

3.3V CMOS OCTAL POSITIVE EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS AND BUS-HOLD

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsκ(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- VCC = $3.3V \pm 0.3V$, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- VCC = 2.5V ±0.2V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- Available in SOIC, SSOP, QSOP, and TSSOP packages

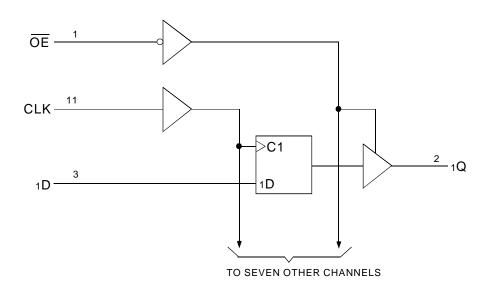
Drive Features for ALVCH374:

- High Output Drivers: ±24mA
- Suitable for heavy loads

APPLICATIONS:

- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

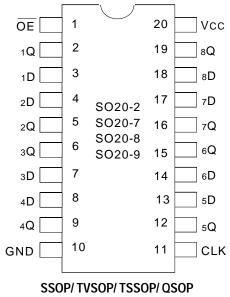

This octal postive edge-triggered D-type flip-flop is built using advanced dual metal CMOS technology. The ALVCH374 device is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The ALVCH374 has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The ALVCH374 has a "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM


1

INDUSTRIAL TEMPERATURE RANGE

MARCH 1999

INDUSTRIAL TEMPERATURE RANGE

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Terminal Voltage with Respect to GND	– 0.5 to +4.6	V
Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
DC Output Current	– 50 to +50	mA
Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Continuous Clamp Current, Vo < 0	-50	mA
Continuous Current through each Vcc or GND	±100	mA
Storage Temperature	– 65 to +150	° C Al VC Link
	Terminal Voltage with Respect to GND DC Output Current Continuous Clamp Current, VI < 0 or VI > Vcc Continuous Clamp Current, Vo < 0 Continuous Current through each Vcc or GND	Terminal Voltage with Respect to GND -0.5 to Vcc +0.5DC Output Current -50 to +50Continuous Clamp Current, ± 50 VI < 0 or VI > Vcc -50 Continuous Clamp Current, Vo < 0

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
Ci/o	I/O Port Capacitance	VIN = 0V	7	9	pF
	•			•	ALVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
OE	3-State Output Enable Input (Active LOW)
CLK	Clock Input
хD	Data Inputs ⁽¹⁾
xQ	3-State Outputs

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (each flip=flop) ⁽¹⁾

	Inputs					
ŌĒ	CLK	хD	хQ			
L	\uparrow	Н	Н			
L	\uparrow	L	L			
L	H or L	Х	Q ₀			
Н	Х	Х	Z			

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

- \uparrow = LOW-to-HIGH Transition
- Q₀ = Level of Q before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Co	onditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_		
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7 V		—	—	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	
IH	Input HIGH Current	Vcc = 3.6V	VI = VCC	—	—	± 5	μA
IL	Input LOW Current	Vcc = 3.6V	VI = GND	—	—	± 5	
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	± 10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		—	100		mV
CCL CCH CCZ	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc		-	0.1	10	μA
	Quiescent Power Supply Current Variation	One input at Vcc – 0.6V, other inputs at Vcc or GND		-	—	750	

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Тур. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	—	μA
Ibhl			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	_	μA
Ibhl			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Ibhlo							
NOTES.		•	•				ALVC Link

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, + $25^{\circ}C$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = – 0.1mA	Vcc – 0.2	—	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Iон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			Iol = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		Vcc = 3.0V	Iol = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

			$Vcc = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz			ъĘ
	Outputs enabled				p⊦
Cpd	Power Dissipation Capacitance				"Г
	Outputs disabled				p⊦

SWITCHING CHARACTERISTICS⁽¹⁾

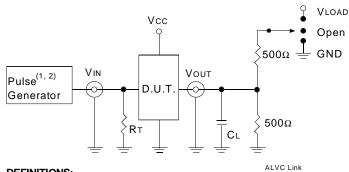
		Vcc = 2.5	5V ± 0.2V	Vcc =	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	_	8	—	7	2.2	6	ns
t PHL	CLK to xQ							
t PZH	Output Enable Time	_	8.5	—	7.5	1.5	6.5	ns
tPZL	OE to xQ							
tphz	Output Disable Time	_	9.5	—	6.5	1.5	5.5	ns
tPLZ	OE to xQ							
tw	Pulse Duration, CLK HIGH or LOW	3.3	—	3.3	—	3.3	—	ns
tsu	Setup Time, data before CLK↑	2	—	2	—	2	—	ns
tн	Hold Time, data after CLK个	1.5	—	1.5	—	1.5	—	ns
tsк(o)	Output Skew ⁽²⁾	—	—	—	—	—	500	ps

NOTES:

1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74ALVCH374 3.3V CMOS OCTAL POSITIVE EDGE-TRIGGERED D-TYPE


INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ = 3.3V ±0.3V	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
Vhz	300	300	150	mV
Cl	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

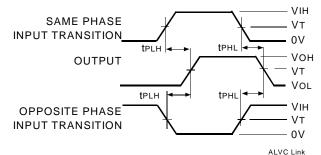
NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

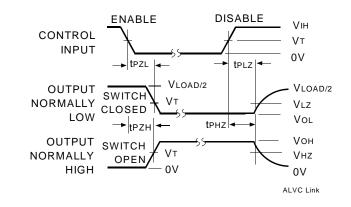
SWITCH POSITION

Switch
VLOAD
GND
Open

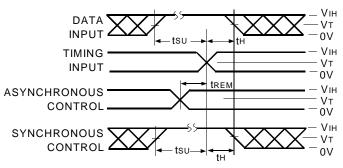
OUTPUT SKEW - TSK (X)



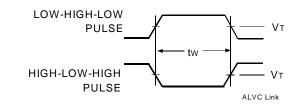
tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|ALVC Link


NOTES:

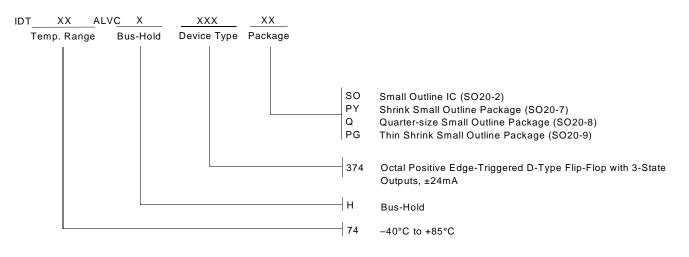
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


| PROPAGATION DELAY

ENABLE AND DISABLE TIMES



SET-UP, HOLD, AND RELEASE TIMES



ALVC Link

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.