

3.3V CMOS 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

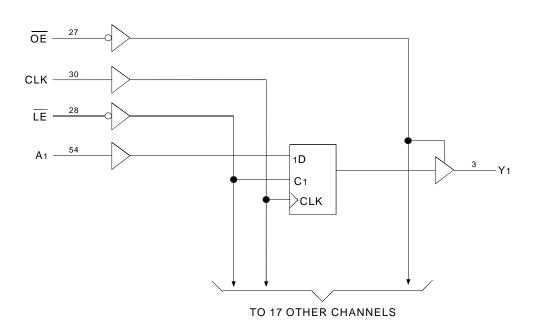
FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP, and 0.40mm pitch TVSOP packages
- Extended commercial range of 40°C to + 85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V \pm 0.2V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVC162834:

- Balanced Output Drivers: ±12mA
- Low switching noise

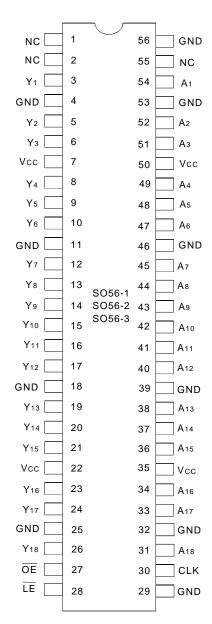
APPLICATIONS:


- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

This 18-bit universal bus driver is built using advanced dual metal CMOS technology. Data flow from A to Y is controlled by the output-enable (\overline{OE}) . The device operates in the transparent mode when the latch enable (\overline{LE}) input is low. The A data is latched if the clock (CLK) input is held at a high or low logic level. If \overline{LE} is high, the A data is stored in the latch/flip-flop on the low-to-high transition of CLK. When \overline{OE} is high, the outputs are in the high-impedance state.

The ALVC162834 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.


Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description	
ŌĒ	3-State Output Enable Inputs (Active LOW)	
CLK	Register Input Clock	
ĪĒ	Latch Enable (Transparent LOW)	
Ax	Data Inputs	
Yx	3-State Outputs	
NC	No Internal Connection	

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage	- 0.5 to + 4.6	V
	with Respect to GND		
VTERM(3)	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	- 65 to + 150	°C
lout	DC Output Current	- 50 to + 50	mA
lik	Continuous Clamp Current,	± 50	mA
	Vi < 0 or Vi > Vcc		
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF
		•			NEW16link

NOTF:

1. As applicable to the device type.

FUNCTION TABLE (1)

	Inputs				
ŌĒ	<u>LE</u>	CLK	Ах	Yx	
Н	Х	Χ	Χ	Z	
L	L	Х	L	L	
L	L	Х	Н	Н	
L	Н	1	L	L	
L	Н	1	Н	Н	
L	Н	Н	Х	Y0 ⁽²⁾	
L	Н	L	Х	Y0 ⁽³⁾	

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑= LOW-to-HIGH Transition
- Output level before indicated steady-state input conditions were established, provided that CLK is HIGH before LE went HIGH.
- Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Test C	onditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	± 5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	± 5	
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	± 10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
VIK	Clamp Diode Voltage	Vcc = 2.3V, lin = - 18mA		_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL		Vcc = 3.6V		_	0.1	40	μA
Іссн	Quiescent Power Supply Current	VIN = GND or Vcc					
Iccz							
Δ lcc	Quiescent Power Supply	One input at Vcc - 0.6V,		_	-	750	μΑ
	Current Variation	other inputs at Vcc or GND					NEW16link

NOTE:

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			I _{OL} = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3.0V	IoL = 6mA	_	0.55	
			IoL = 12mA	_	0.8	NEW16link

NOTE:

^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate VCC range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

			VCC = 2.5V ± 0.2V	$VCC = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	_	_	pF
	Outputs enabled				ρг
CPD	Power Dissipation Capacitance		_	_	ъГ
	Outputs disabled				pF

