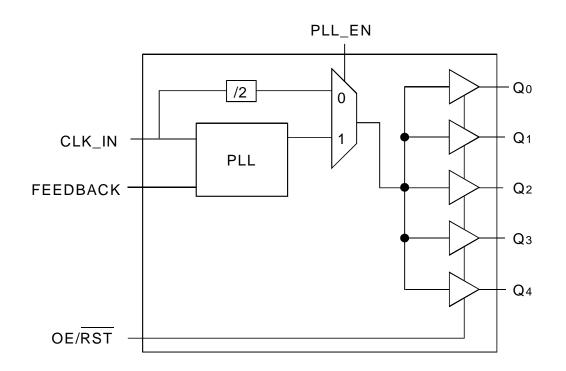


LOW SKEW CMOS PLL CLOCK DRIVER WITH INTEGRATED LOOP FILTER

QS5935

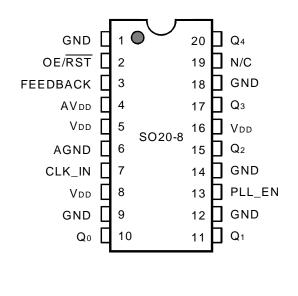

FEATURES:

- 5V operation
- Five low noise CMOS level outputs
- <500ps output skew, Q0–Q4
- Outputs 3-state and reset while OE/RST low
- PLL disable feature for low frequency testing
- Internal loop filter RC network
- Balanced drive outputs ±36mA
- 80MHz maximum frequency
- Available in QSOP package

DESCRIPTION

The QS5935 Clock Driver uses an internal phase locked loop (PLL) to lock low skew outputs to a reference clock input. Five outputs are available: Qo–Q4. Careful layout and design ensure <500ps skew between the Qo–Q4. The QS5935 includes an internal RC filter which provides excellent jitter characteristics and eliminates the need for external components. The PLL can also be disabled by the PLL_EN signal to allow low frequency or DC testing. The QS5935 is designed for use in cost sensitive high-performance computing systems, workstations, multi-board computers, networking hardware, and mainframe systems. Several can be used in parallel or scattered throughout a system for guaranteed low skew, system-wide clock distribution networks. In the QSOP package, the QS5935 clock driver represents the best value in small form factor, high-performance clock management products.

FUNCTIONAL BLOCK DIAGRAM



INDUSTRIAL TEMPERATURE RANGE

JULY 2000

QS5935 LOW SKEW CMOS PLL CLOCK DRIVER WITH INTEGRATED LOOP FILTER

PIN CONFIGURATION

QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Rating	Max.	Unit
AVDD, VDD	Supply Voltage to Ground	–0.5 to +7	۷
	DC Input Voltage VIN	-0.5 to VDD+0.5	۷
	Maximum Power Dissipation (TA = 85°C)	0.5	W
Tstg	Storage Temperature Range	-65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = 25° C, f = 1MHz, VIN = 0V) (1)

Pins	Тур.	Max.	Unit	
CIN	3	4	pF	
Соит	4	5	pF	

NOTE:

1. Capacitance is characterized but not tested.

PIN DESCRIPTION

Pin Name	I/O	Description
CLK_IN	I	Reference clock input
FEEDBACK	I	External feedback provides flexibility for different output frequency relationships
Q0 -Q4	0	Clock outputs
OE/RST	I	Output enable/asynchronous reset. Resets all output registers. When 0, all outputs are held in a tri-stated condition. When 1, outputs are enabled.
PLL_EN	Ι	When 1, PLL is enabled. When 0, PLL is disabled and the output for Q0 -Q4 will be CLK_IN/2 in frequency. This allows the CLK_IN input to be single-stepped for system debug.
Vdd	_	Power supply for output buffers
AVdd	-	Power supply for phase lock loop and other internal circuitries
GND	_	Ground supply for output buffers
AGND	—	Ground supply for phase lock loop and other internal circuitries

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $AV_{DD}/V_{DD} = 5.0V \pm 10\%$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH Level	2	-	—	V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level	_	_	0.8	V
Vон	Output HIGH Voltage	Іон = —36mA	Vdd - 0.75	_	_	V
		Іон = −100μА	VDD – 0.2	_	_	V
Vol	Output LOW Voltage	VDD = Min., IOL = 36mA	_	_	0.45	V
		$V_{DD} = Min., IOL = 100\mu A$	_	_	0.2	V
Vн	Input Hysteresis	_	_	100	_	mV
loz	Output Leakage Current	Vout = VDD or GND,	_	_	±5	μA
		VDD = Max., Outputs Disabled				
lin	Input Leakage Current	VIN = AVDD or GND, AVDD = Max.	_	_	±5	μA

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Тур.	Max.	Unit
Iddq	Quiescent Power Supply Current	$V_{DD} = Max., OE/\overline{RST} = LOW,$	_	1	mA
		CLK_IN = LOW, All outputs unloaded			
Δ IDD	Power Supply Current per Input HIGH	VDD = Max., VIN = 3.4V	0.7	1.5	mA
IDDD	Dynamic Power Supply Current (1)	$V_{DD} = Max., CL = 0pF$	_	0.4	mA/MHz

NOTE:

