IDT

DUAL-PORT SRAMSs
WITH SEMAPHORE
ARBITRATION

APPLICATION
NOTE
AN-14

By Michael J. Miller

Introduction

Due totheir high bandwidth and message access flexibility, dual-port
SRAMs are used to link multiple high-performance processors and
systems. Integrated Device Technology makes dual-port SRAMsinmany
configurations, all of which consist of one SRAMwith two sets of address,
data and control signals. This allows two processors to share the same
block of physical memory in their respective address spaces. The two
processors canaccess datain two memory locations simultaneously and
asynchronously. This approach clearly outperforms a discrete part's
design where two processors must synchronize through arbitration for
accesstoabuswhichis usedtoaccess onelocationatatimeinastandard
single-port RAM.

MICROPROCESSOR
M68020
180386

DUAL-PORT | @ » | MICROPROCESSOR
SRAM g TMS3020
IDT49C000

<l

3558 drw 01

Figure 1. Dual-Port RAMs Link High-Performance Processors

IDT’s dual-access approach removes synchronization require-
ments atthe memory’s bus access level. Nevertheless, synchronization
must be performed at other levels to ensure data integrity and proper
system operation. This application note addresses several approaches
to solving the mutual exclusion problem and gives a detailed discussion
of the semaphore capability provided by the IDT71342.

Arbitration

Consider amultiple-processor system where each processor has
accesstothe samedata. Arbitration schemes are necessary toresolve the
situationwhenmultiple processors wantthe same piece of dataatthe same
time. Differentapproaches tothe arbitration issue have different tradeoffs
andare best-suited for differentapplications. These solutions vary fromno
arbitration, hardware solutions, software solutions, and combinations
thereof.

Seemingly, the simplestsolutionis toemploy noarbitration atall. This
approachworks ifthe application guarantees thattwo processors will not
access the same location simultaneously or, if they do, then the indeter-
minate results are acceptable. Sometimes handshaking can be employed
through I/0 ports orinterruptmechanisms. This approach provides a high-
performance, low overhead design butis restricted to certain applications.
Ifarbitrationis notrequired, the IDT7134 canbe used. Itisa4Kx 8 dual-
portRAMwithno arbitration. This partcanalsobe usedinlarge dual-port
designs where one hardware arbiteris used forawhole array composed
ofmany IDT7134s. Theinterrupthandshake mechanism canbe achieved
by using devices like the IDT7130/7140.

Mostapplications cannotsacrifice dataintegrity and utilize the dual-
portmemory as a collection ofindividual memory locations whichrequire
afinite accesstime. Inthis case, arbitration atmemory location resolution
is required. For example, the IDT7130 and IDT7132 use an address
comparison mechanismwhich provides aBUSY signaltothe losing side.
When the two processors try to access the very same location, the
arbitration asserts the BUSY signal to the processor which attempted
accesslast. When access attempts are within 5ns of each other, asideis
chosen arbitrarily. The BUSY outputs are suitable for attachmentto the
READY or DTACK inputs of most microprocessors. Thisapproachis very
straightforward and flexible and has the benefit thata processor cannotbe
locked outofthe RAMlongerthanthe access period of the other processor.

The features ofthe IDT7130/7132and other device with BUSY that
make themasuperb solutioninmany designs may create problemsin other
applications. The fact that BUSY lines are used and that arbitration
resolutionis atthe level ofindividual locations can be amajorlimitationin
someinstances. Many significant controllers, such as thelDT 8031 and
IDT8051, are notequipped with READY or DTACK input pins. Ofthose
that are equipped, a penalty is often paid in the higher performance
versionsifthey require “seeing”the BUSY signal faster than the IDT7130/
7132 cansupplyit (16MHz 68020 requires 25ns AS to DSACK). Inthese
cases, wasteful wait cycles are required. In other applications, software
constraints may require mutual exclusion at the software data structure
level rather than at the memory cell location level. For this reason,
Integrated Device Technology developed devices like the IDT71342.

Instead of comparing addresses on every cycle, and occasionally
asserting BUSY status, the IDT71342 employs circuitry to support a
software mechanism called semaphores. Here, every memory cycleis
equallyas shortas the nextand arbitration is handled atthe software level.