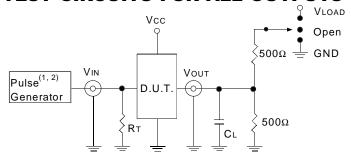
SWITCHING CHARACTERISTICS(1)

		VCC = 2.	5V ± 0.2V	VCC	= 2.7V	VCC = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	1	5	_	5	1	4.2	ns
tphl	Ax to Yx							
tplh	Propagation Delay	1.4	6.3	_	6.1	1.4	5.4	ns
tphl	LE to Yx							
tplh	Propagation Delay	1.4	6.3	_	6.1	1.4	5.4	ns
tphl	CLK to Yx							
tpzh	Output Enable Time	1.4	6.3	_	6.5	1.1	5.5	ns
tpzl	OE to Yx							
tphz	Output Disable Time	1	4.7	_	4.9	1.3	4.5	ns
tplz	OE to Yx							
tw	Pulse Duration, LE LOW	3.3	_	3.3	_	3.3	_	ns
tw	Pulse Duration, CLK HIGH or LOW	3.3	_	3.3	_	3.3	_	ns
tsu	Setup Time, data before CLK↑	2.2	_	2.1	_	1.7	_	ns
tsu	Setup Time, data before LE↑, CLK HIGH	1.2	_	1.6	_	1.3	_	ns
tsu	Setup Time, data before LE↑, CLK LOW	1.4	_	1.5	_	1.2	_	ns
tн	Hold Time, data after CLK↑	0.6	_	0.6	_	0.7	_	ns
tн	Hold Time, data after <u>L</u> E↑,	1.2	_	1.1	_	1.1		ns
	CLK HIGH or LOW							
tsk(o)	Output Skew ⁽²⁾	_	_	_	_	_	500	ps

NOTES:

- 1. See test circuits and waveforms. $T_A = -40$ °C to +85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

SWITCHING CHARACTERISTICS FROM 0° C TO 65° C, $C_{L} = 50$ pF


		VCC = 3.3V	± 0.15V	
Symbol	Parameter	Min.	Max.	Unit
tPLH	Propagation Delay	1.9	4.5	ns
tPHL	CLK to Yx			

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				NEW16link

TEST CIRCUITS FOR ALL OUTPUTS

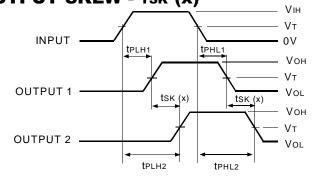
ALVC Link

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

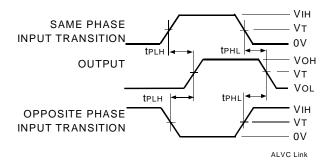

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

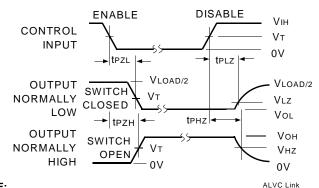
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
<u> </u>	NFW16lir

OUTPUT SKEW - TSK (x)

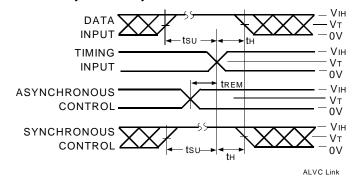


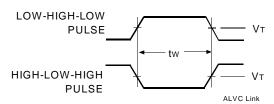
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


1. For tsk(0) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

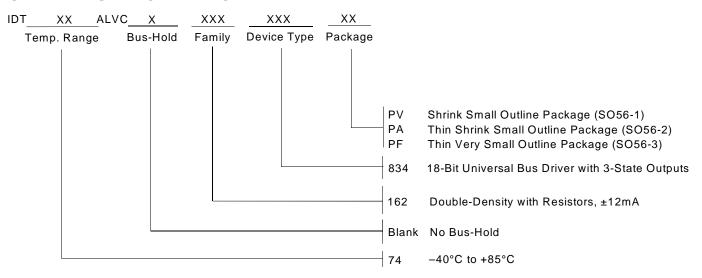
PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSE WIDTH

ALVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*