

3.3V CMOS 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC16540A

FFATURFS:

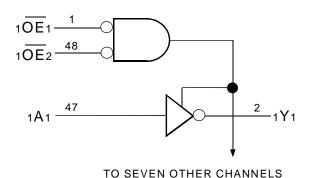
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- $VCC = 3.3V \pm 0.3V$, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

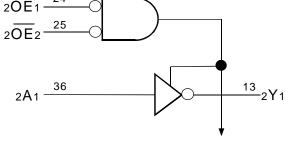
Drive Features for LVC16540A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

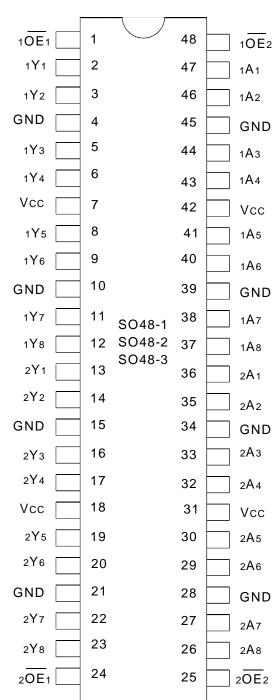
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


DESCRIPTION:


This 16-bit buffer driver is built using advanced dual metal CMOS technology. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{OE1}$ or $\overline{OE2}$) input is high, all corresponding outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capabiltiy of the driver.

All pins of this 16-bit buffer/line driver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVC16540A has been designed with a ± 24 mA output driver. The driver is capable of driving a moderate to heavy load while maintaining speed performance.


FUNCTIONAL BLOCK DIAGRAM

TO SEVEN OTHER CHANNELS

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

TSTG Storage Temperature -65 to $+150$ ° IOUT DC Output Current -50 to $+50$ n IIK Continuous Clamp Current, IoK -50 n IOK VI < 0 or Vo < 0 n Icc Continuous Current through ± 100 n	Symbol	Description	Max.	Unit
	VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Iικ Continuous Clamp Current, -50 Iοκ VI < 0 or Vo < 0	Tstg	Storage Temperature	- 65 to +150	°C
Ιοκ $V_I < 0$ or $V_O < 0$ Icc Continuous Current through ± 100	Іоит	DC Output Current	- 50 to +50	mA
Icc Continuous Current through ±100 n	lıĸ	Continuous Clamp Current,	- 50	mA
	Іок	$V_1 < 0$ or $V_0 < 0$		
loo and Von or CND	Icc	Continuous Current through	±100	mA
	Iss	each Vcc or GND		LVC Link

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Cı/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
xŌĒx	3-State Output Enable Inputs (Active LOW)
xAx	Data Inputs
xYx	3-State Outputs

FUNCTION TABLE (each 8-bit buffer) (1)

	Inputs	Outputs	
x OE 1	xOE2	хАх	хҮх
L	L	L	Н
L	L	Н	L
Н	Х	Х	Z
Х	Н	Х	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Te	Test Conditions		Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
Іохн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or VO \le 5$	$VCC = OV$, $VIN OF VO \le 5.5V$		_	±50	μΑ
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = - 18m	Vcc = 2.3V, lin = - 18mA		- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V other inputs at Vcc or GND		_	_	500	μA

NOTES

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Coi	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA		0.2	V
		Vcc = 2.3V	IOL = 6mA	_	0.4	
			IOL = 12mA	-	0.7	
		Vcc = 2.7V	IOL = 12mA	_	0.4	
		Vcc = 3.0V	IOL = 24mA	_	0.55	LVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, $V_{CC} = 3.3V \pm 0.3V$, $T_A = 25$ °C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per buffer/driver Outputs enabled	CL = 0pF, f = 10Mhz	34	pF
CPD	Power Dissipation Capacitance per buffer/driver Outputs disabled		2	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.7V		Vcc = 3.3V±0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay		4.5	1	3.7	ns
tphl	xAx to xYx					
tpzh	Output Enable Time		5.9	1.5	4.8	no
tpzl	x OE x to xYx					ns
tphz	Output Disable Time		6.3	1.6	5.9	no
tplz	x OE x to xYx					ns
tsk(o)	Output Skew ⁽²⁾				500	ps

NOTES:

- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

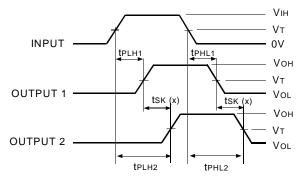
TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

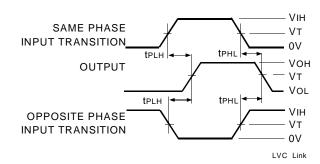

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

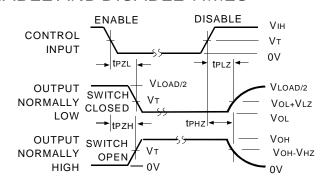
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

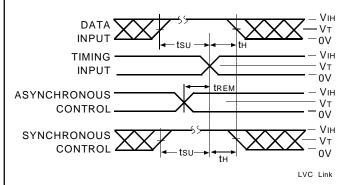


tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

- I. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

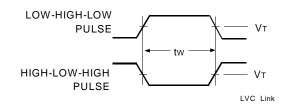
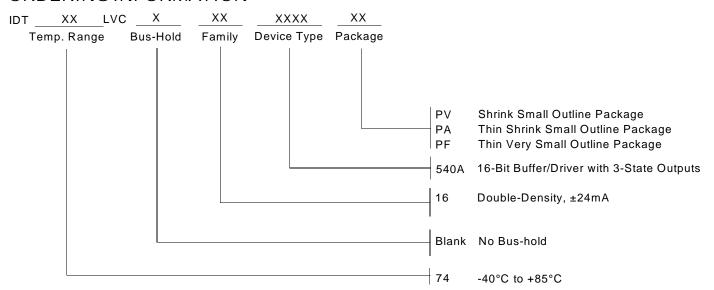

NOTE: LVC Link

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSE WIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2075 Standar Way

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*