

3.3V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCHR162245

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP, and 0.40mm pitch TVSOP packages
- Extended commercial range of 40°C to + 85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V \pm 0.2V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVCHR162245:

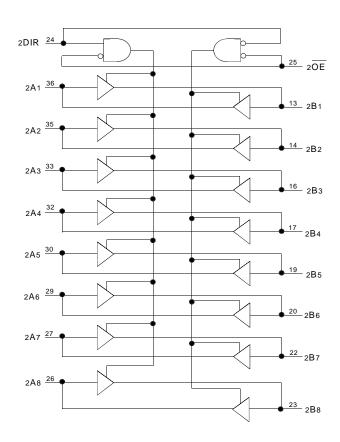
- Balanced Output Drivers: ±12mA
- Low switching noise

APPLICATIONS:

- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

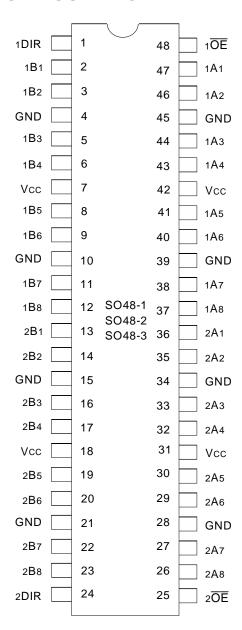

This 16-bit bus transceiver is built using advanced dual metal CMOS technology. The ALVCHR162245 device is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.


This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

The ALVCHR162245 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

The ALVCHR162245 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram



EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/TVSOP **TOP VIEW**

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage	- 0.5 to + 4.6	V
	with Respect to GND		
VTERM(3)	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	- 65 to + 150	°C
lout	DC Output Current	- 50 to + 50	mA
lıĸ	Continuous Clamp Current,	± 50	mA
	$V_I < 0$ or $V_I > V_{CC}$		
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		NEWAZE

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF
NOTE:					NEW16link

NOTE:

PIN DESCRIPTION

Pin Names	Description		
хŌЕ	Output Enable Inputs (Active LOW)		
xDIR	Direction Control Inputs		
хАх	Side A Inputs or 3-State Outputs ⁽¹⁾		
хВх	Side B Inputs or 3-State Outputs ⁽¹⁾		

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (each 8-bit section) (1)

Inp	uts	
х <mark>ОЕ</mark>	xDIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z State

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

^{1.} As applicable to the device type.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Test Co	Test Conditions		Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V			_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	± 5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
lozн	High Impedance Output Current	Vcc = 3.6V	No = Ncc	_	_	± 10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA			- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL		Vcc = 3.6V		_	0.1	40	μA
Іссн	Quiescent Power Supply Current	VIN = GND or VCC					
lccz							
Δlcc	Quiescent Power Supply	One input at Vcc - 0.6V,		_		750	μA
	Current Variation	other inputs at Vcc or GND					

NOTE:

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μA
Івнь			V _I = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	_	μA
Івнь			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

NFW16link

^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc – 0.2	-	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			I _{OH} = - 12mA	2	-	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	I _{OL} = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
		IoL = 8mA	_	0.6		
		Vcc = 3.0V	IoL = 6mA	_	0.55	
			IoL = 12mA	_	0.8	NEW16lin

NOTE:

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

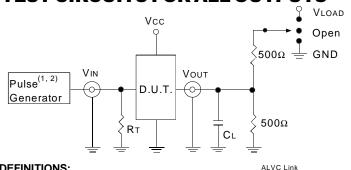
			Vcc = 2.5V ± 0.2V	Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	24	32	pF
	Outputs enabled				þΓ
CPD	Power Dissipation Capacitance		4	5	F
	Outputs disabled				pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.5	$Vcc = 2.5V \pm 0.2V$		Vcc = 2.7V		$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	1	4.9	_	4.7	1	4.2	ns
t PHL	xAx to xBx or xBx to xAx							
tpzh	Output Enable Time	1	6.8	_	6.7	1	5.6	
tPZL	xOE to xAx or xBx							ns
tphz	Output Disable Time	1	6.3	_	5.7	1	5.5	
tplz	xOE to xAx or xBx							ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	_	_	500	ps
	1							

NOTES

- 1. See test circuits and waveforms. $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$.
- 2. Skew between any two outputs of the same package and switching in the same direction.


^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

TEST CIRCUITS AND WAVEFORMS

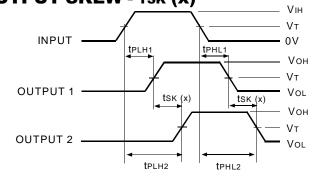
TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				NEW16link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

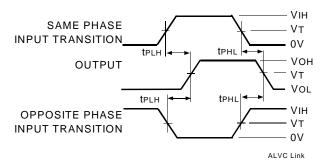

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	NEW16link

OUTPUT SKEW - TSK (x)


tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|

ALVC Link

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

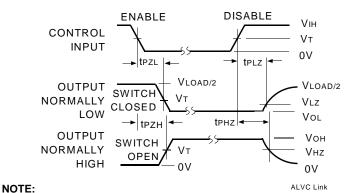
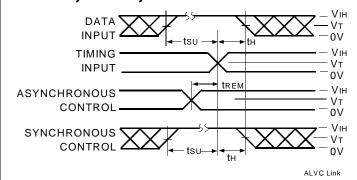
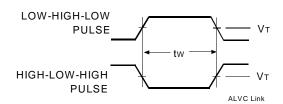
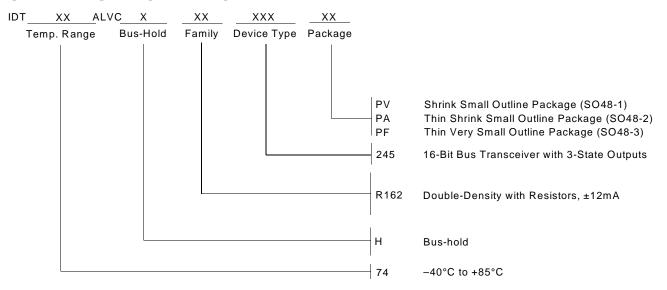




 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.