

3.3V CMOS 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH16270

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsκ(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP, and 0.40mm pitch TVSOP packages
- Extended commercial range of 40°C to + 85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ± 0.2V
- CMOS power levels (0.4µ W typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVCH16270:

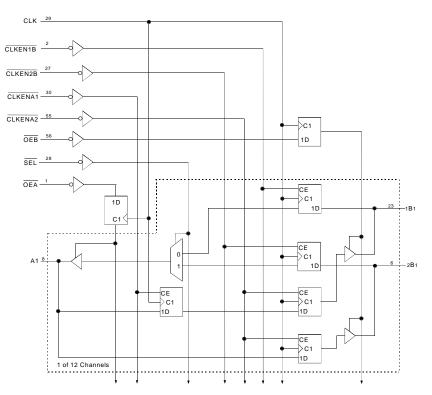
- High Output Drivers: ±24mA
- Suitable for heavy loads

APPLICATIONS:

- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

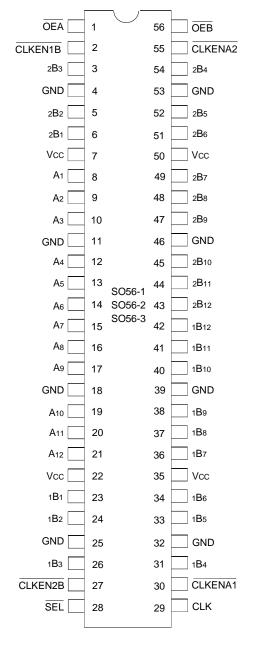
This registered bus exchanger is built using advanced dual metal


FUNCTIONAL BLOCK DIAGRAM

CMOS technology. The ALVCH16270 is used in applications in which data must be transferred from a narrow high-speed bus to a wide lower-frequency bus.

This device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-to-high transition of the clock (CLK) input when the appropriate clock-enable (CLKEN) inputs are low. The select (SEL) line selects 1B or 2B data for the A outputs. For data transfer in the A-to-B direction, a two-stage pipeline is provided in the A-to-1B path, with a single storage register in the A-to-2B path. Proper control of the CLKENA input allows two sequential 12-bit words to be presented synchronously as a 24-bit word on the B-port. Data flow is controlled by the active-low output enables (OEA and OEB). The control terminals are registered to synchronize the bus-direction changes with CLK.

The ALVCH16270 has been designed with a $\pm 24\text{mA}$ output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.


The ALVCH16270 has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

EXTENDED COMMERCIAL TEMPERATURE RANGE

AUGUST 1999

PIN CONFIGURATION

SSOP/ TSSOP/TVSOP TOP VIEW

FUNCTION TABLES⁽¹⁾ OUTPUT ENABLE

Inputs			Outputs		
CLK	OEA	OEB	Ax	1Bx, 2Bx	
\uparrow	Н	Н	Z	Z	
\uparrow	Н	L	Z	Active	
\uparrow	L	Н	Active	Z	
\uparrow	L	L	Active	Active	

A-TO-B STORAGE (\overline{OEB} = L AND \overline{OEA} = H)

	Inp	Out	puts		
CLKENA1	CLKENA2	CLK	Ах	1 Bx	2Bx
L	Н	\uparrow	L	1B ₀ ⁽²⁾	2B ₀ ⁽²⁾
L	Н	\uparrow	Н	1B ₀ ⁽²⁾	2B ₀ ⁽²⁾
L	L	\uparrow	L	L ⁽³⁾	L
L	L	\uparrow	Н	H ⁽³⁾	Н
Н	L	\uparrow	L	1B ₀ ⁽⁴⁾	L
Н	L	\uparrow	Н	1B ₀ ⁽⁴⁾	Н
Н	Н	X or ↑	Х	1B ₀ ⁽²⁾	2B ₀ ⁽²⁾

B-TO-A STORAGE (\overline{OEA} = L AND \overline{OEB} = H)

	Outputs					
CLKEN1B	CLKEN2B	CLK	SEL	1 Bx	2 Bx	Ax
Н	Х	Х	Н	Х	Х	A ₀ ⁽²⁾
Х	Н	Х	L	Х	Х	A ₀ ⁽²⁾
L	Х	\uparrow	Н	L	Х	L
L	Х	↑	Н	Η	Х	Н
Х	L	↑	L	Х	L	L
Х	L	\uparrow	L	Х	Н	Н

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

- X = Don't Care
- Z = High-Impedance
- = LOW-to-HIGH Transition
- 2. Output level before the indicated steady-state input conditions were established.
- 3. Two CLK edges are needed to propagate data.
- 4. Data present at the output of the first register.

