

3.3V CMOS 18-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

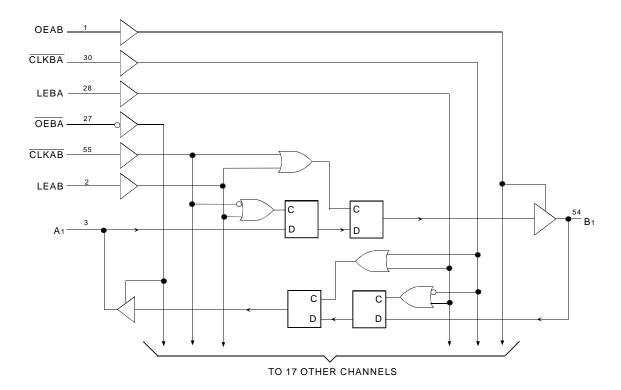
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC16500A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

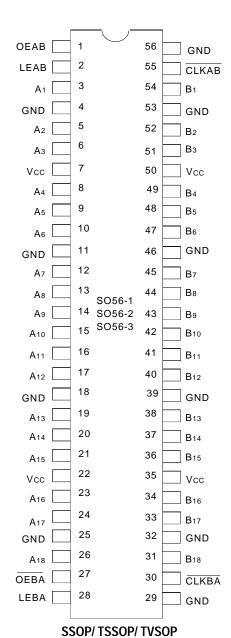
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


DESCRIPTION:

This 18-bit registered transceiver is built using advanced dual metal CMOS technology. This high-speed, low power 18-bit registered bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and $\overline{\text{OEBA}}$), latch enable (LEAB and LEBA), and clock ($\overline{\text{CLKAB}}$ and $\overline{\text{CLKBA}}$) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is high. When LEAB is low, the A data is latched if $\overline{\text{CLKAB}}$ is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the low-to-high transition of $\overline{\text{CLKAB}}$. OEAB performs the output enable function on the B port. Data flow from B port to A port is similar but uses $\overline{\text{OEBA}}$, LEBA and $\overline{\text{CLKBA}}$. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

All pins of this 18-bit registered transceiver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVC16500A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-B Output Enable Input
OEBA	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input (Active LOW)
CLKBA	B-to-A Clock Input (Active LOW)
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0 \text{ or } V_O < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		
			LVC Link

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
	Output Capacitance	Vout = 0V	6.5	8	pF
	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (1, 2)

	Inputs				
OEAB	LEAB	CLKAB	Ах	Вх	
L	Х	Х	Х	Z	
Н	Н	Х	L	L	
Н	Н	Х	Н	Н	
Н	L	\	L	L	
Н	L	\	Н	Н	
Н	L	Н	Х	B(3)	
Н	L	L	Χ	B ⁽⁴⁾	

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↓ = HIGH-to-LOW Transition
- A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA LEBA, and CLKBA.
- Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Т	est Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V		_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_O \le 5$	$V_{CC} = 0V$, V_{IN} or $V_{O} \le 5.5V$		_	±50	μΑ
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = - 18m	Vcc = 2.3V, lin = - 18mA		- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Iccl	Quiescent Power Supply Current	Vcc = 3.6V	V _{IN} = GND or V _{CC}	_	_	10	μA
Іссн							
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply	One input at Vcc - 0.6V		_	_	500	μA
	Current Variation	other inputs at Vcc or G	SND				LVC Link

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Co	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	I _{OL} = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. Ta = - 40°C to +85°C.

LVC Lin

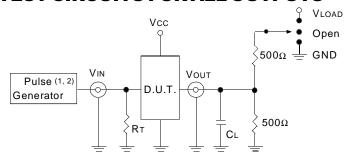
OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	C _L = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled			pF

SWITCHING CHARACTERISTICS (1)

	Parameter Parameter		Vcc =	2.7V	Vcc = 3.	.3V±0.3V	
Symbol			Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	/	1.5	7	1.5	6	ns
tPHL	Ax to Bx or Bx to	Аx					
tPLH	Propagation Delay	J	1.5	8	1.5	7	ns
tphl	LEBA to Ax, LEAE	B to Bx					
tplh	Propagation Delay		1.5	8	1.5	6.7	ns
tphl	CLKBA to Ax, CL	KAB to Bx					
tpzh	Output Enable Tin	ne	1.5	8.2	1.5	7.2	ns
tpzl	OEBA to Ax, OEA	B to Bx					
tphz	Output Disable Time		1.5	8	1.5	7	ns
tPLZ	OEBA to Ax, OEAB to Bx						
tsu	Set-up Time, HIGH or LOW		3	_	3	_	ns
	Ax to CLKAB, Bx to CLKBA						
tн	Hold Time, HIGH or LOW		0	_	0	_	ns
	Ax to CLKAB, Bx						
tsu	Set-up Time	Clock	2.5	_	2.5	_	ns
	HIGH or LOW	LOW					
	Ax to LEAB,	Clock	2.5	_	2.5	_	ns
	Bx to LEBA	HIGH					
tн	Hold Time HIGH or LOW		1.5	_	1.5	_	ns
	Ax to LEAB, Bx to LEBA						
tw	LEAB or LEBA Pulse Width HIGH		3	_	3	_	ns
tw	CLKAB or CLKBA Pulse Width HIGH or LOW		3	_	3	_	ns
tsk(o)	Output Skew (2)		_	_	_	500	ps

NOTES:


- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
6	6	2 x Vcc	٧
2.7	2.7	Vcc	٧
1.5	1.5	Vcc/2	٧
300	300	150	mV
300	300	150	mV
50	50	30	pF
	6 2.7 1.5 300 300	6 6 2.7 2.7 1.5 1.5 300 300 300 300	6 6 2 x Vcc 2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150

TEST CIRCUITS FOR ALL OUTPUTS

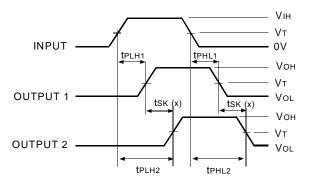
DEFINITIONS:

LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

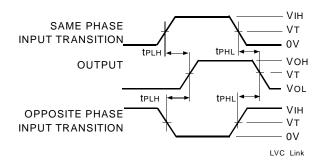

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

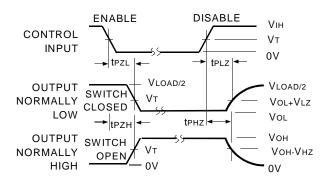
Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

LVC Link

OUTPUT SKEW - tsk (x)

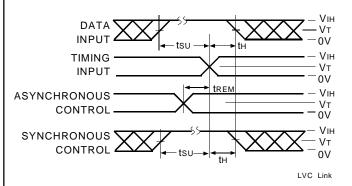

tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|

NOTES:


LVC Link

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

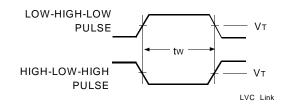
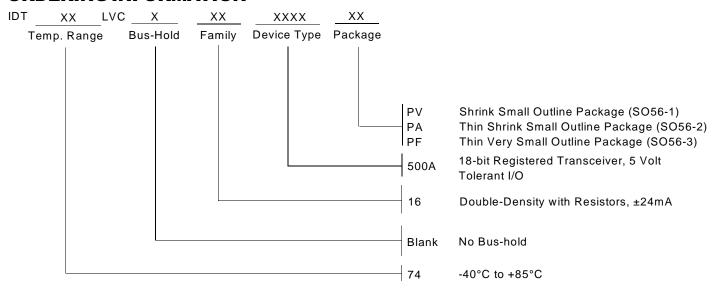

NOTE: LVC Link

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*