

3.3V CMOS 18-BIT TO 36-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCHG162282

FEATURES:

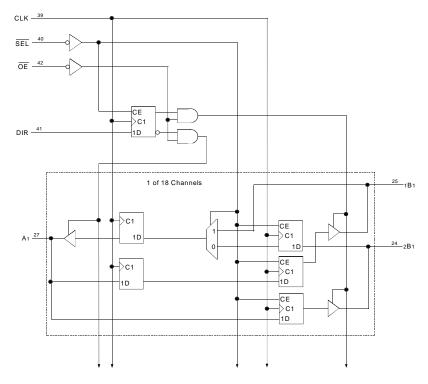
- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.40mm pitch TVSOP package
- Commercial range of 0°C to +70°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- Low switching noise

APPLICATIONS:

- SDRAM Modules
- · PC Motherboards
- Workstations

DESCRIPTION:

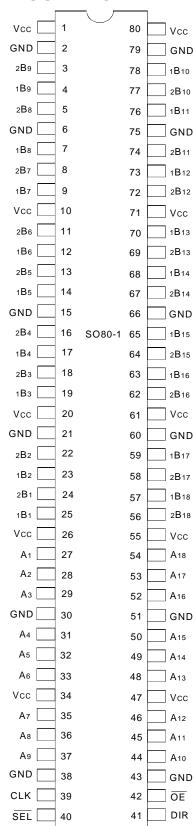
This 18-bit to 36-bit registered bus exchanger is manufactured using advanced dual metal CMOS technology. The ALVCHG162282 is intended for use in applications in which data must be transferred from a narrow high-speed bus to a wide lower-frequency bus.


The ALVCHG162282 provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input. For data transfer in the B-to-A direction, the select (\overline{SEL}) input selects 1B or 2B data for the A outputs. For data transfer in the A-to-B direction, a two-stage pipeline is provided in the 1B path, with a single storage register in the 2B path. Data flow is controlled by the active-low output enable (\overline{OE}) and the direction-control (DIR) input. The DIR control pin is registered to synchronize the bus direction changes with the clock.

A port outputs have equivalent 50Ω series resistors. B port outputs have equivalent 20Ω series resistors.

The switching characteristics in this spec, are based on 25pF (A Port) and 80pF (B Port) loads, but production test is accomplished with the standard 50pF load.

The ALVCHG162282 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


FUNCTIONAL BLOCK DIAGRAM

COMMERCIAL TEMPERATURE RANGE

JULY 2000

PIN CONFIGURATION

TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
V _{TERM} (2)	Terminal Voltage with Respect to GND	- 0.5 to + 4.6	V
VTERM(3)	Terminal Voltage with Respect to GND - 0.5 to Vcc +		V
Tstg	Storage Temperature	- 65 to + 150	°C
lout	DC Output Current	- 50 to + 50	mA
lik	Continuous Clamp Current, VI < 0 or VI > VCC	± 50	mA
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc Iss	Continuous Current through each Vcc or GND	±100	mA NEW16link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE ($T_A = +25^{\circ}C$, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Control Inputs	V _{IN} = V _{CC} or GND	4	_	pF
Соит	Output Capacitance	Vout = 0V	7	_	pF
C _{I/O}	I/O Port Capacitance (A or B ports)	Vout = Vcc or GND	8.5		pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	3-State Output Enable Input (Active LOW)
CLK	Register Input Clock
SEL	Select Input
Ax	Data Inputs ⁽¹⁾ or 3-State Outputs
хВх	Data Inputs ⁽¹⁾ or 3-State Outputs
DIR	Direction Control Input

NOTE

 These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLES(1)

A-TO-B STORAGE ($\overline{OE} = L$, DIR = H)

Inputs **Outputs** SEL **CLK** Ax 1**B**x 2Bx $1B_0^{(2)}$ $2B_0^{(2)}$ Н Χ Χ \uparrow L L L(3)L $H^{(3)}$ Н Н L

OUTPUT ENABLE

Inputs				Out	puts
CLK	ŌĒ	SEL	DIR	Ах	1Bx, 2Bx
\uparrow	Н	Χ	Х	Z	Z
\uparrow	L	L	Н	Z	Active
↑	L	L	L	Active	Z
X	L	Н	Х	A ₀ ⁽²⁾	1B ₀ -2B ₀ ⁽²⁾

B-TO-A STORAGE ($\overline{OE} = L$, DIR = L)

	Inputs				
SEL	CLK	1 B x	2 B x	Ах	
Н	1	Χ	L	L ⁽⁴⁾	
Н	1	Χ	Н	H ⁽⁴⁾	
L	1	L	Х	L	
L	1	Н	Х	Н	

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH Transition
- 2. Output level before indicated steady-state input conditions were established.
- 3. Two CLK edges are needed to propagate the data.
- 4. Two CLK edges are needed to propagate the data. The data is loaded in the first register when SEL is LOW and propagates to the second register when SEL is HIGH.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE(1)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = 0°C to +70°C

Symbol	Parameter	Test Co	onditions	Min.	Typ. ⁽¹⁾	Max.	Uni
VIH	Input HIGH Voltage Level	Vcc = 3V to 3.6V		2	_	_	٧
VIL	Input LOW Voltage Level	Vcc = 3V to 3.6V		_	_	0.8	٧
ІІН	Input HIGH Current ⁽²⁾	Vcc = 3.6V	VI = VCC	_	_	± 5	μΑ
IL	Input LOW Current(2)	Vcc = 3.6V	Vi = GND	_	_	± 5	
OZH	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	± 10	μA
OZL	(excludes bus-hold pins)		Vo = GND	_	_	± 10	μA
/ H	Input Hysteresis	Vcc = 3.3V		_	100	_	m\
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc		_	0.1	40	μ.
∆lcc	Quiescent Power Supply Current Variation	One input at Vcc – 0.6V, other inputs at Vcc or GND	Vcc = 3-3.6V	_	_	750	μA

