

3.3V CMOS 20-BIT BUS-INTERFACE D-TYPE LATCH WITH 3-STATE OUT-PUTS AND BUS-HOLD

IDT74ALVCH162841

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP, and 0.40mm pitch TVSOP packages
- Extended commercial range of 40°C to + 85°C
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V \pm 0.2V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVCH162841:

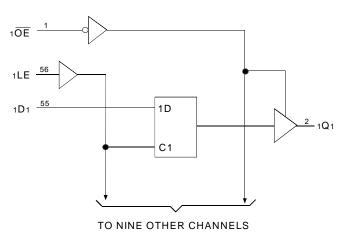
- Balanced Output Drivers: ±12mA
- Low switching noise

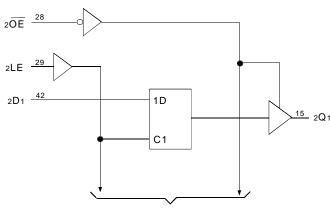
APPLICATIONS:

- · 3.3V High Speed Systems
- · 3.3V and lower voltage computing systems

DESCRIPTION:

This bus-interface D-type latch is built using advanced dual metal CMOS technology. The ALVCH162841 features 3-state outputs designed specifically for driving highly capacitive or relatively low-imped-

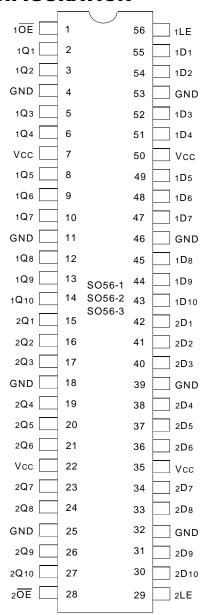

ance loads. This device is particularly suitable for implementing buffer registers, unidirectional bus drivers, and working registers.


The ALVCH162841 can be used as two 10-bit latches or one 20-bit latch. The 20 latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs. While the latch-enable (1LE or 2LE) input is high, the Q outputs of the corresponding 10-bit latch follow the D inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs. A buffered output-enable ($1\overline{\text{OE}}$ or $2\overline{\text{OE}}$) input can be used to place the outputs of the corresponding 10-bit latch in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. $\overline{\text{OE}}$ does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state,

The ALVCH162841 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

The ALVCH162841 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM



TO NINE OTHER CHANNELS

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

SSOP/TSSOP/TVSOP **TOP VIEW**

PIN DESCRIPTION

<u> </u>	220014 11011		
Pin Names	Description		
хDх	Data Inputs ⁽¹⁾		
xLE	Latch Enable Inputs		
х <mark>ОЕ</mark>	Output Enable Inputs (Active LOW)		
хQх	3-State Outputs		

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage	- 0.5 to + 4.6	٧
	with Respect to GND		
VTERM ⁽³⁾	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	– 65 to + 150	°C
Іоит	DC Output Current	- 50 to + 50	mA
lık	Continuous Clamp Current,	± 50	mA
	VI < 0 or VI > Vcc		
ЮК	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF
NOTE:					NEW16link

1. As applicable to the device type.

FUNCTION TABLE (each 10-bit latch) (1)

	Inputs				
хДх	xLE	х <mark>ОЕ</mark>	хОх		
Н	Н	L	Н		
L	Н	L	L		
X	L	L	Q_0		
X	Х	Н	Z		

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

 Q_0 = Level of the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Test Co	onditions	Min.	Typ. ⁽¹⁾	Max.	Unit
/ін	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
/IL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
IH	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	± 5	μA
IL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
OZH	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	± 10	μA
OZL	(3-State Output pins)		Vo = GND	_	_	± 10	μA
/ıĸ	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA		_	- 0.7	- 1.2	V
/н	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
CCL		Vcc = 3.6V		_	0.1	40	μA
ССН	Quiescent Power Supply Current	Vin = GND or Vcc	VIN = GND or VCC				
CCZ							
∆l cc	Quiescent Power Supply	One input at Vcc - 0.6V,	One input at Vcc – 0.6V,			750	μA
	Current Variation	other inputs at Vcc or GND					

NOTE:

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μA
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	VCC = 2.3V	VI = 1.7V	- 45	_	_	μA
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

NEW16link

^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		VCC = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	٧
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3.0V	IoL = 6mA	_	0.55	
			IoL = 12mA	_	0.8	NEW16link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40° C to + 85°C.

