tsu	Set-up Time HIGH or LOW	Clock LOW	1	_	1	_	ns
	Ax to LEAB, Bx to LEBA	Clock HIGH	1	_	1	_	ns
tsu	Set-up Time, CLKENAB to CLKAB		2.1	_	2.1	_	ns
tsu	Set-up Time, CLKENBA to CLKBA		2.1	_	2.1	_	ns
tн	Hold Time, HIGH or LOW Ax after LEAB, Bx after LEI	BA	1.8	_	1.8	_	ns
tн	Hold Time, CLKENAB after CLKAB		0.5	_	0.5	_	ns
tн	Hold Time, CLKENBA after CLKBA		0.5	_	0.5	_	ns
tw	LEAB or LEBA Pulse Width	1	3	_	3	_	ns
tw	CLKAB or CLKBA Pulse W HIGH or LOW	ʻidth	3	_	3	_	ns
tsk(o)	Output Skew ⁽²⁾		_	_	_	500	ps

NOTES:


- 1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

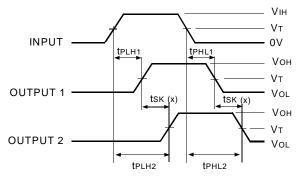
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
	•		•	LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

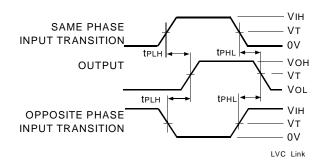

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

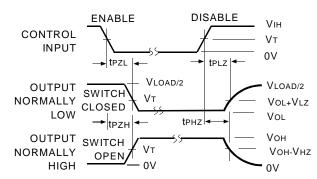
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)

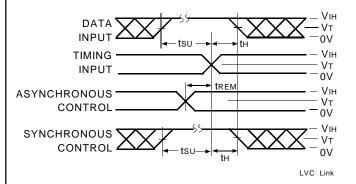

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

NOTES:


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

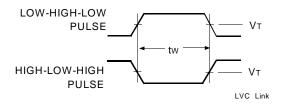
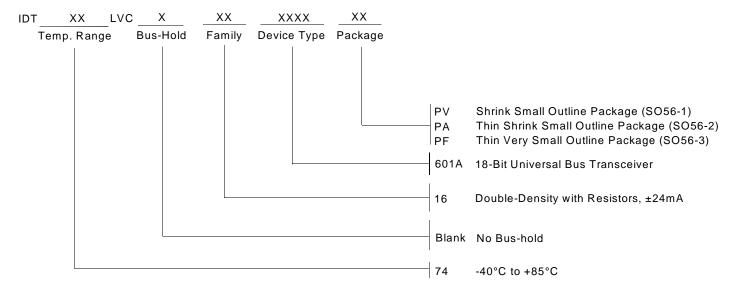

NOTE: LVC Link

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES


PULSE WIDTH

LVC Link

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fav: 408-492-8674

fax: 408-492-8674 www.idt.com*