

3.3V PROGRAMMABLE SKEW PLL CLOCK DRIVER TURBOCLOCK™ II PLUS

FEATURES:

- 3.3V operation
- · 4 pairs of programmable skew outputs
- · Low skew: 150ps same pair, 350ps all outputs
- Selectable positive or negative edge synchronization: Excellent for DSP applications
- · Synchronous output enable
- Input frequency: 25MHz to 225MHz
- Output frequency: 25MHz to 225MHz
- 2x, 4x, 1/2, and 1/4 outputs (of VCO frequency)
- · 3-level inputs for skew control
- PLL bypass for DC testing
- External feedback, internal loop filter
- · 12mA balanced drive outputs
- Low Jitter: <150ps peak-to-peak
- · Available in 144-pin BGA package

DESCRIPTION:

The IDT5V996 is a high fanout PLL based clock driver intended for high performance computing and data-communication applications. The IDT5V996 has eight programmable skew outputs organized in four banks of two. Skew is controlled by 3-level input signals that may be hard wired to appropriate HIGH-MID-LOW levels. The IDT5V996 provides up to 18 programmable levels of output skew, prescaling, and other features.

Other features of IDT5V996 are synchronous output enable (G), TEST, and lock detect indicator (LOCK). When G is held low, all the outputs are synchronously enabled, however, if G is held high, all outputs except 3Q0 and 3Q1 are in the state designated by SE (HIGH or LOW).

When TEST is held low, the chip operates in normal condition. When held high, the PLL is shut off and the chip functions as a buffer. The lock detect indicator asserts high when the phase lock loop has acquired lock. During acquisition, the indicator is in the low state. Once the PLL has reached the steady-state condition within a specified frequency range, LOCK is asserted high.

The PLL is closed externally to provide more flexibility by allowing the user to control the delay between the input clock and the outputs. The IDT5V996 has LVTTL outputs with 12mA balanced drive outputs.

The IDT5V996 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

1

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

DECEMBER 2001

PIN CONFIGURATION

	1	2	3	4	5	6	7	8	9	10	11	12	
A	Vddq	Vddq	Vddq	GND	GND	LOCK	GND	GND	GND	Vddq	Vddq	Vddq	A
В	VDDQ	Vddq	Vddq	GND	2Q1	2Q0	1Q1	1Q0	GND	Vddq	Vddq	Vddq	В
С	VDDQ	Vddq	Vdd	Vdd	Vdd	Vdd	Vdd	Vdd	Vdd	Vdd	Vddq	Vddq	С
D	Vddq	Vddq	Vdd	GND	GND	GND	GND	GND	GND	Vdd	2F2	2F1	D
E	Vddq	G	Vdd	GND	GND	GND	GND	GND	GND	Vdd	2F0	1F2	E
F	TEST	REF	Vdd	GND	GND	GND	GND	GND	GND	Vdd	1F1	1F0	F
G	Vddq	FB	Vdd	GND	GND	GND	GND	GND	GND	Vdd	4F1	4F0	G
н	Vddq	SE	Vdd	GND	GND	GND	GND	GND	GND	Vdd	3F0	4F2	н
	VDDO	VDDO	Vpp	GND	GND	GND	GND	GND	GND	Voo	3F2	3F1	
ĸ	Veeo	Vapa	Vee	Voo		Vaa	Voo	Vee	Voo	Vap		Vada	ĸ
I I	VDDQ	Vooo	VDD	GND	201	200	401	400		VDD	VDDQ	Vooo	
	VDDQ	VDDQ	VDDQ	GND	GND	GND				VDDQ	VDDQ	VDDQ	
IVI	1	2	3	4	5	6	7	8	9	10	11	12	IVI

BGA TOP VIEW

2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
Vddq, Vdd	Supply Voltage Range	-0.5 to +4.6	V
VI ⁽²⁾	Input Voltage Range	-0.5 to 4.6	۷
V0 ⁽²⁾	Voltage range applied to any	–0.5 to	V
	output in the high or low state	VDDQ + 0.5	
Iiк (Vi < 0)	Input Clamp Current	-50	mA
Io (Vo = 0 to VDDQ)	Continuous Output Current	±50	mA
VDDQ or GND	Continuous Current	±100	mA
Тѕтс	Storage Temperature Range	-65 to +150	°C