1. This value is guaranteed but not tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

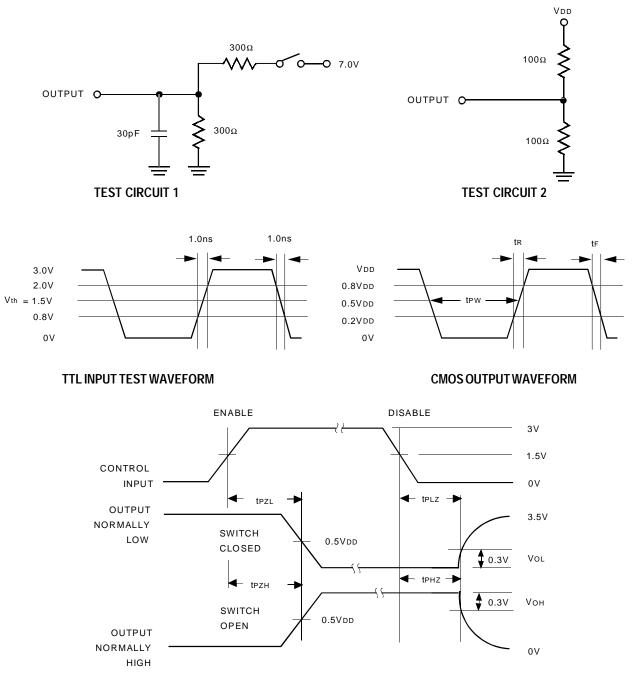
Symbol	Parameter (1)	Min.	Тур.	Max.	Unit
t skr	Output Skew Between Rising Edges, Q0-Q4 (2,3)	-	—	500	ps
t SKF	Output Skew Between Falling Edges, Qo-Q4 (2,3)	-	—	500	ps
tpw	Pulse Width, Q0-Q4	Тсүс/2 — 0.4	—	Тсүс/2 + 0.4	ns
tı	Cycle-to-Cycle Jitter ^(2,5)	- 0.15	—	+0.15	ns
tpd	CLK_IN to Feedback Delay (2,6)	- 500	_	+500	ps
tlock	CLK_IN to Phase Lock	-	_	10	ms
tpzh tpzl	Output Enable Time, OE/RST LOW to HIGH (4)	0	_	14	ns
tphz tplz	Output Disable Time, OE/RST HIGH to LOW (2,4)	0	_	14	ns
tR, tF	Output Rise/Fall Times, 0.2VDD ~ 0.8VDD (2)	-	_	2.5	ns
tr, tr	Maximum Rise/Fall Times, 0.8V to 2V	-	_	3	ns
Fi	Input Clock Frequency	10	_	80	MHz
tpwc	Input Clock Pulse, HIGH or LOW (7)	2	—	—	ns
Dн	Duty Cycle, CLK_IN (7)	25	_	75	%

NOTES:

2. This parameter is guaranteed by characterization but not tested.

3. Skew specifications apply under identical environments (loading, temperature, VDD, device speed grade).

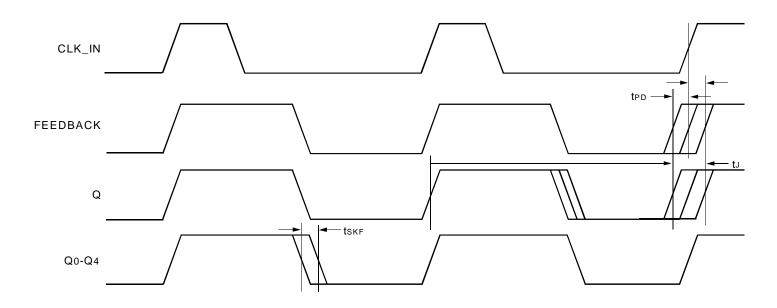
4. Measured in open loop mode PLL_EN = 0.


6. tPD measured at device inputs at 1.5V, Q output at 80MHz.

^{1.} See Test Loads and Waveforms for test load and termination.

^{5.} Jitter is characterized using an oscilloscope, Q output at 20MHz. Measurement is taken one cycle after jitter.

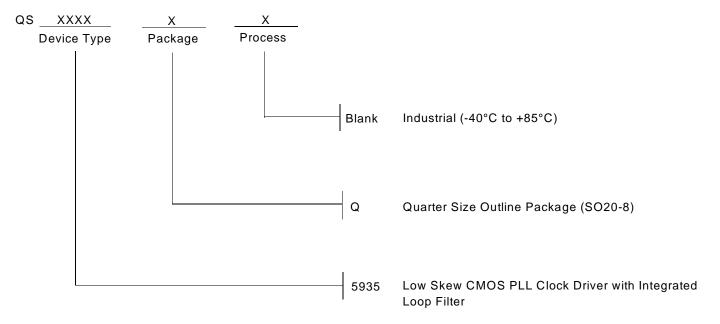
^{7.} Input timing requirements are guaranteed by design but not tested. Where pulse width implied by DH is less than tPWc limit, tPWc limit applies.


AC TEST LOADS AND WAVEFORMS

ENABLE AND DISABLE TIMES

TEST CIRCUIT 1 is used for output enable/disable parameters. TEST CIRCUIT 2 is used for all other timing parameters.

AC TIMING DIAGRAM



NOTES:

2. All parameters are measured at 0.5VDD except for tPD, which is measured at 1.5V

^{1.} AC Timing Diagram applies to Q output connected to FEEDBACK .

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc. Turboclock is a registered trademark of Integrated Device Technology, Inc.