

3.3V CMOS 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O

IDT74LVC16241A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- VCC = $3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

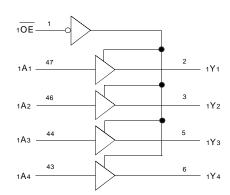
Drive Features for LVC16241A:

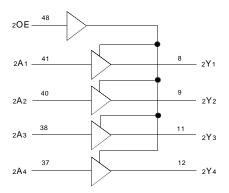
- High Output Drivers: ±24mA
- Reduced system switching noise

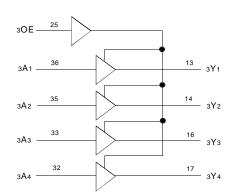
APPLICATIONS:

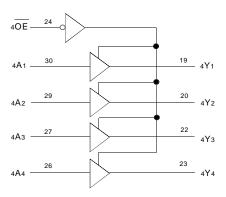
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

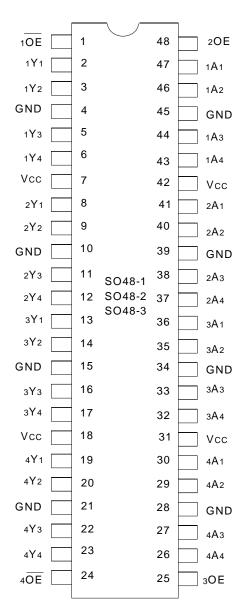

This 16-bit buffer/driver is built using advanced dual metal CMOS technology. The LVC16241A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. This device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer, and provides true outputs and complementary output-enable (OE and \overline{OE}) inputs.


To ensure the high impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.


All pins of this 16-bit buffer/driver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.


The LVC16241A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

Functional Block Diagram



EXTENDED COMMERCIAL TEMPERATURE RANGE

MAY 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description	
xŌĒ	3-State Output Enable Inputs (Active LOW)	
xOE	3-State Output Enable Inputs	
xAx	Data Inputs	
xYx	3-State Outputs	

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
V _{TERM} (2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM(3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lık	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

	Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
	CIN	Input Capacitance	VIN = 0V	4.5	6	pF
	Соит	Output Capacitance	Vout = 0V	6.5	8	pF
	CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF
L		Capacitance				IV

NOTE:

1. As applicable to the device type.

FUNCTION TABLES (1)

Inp	Inputs		
10E, 40E	1Ax, 4Ax	1Yx, 4Yx	
L	Н	Н	
L	L	L	
Н	Х	Z	

Inp	Outputs	
20E, 30E	2Ax, 3Ax	2Yx, 3Yx
Н	Н	Н
Н	L	L
L	X	Z

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter		Test Conditions		Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	٧
		Vcc = 2.7V to 3.6V		2	_	_]
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	٧
		Vcc = 2.7V to 3.6V		_	_	0.8	1
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo	≤ 5.5V	_	_	±50	μA
Vıĸ	Clamp Diode Voltage	Vcc = 2.3V, lin = -1	I8mA	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	_	10	μA
ICCZ			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10]
Δlcc	Quiescent Power Supply Current Variation		One input at Vcc - 0.6V other inputs at Vcc or GND		_	500	μA

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	I _{OH} = - 0.1mA	Vcc - 0.2	-	V
		Vcc = 2.3V	IOH = -6mA	2	-	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	-	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA		0.2	٧
		VCC = 2.3V	IoL = 6mA		0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		VCC = 3.0V	IoL = 24mA	_	0.55	IVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

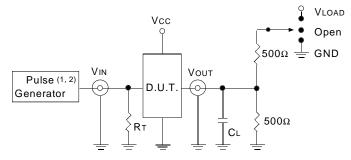
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per buffer/driver Outputs enabled	CL = 0pF, f = 10Mhz	_	pF
CPD	Power Dissipation Capacitance per buffer/driver Outputs disabled		_	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.7V		$Vcc = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	1.5	6	1.5	5	ns
tphl	xAx to xYx					
tpzh	Output Enable Time	1.5	7.1	1.5	6.1	ns
tpzl	1 OE to 1Yx, 4 OE to 4Yx					
tphz	Output Disable Time	1.5	6.8	1.5	5.8	ns
tplz	1OE to 1Yx, 4OE to 4Yx					
tpzh	Output Enable Time	1.5	7.5	1.5	6.5	ns
tpzL	2OE to 2Yx, 3OE to 3Yx					
tphz	Output Disable Time	1.5	7.3	1.5	6.3	ns
tplz	2OE to 2Yx, 3OE to 3Yx					
tsk(o)	Output Skew ⁽²⁾	_		_	500	ps

NOTES:

^{1.} See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.


^{2.} Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
6	6	2 x Vcc	٧
2.7	2.7	Vcc	٧
1.5	1.5	Vcc/2	٧
300	300	150	mV
300	300	150	mV
50	50	30	pF
	6 2.7 1.5 300 300	6 6 2.7 2.7 1.5 1.5 300 300 300 300	6 6 2 x Vcc 2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150

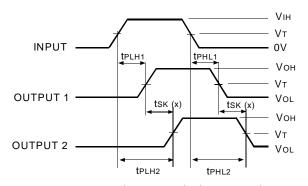
TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zo∪T of the Pulse Generator.

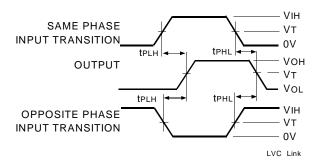

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

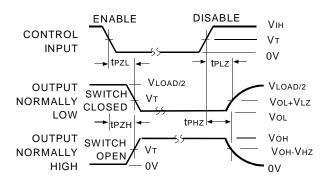
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
`	LVC Link

OUTPUT SKEW - tsk (x)

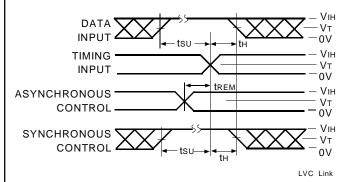


tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

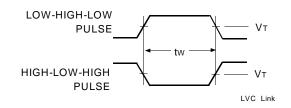
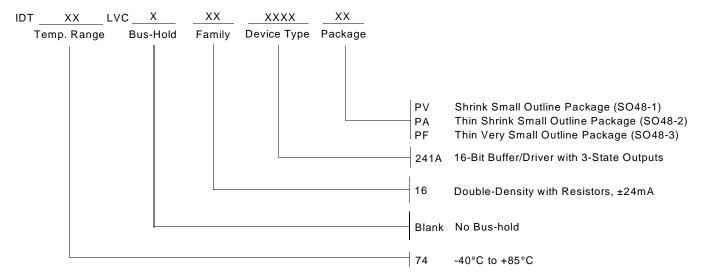

NOTE: LVC Link

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSE WIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*