NOTES:

- Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.
- The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

PIN DESCRIPTION

Pin Name	Туре	Description
REF	IN	Reference Clock Input
SE	IN	Selectable positive or negative edge control. When LOW / HIGH, the outputs are synchronized with the negative/positive edge of the reference clock. When outputs are synchronously stopped with the G pin, SE determines the level at which outputs stop. When SE is LOW/HIGH, outputs synchronously stop HIGH/LOW.
FB	IN	FeedbackInput
G	IN	Output gate for "true" $nQ_{1:0}$ outputs. When G is LOW, the "true" $nQ_{1:0}$ outputs are enabled. When G is HIGH, the "true" $nQ_{1:0}$ outputs are in the state designated by SE (HIGH or LOW) (except $3Q_0$ and $3Q_1$) - $3Q_0$ and $3Q_1$ may be used as the feedback signal to maintain phase lock.
TEST	IN	TEST = LOW means normal operation. TEST = HIGH means that the PLL is powered down and REF is routed to all the outputs. The
		skews selected with the nF $_{[2:0]}$ pins are still in effect. (The TEST pin is a TTL input.)
nF[2:0]	IN	3-level inputs for selecting 1 of 18 skew taps or frequency functions
nQ[1:0]	OUT	Clock Output Pairs
VDDQ	PWR	Power supply for output buffers
Vdd	PWR	Power supply for phase locked loop and other internal circuitry
GND	PWR	Ground
LOCK	OUT	Lock Detect. Asserted (HIGH) when the PLL is locked. The REF input must be oscillating.

PROGRAMMABLE SKEW

Output skew with respect to the REF input is adjustable to compensate for PCB trace delays, backplane propagation delays or to accommodate requirements for special timing relationships between clocked components. Skew is selectable as a multiple of a time unit (tu) which ranges from 278ps to 625ps (see Programmable Skew Range and Resolution Table). There are 16 skew configurations available for each output pair. These configurations are chosen by the nF_{2:0} control pins. In order to minimize the number of control pins, 3-level inputs (HIGH-MID-LOW) are used, they are intended for but not restricted to hard-wiring. Undriven 3-level inputs default to the MID level. Where programmable skew is not a requirement, the control pins can be left open for the zero skew default setting. The Control Summary Table shows how to select specific skew taps by using the nF_{2:0} control pins.

CAPACITANCE^(1,2)(TA = +25°C, f = 1MHz, VIN = 0V)

Parameter	Description	Min	Тур.	Max.	Unit
Cin	Input Capacitance	-	8	-	pF
	VI = VDDQ or GND				

NOTES:

- 1. Unused inputs must be held high or low to prevent them from floating.
- Capacitance applies to all inputs except nF2:0. This value is characterized but not production tested.

IDT5V996 3.3V PROGRAMMABLE SKEW PLL CLOCK DRIVER TURBOCLOCK II PLUS

EXTERNAL FEEDBACK

By providing external feedback, the IDT5V996 gives users flexibility with regard to skew adjustment. The FB signal is compared with the input REF signal at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to adjust upwards or downwards accordingly. An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

PLL PROGRAMMABLE SKEW RANGE AND RESOLUTION TABLE

		Comments
Timing Unit Calculation (tu)	1/(16 х FNOM)	
VCO Frequency Range (FNOM) ⁽¹⁾	100 to 225 MHz	
Skew Adjustment Range ⁽²⁾		
Max Adjustment:	±4.375ns	ns
	±157.5°	Phase Degrees
	±43.75%	% of Cycle Time
Example 1, FNOM = 100MHz	tu = 0.625ns	-
Example 2, FNOM = 167MHz	tu = 0.374ns	_
Example 3, FNOM = 225MHz	tu = 0.278ns	-

NOTES:

1. The VCO frequency always appears at nQ1:0 outputs when they are operated in their undivided modes. The frequency appearing at the REF and FB inputs will be FNOM when the output connected to FB is undivided. The frequency of the REF and FB inputs will be FNOM /2 or FNOM /4 when the part is configured for frequency multiplication by using a divided output as the FB input. Using the nF[2:0] inputs allows a different method for frequency multiplication (see Control Summary Table for Feedback Signals).