<u>pin des</u>	<u> </u>	
Pin Names	I/O	Description
Ax(1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's Address/Data bus. ⁽¹⁾
1 BX(1:12)	I/O	Bidirectional Data Port 1B. Usually connected to the even path or even bank of memory. ⁽¹⁾
2 BX(1:12)	I/O	Bidirectional Data Port 2B. Usually connected to the odd path or odd bank of memory. ⁽¹⁾
CLK	Ι	Clock Input
CLKENA1	I	Clock Enable Input for the A-1B Register. If CLKENA1 is LOW during the rising edge of CLK, data will be
		clocked into register A-1B (Active LOW).
CLKENA2	I	Clock Enable Input for the A-2B Register. If CLKENA2 is LOW during the rising edge of CLK, data will be
		clocked into register A-2B (Active LOW).
CLKEN1B	I	Clock Enable Input for the 1B-A Register. If CLKEN1B is LOW during the rising edge of CLK, data will be
		clocked into register 1B-A (Active LOW).
CLKEN2B	I	Clock Enable Input for the 2B-A Register. If CLKEN2B is LOW during the rising edge of CLK, data will be
		clocked into register 2B-A (Active LOW).
SEL	I	1B or 2B Port Selection. When HIGH during the rising edge of CLK, SEL enables data transfer from 1B Port
		to A Port. When LOW during the rising edge of CLK, SEL enables data transfer from 2B Port to A Port.
OEA	I	Synchronous Output Enable for A Port (Active LOW)
OEB	I	Synchronous Output Enable for B Port (Active LOW)

PIN DESCRIPTION

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage	– 0.5 to + 4.6	V
	with Respect to GND		
VTERM ⁽³⁾	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	– 65 to + 150	°C
Ιουτ	DC Output Current	– 50 to + 50	mA
Ік	Continuous Clamp Current,	± 50	mA
	VI < 0 or VI > Vcc		
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
NOTES			NEW16link

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
Ci/o	I/O Port Capacitance	Vin = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ} C$ to $+85^{\circ} C$

Symbol	Parameter	Test Co	onditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	VCC = 2.3V to 2.7V		1.7	—		V
		Vcc = 2.7V to 3.6V		2	—		
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		-	—	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	
Ін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	—	± 5	μA
lil	Input LOW Current	Vcc = 3.6V	VI = GND	-	—	± 5	
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	—	± 10	μA
Iozl	(3-State Output pins)		Vo = GND	-	—	± 10	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA		-	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100		mV
ICCL		Vcc = 3.6V		_	0.1	40	μA
Іссн	Quiescent Power Supply Current	VIN = GND or VCC					
lccz							
Δ ICC	Quiescent Power Supply	One input at Vcc – 0.6V,		_	—	750	μA
	Current Variation	other inputs at Vcc or GND					NEW16lin

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions		Тур. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	-		μA
IBHL			VI = 0.8V	75	—	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	_	μA
IBHL			VI = 0.7V	45	_		
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	—	± 500	μA
BHLO							
	-	•	•	•			NEW16lin

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Co	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc – 0.2	_	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 6mA	_	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		Vcc = 3.0V	IOL = 24mA	_	0.55	
		•	•			NEW16lin

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, T_A = 25^{\circ}C

			$V_{CC} = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	87	120	рF
	Outputs enabled				рі
Cpd	Power Dissipation Capacitance		80.5	118	۳Ľ
	Outputs disabled				pF

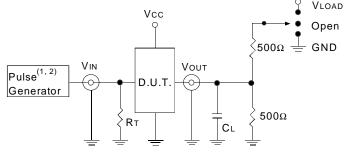
SWITCHING CHARACTERISTICS (1)