The semaphore conceptwas pioneered by E.N. Dijkstrain 1968. He
developed a test and set approach for single processor multi-tasking
systems. The task tests amemorylocation (asemaphore) fora particular
valueand,onthe nextcycle, the task setsthe same location aunique value.
Ifthe semaphore was already set, thenthe currenttask knows thatanother
taskhasaccess. Ifthe value was notpresent, then the task knows that it
has permission to proceed and all other tasks are blocked because the
semaphore is not set. Only one task at a time has permission via the
semaphore. Semaphores are used like locks to resources such as disk
buffers, message queues, critical code sections, shared access to commu-
nication controllers, etc.

Because the test and set operation requires that the two memory
accesses are indivisible in time, the IDT7130/7132 will not support
semaphores formany processors and systems. This occurs because one
processor may test the semaphore and, before it can set it, the other
processor mighttest it, too. In this case, both processors “believe” they

MARCH 1999

©1998 Integrated Device Technology, Inc.

3558/3

Dual-Port SRAMs with Semaphore Arbritration

Application Note AN-14

have the semaphore. The IDT71342 employs atwistby using setandtest.
The"set”correspondstoarequestandthe “test’ checkstoseeiftherequest
was granted. The indivisible double access requirement is avoided
because, as soon as a request is made by one processor on one side,
the grantis blocked on the other side. Some processors support testand
setoperations through aread/modify/write operation, butthe memory bus
designmustsupportthe processorinsuchaway thatthe addressand the
chip select remain constant. When the test and set instruction is used,
arbitration musttake place. Aswill be seen, semaphore operation without
hardware busy arbitration has many advantages.

The IDT semaphore scheme employs a software/hardware ap-
proach which provides a secure method of resource allocation with the
flexibility of software configuration and control and the resolution of
hardware. Since there is no hardware relationship between semaphores
anddual-portmemorylocations, the block sizes, locations and semaphore
association are defined by the software. The semaphores canalsobe used
toallocate other resources such as I/O devices. This offers the system
designer considerable flexibility.

As an example, a dual-port SRAM might be shared by a disk
controller processor and a host processor. When the controller is
accessing abufferin memory (e.g. when writing a sectorin a track), the
main processor cannot be allowed tointerruptor delay the controller. By
setting the semaphore, the controller has exclusive access to the disk
buffer. When done, it releases the semaphore and therefore provides
access to the disk buffer by the processor on the other side.

Because the processors must testand seta semaphore with multiple
bus cycles, the semaphore arbitration scheme has a longer arbitration
latency than the address comparison scheme. Since arbitration is most
often used foraccess tomultiple locationsin memory the overhead canbe
amortized across multiple accesses. In systems that require mutual
exclusion of access to data structures over a period longer than one
memory cycle, this trade-offisirrelevant.

Functional Description of the
IDT71342

The IDT71342 s a fast dual-port 4K x 8 CMOS static SRAM with
semaphore logic, packaged in a 52-pin PLCC and 64-pin TQFP. The
semaphore logic can be usedto allocate portions of the dual-port SRAM
toone side orthe otherandis usedin place of the address arbitrationlogic
used in other dual-port designs. Semaphores are software-controlled.
Therefore, this approach provides several advantagesincluding alloca-
tion of multiple blocks of arbitrary size and no processor WAIT states or
BUSY logic.

Like otherIDT dual-port SRAMs, the IDT71342 allows access toa
common set of SRAM cells from two independent ports. Each port is
functionally identical to that of a conventional static RAM. Both ports are
completely independent and asynchronous in operation. Reading or
writing on one port does not affect the operation or timing of read/write
operations on the other port. Unlike the IDT7130/7132, the IDT71342
does notemploy hardware arbitration which blocks write access. [fone
portiswriting toalocation while the other portis reading thatsame location,
the datawillchange duringthe read. Ifboth ports attempt towrite tothe same
location atthe same time, the resultwill be some combination of the twodata
words being written. If both ports are reading, however, there is no
interaction because the datadoes notchange.