2. Skew adjustment range assumes that a zero skew output is used for feedback. If a skewed Q output is used for feedback, then adjustment range will be greater. For example if a 4tu skewed output is used for feedback, all other outputs will be skewed -4tu in addition to whatever skew value is programmed for those outputs. 'Max adjustment' range applies to all output pairs where ± 7tu skew adjustment is possible and at the lowest FNOM value.

CONTROL SUMMARY TABLE FOR FEEDBACK SIGNALS⁽¹⁾

nF2	nF1	nFo	Output Skew
L	L	L	Disable ⁽²⁾
L	Н	L	-7tu
L	Н	М	-6tu
L	Н	Н	-5tu
М	L	L	-4t∪
M	L	М	-3tu
М	L	Н	-2tu
Μ	М	L	-1tu
М	М	М	Zero Skew
М	М	Н	+1tu
М	Н	L	+2t∪
Μ	Н	М	+3t∪
Μ	Н	Н	+4tU
Н	L	L	+5tU
Н	L	М	+6tU
Н	L	Н	+7t∪
Н	М	L	Inverted
Н	M	M	Divide by 2
Н	М	Н	Divide by 4

NOTES:

1. All unused/unnoted combinations are reserved.

2. When G is LOW, all output pairs are individually disabled to the level designated by SE. When SE is LOW/HIGH, output pairs disable HIGH/LOW.

RECOMMENDED OPERATING RANGE

Symbol	Description	Min.	Тур.	Max.	Unit
Vdd / Vddq	Power Supply Voltage	3	3.3	3.6	V
Та	AmbientOperatingTemperature	-40	+25	+85	°C

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Conditions	Min.	Max.	Unit	
Vih	Input HIGH Voltage	Guaranteed Logic HIGH (REF,	FB Inputs Only)	2	_	V
Vil	Input LOW Voltage	Guaranteed Logic LOW (REF,	FB Inputs Only)	_	0.8	V
Vihh	Input HIGH Voltage Level ⁽¹⁾	3-Level Inputs Only		Vdd-0.6	_	V
VIMM	Input MID Voltage Level ⁽¹⁾	3-Level Inputs Only		Vdd/2-0.3	VDD/2+0.3	V
VILL	Input LOW Voltage Level ⁽¹⁾	3-Level Inputs Only	_	0.6	V	
lin	Input Leakage Current	VIN = Vcc or GND		-5	+5	μA
	(REF, FB Inputs Only)	Vcc = Max.				
		Vin = Vdd	HIGH Level	_	+200	
13	3-Level Input DC Current (nF2:0)	Vin = Vdd/2	MID Level	-50	+50	μA
		Vin = GND	LOW Level	-200	_	
Vон	Output HIGH Voltage Level	Vdd = Min., Ioн = —12mA		2.4	_	V
Vol	Output LOW Voltage Level	VDD = Min., IOL = 12mA		_	0.4	V

NOTE:

1. These inputs are normally wired to VDDQ, GND, or unconnected. Internal termination resistors bias unconnected inputs to VDDQ/2. If these inputs are switched, the function and timing of the outputs may be glitched, and the PLL may require an additional tLOCK time before all datasheet limits are achieved.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Typ. ⁽²⁾	Max.	Unit
IDDQ	Quiescent Power Supply Current	VDDQ = Max., REF = FB = SE = G = LOW,	-	30	mA
		TEST = HIGH, All nF2:0 = $HHM^{(3)}$,			
		All outputs floating			
IDDD	Dynamic Power Supply Current per Output	VDDQ = Max., CL = 0pF	410	650	μA/MHz
		VDDQ = 3.3V, FVCO = 100MHz, CL = 20pF	124	-	
Ітот	Total Power Supply Current	VDDQ = 3.3V, FVCO = 167MHz, CL = 20pF	197	_	mA
		VDDQ = 3.3V, FVCO = 225MHz, CL = 20pF	253	-	

NOTES:

