

3.3V CMOS 18-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O

FEATURES:

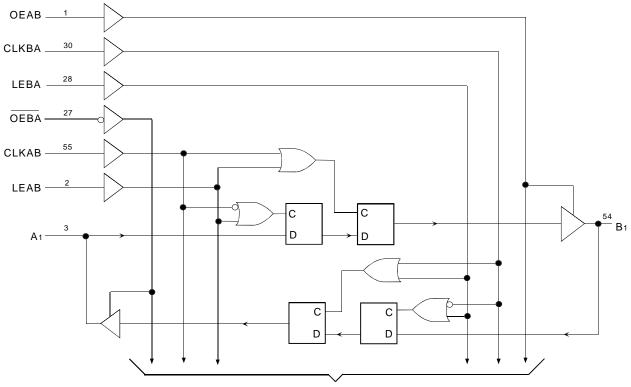
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC16501A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

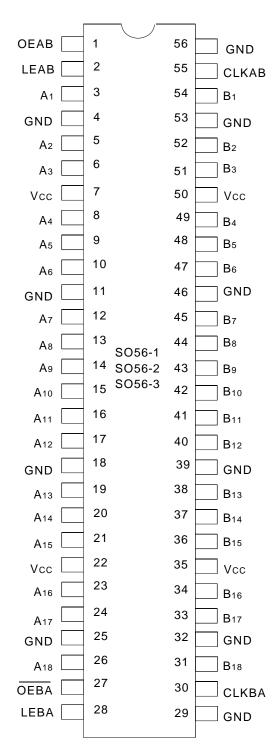

DESCRIPTION:

The LVC16501A is built using advanced dual metal CMOS technology. This high-speed, low power 18-bit registered bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by outputenable (OEAB and $\overline{\text{OEBA}}$), latch enable (LEAB and LEBA) and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. OEAB performs the output enable function on the B port. Data flow from B port to A port is similar but requires using $\overline{\text{OEBA}}$, LEBA and CLKBA. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The LVC16501A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

Functional Block Diagram



TO 17 OTHER CHANNELS

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_I < 0$ or $V_O < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
C _{I/O}	I/O Port Capacitance	VIN = 0V	6.5	8	pF

LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-B Output Enable Input (Active HIGH)
ŌEBĀ	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs

FUNCTION TABLE (1, 2)

	Inputs					
OEAB	LEAB	CLKAB	Ах	Вх		
L	Χ	Х	Χ	Z		
Н	Н	Х	L	L		
Н	Н	Х	Н	Н		
Н	L	1	L	L		
Н	L	1	Н	Н		
Н	L	L	Х	B ⁽³⁾		
Н	L	Н	Х	B ⁽⁴⁾		

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High Impedance
 - ↑ = LOW-to-HIGH Transition
- A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, and CLKBA.
- Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	٧
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lıL							
lozh	High Impedance Output Current	VCC = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo	≤ 5.5V	_	_	±50	μΑ
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = -1	8mA	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Iccl	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μΑ
Іссн							
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply	One input at Vcc - 0.6V		_	_	500	μA
	Current Variation	other inputs at Vcc o	or GND				11/0 1:-1

NOTES

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

LVC Link

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	I _{OH} = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	I _{OL} = 6mA	_	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	I _{OL} = 24mA	_	0.55	LVC Link

NOTE:

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

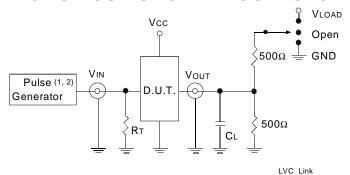
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	C _L = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled			pF

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

SWITCHING CHARACTERISTICS (1)

			Vcc	= 2.7V	Vcc = 3.3	3V±0.3V	
Symbol	Param	eter	Min.	Max.	Min.	Max.	Unit
fmax			150	_	150	_	MHz
tplH	Propagation Delay		1.5	5.1	1.5	4.6	ns
tphl	Ax to Bx or Bx to A	ΛX					
tplH	Propagation Delay		1.5	5.6	1.5	5.3	ns
tphl	LEBA to Ax, LEAB	to Bx					
tplh	Propagation Delay		1.5	5.6	1.5	5.3	ns
tphl	CLKBA to Ax, CLK	AB to Bx					
tрzн	Output Enable Tim	ie	1.5	6	1.5	5.6	ns
tpzL	OEBA to Ax, OEAI	B to Bx					
tphz	Output Disable Tin	ne	1.5	5.6	1.5	5.2	ns
tplz	OEBA to Ax, OEAI	B to Bx					
tsu	Set-up Time, HIGH	l or LOW	3	_	3	_	ns
	Ax to CLKAB, Bx to	o CLKBA					
tн	Hold Time, HIGH o		0	_	0	_	ns
	Ax to CLKAB, Bx to	o CLKBA					
tsu	Set-up Time	Clock	2.5	_	2.5	_	ns
	HIGH or LOW	LOW					
	Ax to LEAB,	Clock	2.5	_	2.5	_	ns
	Bx to LEBA	HIGH					
tн	Hold Time HIGH o	r LOW	1.5	_	1.5	_	ns
	Ax to LEAB, Bx to	LEBA					
tw	LEAB or LEBA Pul	se Width	3	_	3	_	ns
	HIGH or LOW						
tw	CLKAB or CLKBA Pulse Width		3	_	3	_	ns
	HIGH or LOW						
tsk(o)	Output Skew ⁽²⁾		_	_	_	500	ps

NOTES:


- 1. See test circuits and waveforms. $T_A = -40$ °C to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

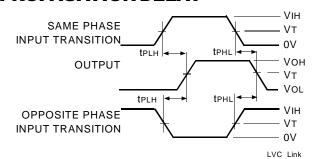

NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

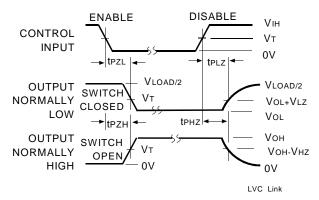
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)

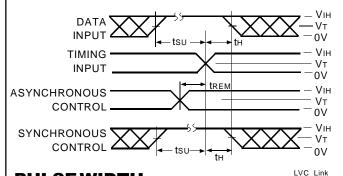


tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

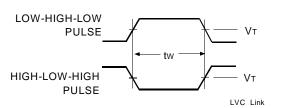
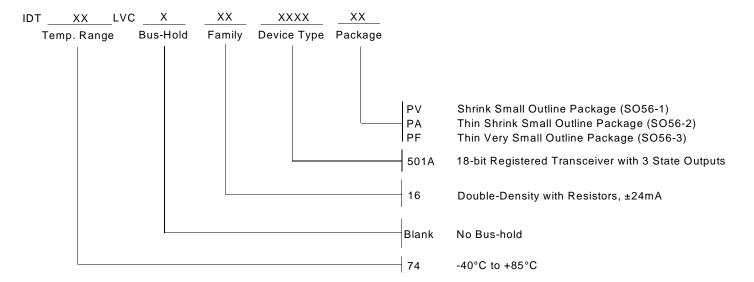

NOTE:

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*