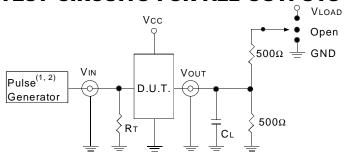
OPERATING CHARACTERISTICS, $T_A = 25$ °C

			$V_{CC} = 2.5V \pm 0.2V$	$V_{CC} = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	15	22	pF
	Outputs enabled				μг
CPD	Power Dissipation Capacitance		2	5	pF
	Outputs disabled				þΓ

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.5	5V ± 0.2V	Vcc :	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	1.3	5.5	_	5.2	1.3	4.5	ns
t PHL	xDx to xQx							
tplh	Propagation Delay	1.2	6	_	5.6	1.1	5	ns
t PHL	xLE to xQx							
tpzh	Output Enable Time	1.2	6.7	_	6.6	1.1	5.5	ns
tPZL	xOE to xQx							
tphz	Output Disable Time	1.1	5.5	_	5	1.2	4.6	ns
tPLZ	xOE to xQx							
tsu	Set-Up Time, data before LE↑	0.9	_	0.7	_	1.1	_	ns
tн	Hold Time, data after LE↑	1.1	_	1.4	-	1	_	ns
tw	Pulse Width, xLE HIGH or LOW	3.3	_	3.3	_	3.3	_	ns
tsk(o)	Output skew ⁽²⁾	_	_	_	_	_	500	ps

NOTES:


- 1. See test circuits and waveforms. TA = -40°C to +85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

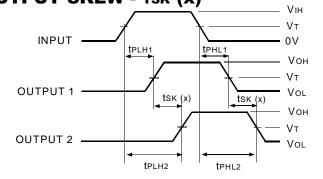
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit	
VLOAD	6	6	2 x Vcc	٧	
VIH	2.7	2.7	Vcc	٧	
V T	1.5	1.5	Vcc/2	٧	
VLZ	300	300	150	mV	
VHZ	300	300	150	mV	
CL	50	50	30	pF	
				NEW16link	

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.


NOTES:

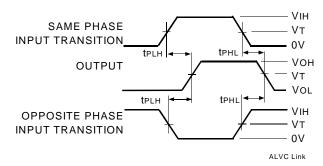
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	NEW16link

OUTPUT SKEW - TSK (x)

tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


ALVC Link

ALVC Link

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ENABLE AND DISABLE TIMES

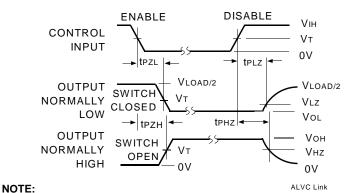
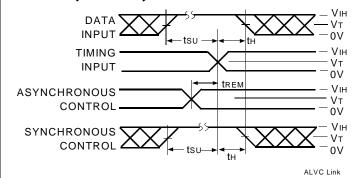
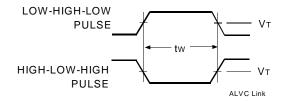
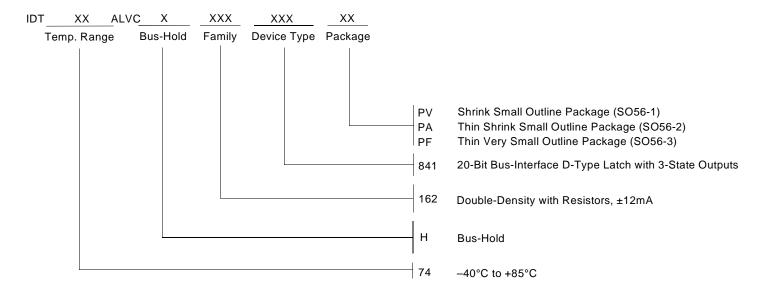




Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*