1. Measurements are for divide-by-1 outputs.

2. For nominal voltage and temperature.

3. This configuration is only specific for IDDO measurements.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE⁽¹⁾

Symbol	Parameter	Min.	Тур.	Max.	Unit
FNOM	VCO Frequency Range	See PLL Programm	able Skew Range ar	nd Resolution Table	
Fref	REF Clock Input Frequency	25		225	MHz
tREF	REF Clock Duty Cycle	10	-	90	%
tu	Programmable Skew Time Unit	See	Control Summary T	able	
t SKEWPR	Matched-Pair Skew (xQo, xQ1) ^(1,2,3)	—	-	150	
tsk(0)	Output Skew (Rise-Rise, Fall-Fall, Same Frequency and Phase) ^(1,2)	—	_	350	
tsk(ω)	Multiple Frequency Skew ^(1,2)	—	_	550	
tsk(INV)	Inverting Skew Between Nominal and Inverted ^(1,2,4)	—	—	500	
tskew1	Output Skew (Rise-Fall, Inverted-Divided) ^(1,2)	-	—	500	ps
tSKEW4	Output Skew (Rise-Fall, Divided-Divided) ^(1,2,4)	—	_	500	
tDEV	Device-to-Device Skew ^(2,5)	—	_	250	
tφ	REF Input to FB Static Phase Offset (VTH = VDDQ/2)	-250	—	+250	
todcv	Output Duty Cycle Variation from 50% ^(1,7)	-0.75	—	+0.75	
tR.	Output Rise Time (0.8V to 2V) ⁽¹⁾	-	—	2.2	ns
tF	Output Fall Time (2V to 0.8V) ⁽¹⁾	—	_	2.2	
tlock	PLL Lock Time ⁽⁶⁾	—		0.5	ms
tı	Cycle-to-Cycle Output Jitter, Peak-to-Peak ⁽¹⁾	-	_	150	ps

NOTES:

1. Measured at VTH = VDDO/2, output load CL = 20pF.

2. Skew is the time between the earliest and the latest output transition among all outputs for which the same tu delay has been selected when all are loaded with the specified load.

3. tskewpr is the skew between a pair of outputs (xQo and xQ1) when all eight outputs are selected for Otu.

4. There are 3 classes of outputs: Nominal (multiple of tu delay), Inverted, and Divided (Divide-by-2 or Divide-by-4 mode).

5. tDEV is the output-to-output skew between any two devices operating under the same conditions (VDD and VDDO, ambient temperature, air flow, etc.)

6. LLOCK is the time that is required before synchronization is achieved. This specification is valid only after VDD and VDDD are stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.

7. topcv is measured with $nF_{[2:0]} = MMM$.

AC TEST LOADS AND WAVEFORMS

AC Load

Output Waveform

Static Phase Offset and Skew Calculations (2,3)

NOTES:

- 1. $V_{TH} = V_{DDQ}/2$.
- 2. Cf = Cl Cfbin Cpcbtrace; Cfbin \cong 6pF
- 3. Calculations were done by adjusting the input slew rate to match with the output slew rate.

AC TIMING DIAGRAM

NOTES:

- SE: The AC Timing Diagram applies to SE=Vob. For SE=GND, the negative edge of FB aligns with the negative edge of REF, divided outputs change on the negative edge of REF, and the positive edges of the divide-by-2 and the divide-by-4 signals align.
- Skew: The time between the earliest and the latest output transition among all outputs for which the same tu delay has been selected when all are loaded with 20pF and terminated with 75Ω to VDD0/2.
- tskewpr: The skew between a pair of outputs (xQo and xQ1) when all eight outputs are selected for Otu.
- tsk(0): The skew between outputs when they are selected for Otu
- tDEV: The output-to-output skew between any two devices operating under the same conditions (VDDQ, VDD, ambient temperature, air flow, etc.)
- topcv: The deviation of the output from a 50% duty cycle. Output pulse width variations are included in tskew1 and tskew4 specifications.
- tsk(ω): The skew between outputs of different frequencies.
- tsk(INV): The skew between inverting and non-inverting outputs.

tR and tF are measured between 0.8V and 2V.

tLOCK: The time that is required before synchronization is achieved. This specification is valid only after VDD/VDDQ is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com *for Tech Support:* logichelp@idt.com (408) 654-6459