		Vcc = 2.	5V ± 0.2V	Vcc =	= 2.7V	Vcc = 3.	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		150	—	150	_	150	—	Mhz
t PLH	Propagation Delay	1.5	5.9		5.8	1.1	5.1	ns
t PHL	CLK to xBx							
t PLH	Propagation Delay	1.2	5.4		5.4	1	4.7	ns
t PHL	CLK to Ax							<u> </u>
tPLH	Propagation Delay	1.4	6.2		6.4	1	5.5	ns
tPHL 1	SEL to Ax	4.5	-				-	
tPZH tPZL	Output Enable Time CLK to xBx	1.5	7		6.8	1	6	ns
tPZH	Output Enable Time	1.5	7		6.8	1	6	ns
tPZL	CLK to Ax				0.0		, i i i i i i i i i i i i i i i i i i i	
t PHZ	Output Disable Time	1.9	7.2		6.5	1.1	5.8	ns
tPLZ	CLK to xBx							
t PHZ	Output Disable Time	1.9	7.2		6.5	1.1	5.8	ns
tPLZ	CLK to Ax							
tsu	Set-Up Time, Ax data before $CLK\uparrow$	4.1		3.8		3.1		ns
tsu	Set-Up Time, Bx data before CLK [↑]	0.9		1.2		0.9		ns
tsu	Set-Up Time, CLKENA1 or CLKENA2 before CLK↑	3.5		3.2		2.7		ns
tsu	Set-Up Time, CLKEN1B or CLKEN2B before CLK	3.4		3		2.6		ns
tsu	Set-Up Time, OEB or OEA before CLK↑	4.4		3.9		3.2		ns
tн	Hold Time, Ax data after CLK↑	0		0		0.2		ns
tн	Hold Time, Bx data after CLK↑	1.4		1		1.7		ns
tн	Hold Time, CLKENA1 or CLKENA2 after CLK1	0		0.1		0.3		ns
tн	Hold Time, CLKEN1B or CLKEN2B after CLK1	0		0		0.6		ns
tн	Hold Time, OE B or OE A after CLK↑	0		0		0.1		ns
tw	Pulse Width, CLK HIGH or LOW	3.3		3.3		3.3		ns
tsĸ(o)	Output Skew ⁽²⁾	_	_		_	_	500	ps

NOTES:

1. See test circuits and waveforms. TA = -40° C to $+85^{\circ}$ C.

2. Skew between any two outputs of the same package and switching in the same direction.


IDT74ALVCH16270 3.3V CMOS 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

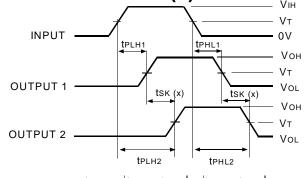
Symbol	Vcc ⁽¹⁾ = 3.3V±0.3V	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ = 2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vін	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
Vlz	300	300	150	mV
Vhz	300	300	150	mV
CL	50	50	30	рF
				NEW16link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse

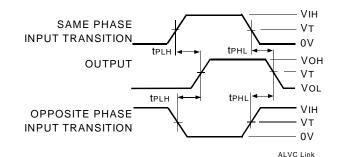

Generator.

- **NOTES:** 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.51s, tK \leq 2.51s

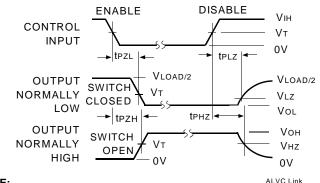
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	NEW16link

OUTPUT SKEW - тsk (x)


tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|ALVC Link

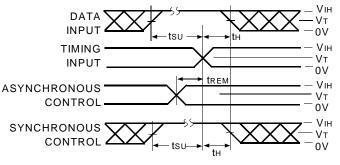
NOTES:


1. For $ts\kappa(o)$ OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

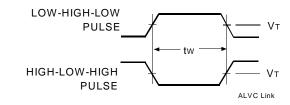
| PROPAGATION DELAY

ENABLE AND DISABLE TIMES

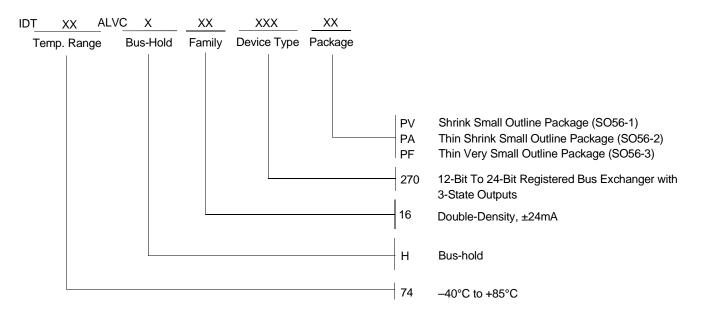


NOTE:

ALVC Link


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



ALVC Link

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.