NOTES

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. For control I/P's only excludes bus-hold current.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μΑ
Івнь			VI = 0.8V	75	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							

NOTES:

- 1. Pins with Bus-hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	1	٧
	(A port to B port)	Vcc = 3.0V	Iон = -8mA	2	_	
	(B port to A port)		IOH = -6mA	2	_	
Vol	Output LOW Voltage	Vcc = 3.0V to 3.6V	I _{OL} = 0.1mA	_	0.2	V
	(A port to B port)	Vcc = 3.0V	Iol = 8mA	_	0.8	
	(B port to A port)		IoL = 6mA		0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = 0°C to + 70°C.

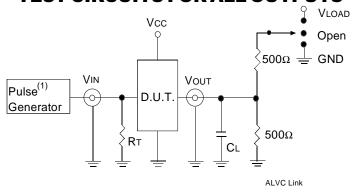
OPERATING CHARACTERISTICS, $T_A = 25$ °C

			Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	C _L = 0pF, f = 10Mhz	80	pF
CPD	Power Dissipation Capacitance Outputs disabled		60	pF

SWITCHING CHARACTERISTICS, C_L = 25pF (A port), 80pF (B port) (1)

		Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Unit
tplh	Propagation Delay	1.5	5	ns
tphl	CLK to Ax			
t PLH	Propagation Delay	1.5	7.4	ns
tphl	CLK to xBx			
tpzh	Output Enable Time	1.5	6.3	ns
tpzl	CLK to Ax			
tpzh	Output Enable Time	1.5	9.4	ns
tpzl	CLK to xBx			
tpzh	Output Enable Time	1.5	6	ns
tpzl	○E to Ax			
tpzh	Output Enable Time	1.5	9.5	ns
tpzL	○E to xBx			
tphz	Output Disable Time	1.5	6.4	ns
tPLZ	CLK to Ax	4.5	7.0	
tphz	Output Disable Time	1.5	7.8	ns
tPLZ	CLK to xBx	1.5	F	
tphz tplz	Output Disable Time OE to Ax	1.5	5	ns
tphz	Output Disable Time	1.5	7.6	ns
tPLZ	OE to xBx	1.5	7.0	113
tsu	Setup Time, HIGH or LOW, Ax data before CLK↑	1.5	_	ns
tsu	Setup Time, HIGH or LOW, xBx data before CLK↑	2	_	ns
tsu	Setup Time, HIGH or LOW, DIR before CLK↑	2	_	ns
tsu	Setup Time, HIGH or LOW, SEL before CLK↑	2	_	ns
tн	Hold Time, HIGH or LOW, Ax data after CLK↑	0.3	_	ns
tн	Hold Time, HIGH or LOW, xBx data after CLK↑	0.3	_	ns
tн	Hold Time, HIGH or LOW, DIR after CLK↑	0.3	_	ns
tн	Hold Time, HIGH or LOW, SEL after CLK↑	0.3	_	ns
tw	Pulse Duration, CLK HIGH or LOW	2.3 ⁽²⁾	_	ns
fclock		_	160	MHz

NOTES:


- 1. See test circuits and waveforms. TA = 0°C to +70°C.
- 2. This parameter is warranted but not production tested.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

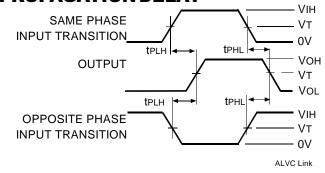
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	Unit
VLOAD	6	V
ViH	2.7	V
VT	1.5	V
VLZ	300	mV
VHZ	300	mV
CL	25pF (A Port), 80pF (B Port)	pF

TEST CIRCUITS FOR ALL OUTPUTS

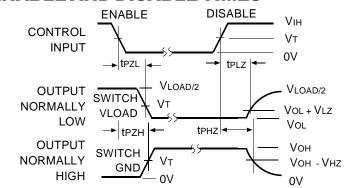
DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.


NOTE:

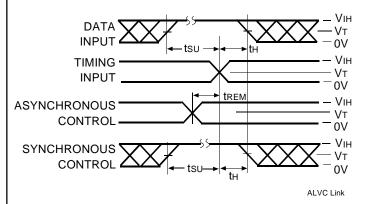
1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq .5ns


SWITCH POSITION

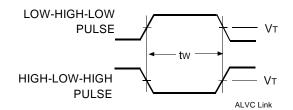
Test	Switch
Disable Low	Vload
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

PROPAGATION DELAY

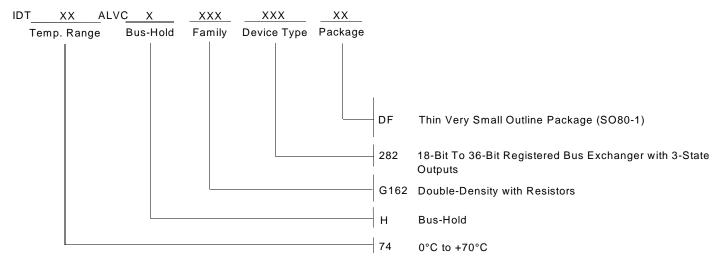
ENABLE AND DISABLE TIMES


NOTE:

NOTE:


ALVC Link

1. Diagram shown for input Control Enable-LOW and input Control


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.