How the Semaphore Flags Work

The semaphore logic is provided by a set of eight latches. These
latches can be used to pass a flag, ortoken, from one port to the other to
indicate thatablock of SRAMisinuse. Theinternal circuitry prevents the
flagfrom being passedinboth directions atthe same time. The semaphores
provide a hardware assist for a use assignment method called “token
passingallocation”. Inthismethod, the state ofthe semaphore latchis used
asatokenindicating thata block of SRAMisin use. If the processoron the
L portwantstouse ablock of SRAM, itattempts to setthe latch, requesting

DO-7L et ————— Do-7rR

DUAL-PORT
RAM

vyvy

YUY

\

Al
Al

EIGHT
SEMAPHORE
LATCHES

Ao-11L Ao-11R

3558 drw 02

Figure 2. Functional Block Diagram of
Dual-Port SRAM with Semaphores

the token. The processorthen checks the latch to see ifitwas successful
in setting the semaphore. Ifitwas, the processor proceeds to read and/
orwriteintheblock. Ifthe processorwas notsuccessfulin setting the latch,
itmeans thatthe R porthad setitfirst, has the token andis using the block.
The L portthen continues to test untilitis successful, indicating thatthe R
port has released the token and is no longer using the block.

The semaphore logicis independent ofthe dual-port SRAM. These
eightlatches canbe accessed fromeither portby enabling the semaphore
chipenable (SEM=VIL), whichis separate from the SRAM chip enable.
When the semaphore logicis enabled ona port, one of the eightlatches
canberead orwrittenfromthatport. The latchis selected by the three least
significantaddress pins for the portand the data for reading and writing
uses the Do data pin.

Asemaphore latchisread orwritteninthe same mannerasan SRAM
cell. The latchis writtentoa“1” or “0” by activating the semaphore logic
enable, selecting the latch with the three least significant address bits,
activating the write enable and puttinga“1” or“0”, respectively, onthe Do
data pin. The latch may be read by activating the semaphore enable,
selecting the latch, holding the write enable HIGH and reading the data
on Do, Forthe user’s convenience, all eightofthe datalines are settothe
same value as Doduring read. In otherwords, the data lines will contain
all“1”sorall“0’swhen Doisa“1”ora“0”, respectively. Inthisway, branch
zerotesting can be employed.

The semaphore readlogiclatches the readout state ofthe semaphore
flagduring the read. This prevents the value seen by the reading portfrom
changing during the read, even though the state of the latch may be
changinginternally due towrite activity on the other port. The latch goes
intothe hold mode when both semaphore enable and outputenable are
active. Inorderto see the latch change, either the semaphore enable or
outputenable mustbe disabled, and then enabled. This means thatread
operations mustbe cyclic; itis not possible to enable the semaphore and

Dual-Port SRAMs with Semaphore Arbritration

Application Note AN-14

output enable continuously and wait for the latch value being read to
change.

The semaphore logicis active LOW. Anaccess tokenis requested
by writing a “0” to the semaphore latch and is released by writing a “1”.
Torequestatoken, anattempttowrite a“0”to the semaphoreis made and
the semaphore is read to determineifthe “0” was successfully written. If
a“0”isread, the token request was granted. Ifa “1” isread, the request
was denied and the other port has the token.

The critical case of semaphore timing occurs when both ports request
the token by writinga “0” atthe same time. The semaphore logicis specially
designed toresolve this problem—ifrequests are made simultaneously,
the logicguarantees thatonly one sidereceives the token. Inthis case, the
token assignment will be made arbitrarily to one port or the other.

Figure 2 shows the internal logic circuitry for one semaphore “latch”
cell. ltiscomposed of multiple latches and cross-coupled AND gates which
serveasanarbitertoguarantee thatonly one side atatime receivesagrant
signal. Atypical sequence of semaphore operationsislistedin Table 1. The
Docolumnsrepresentthe logic value thatwould be read onthatside. The
“RequestF/F's are theinternalflip-flops which store the state of requests.

Use of Semaphores

Semaphores provide useful solutions forvarious problems atboth the
hardware and software levels. The following selections highlighta few of

the semaphore benefits which range from increasing performance to
providing functionality not available with other designs.

High-Performance Dual-Port Design
To gain a deeper understanding of the trade-offs between sema-
phore and non-semaphore dual-port SRAM designs, the following
example compares both approaches. Dual-port memory system design
requires a key awareness of the microprocessor's memory access time
requirements. Figure 3is aread cycle timing diagram of a20MHz 68020.
Two timings are critical: A 45ns address to data size acknowledge
(DSACK)toguarantee nowaitstates anda95ns address todata. Itis also
important to examine a typical design. Figure 4 shows the interface
between a single processor and one side of the dual-port. For simpli-
fication, the other port interface was omitted from the drawing. This
example shows the address bus which is decoded by a comparator
(IDT74FCT521A) and an address decoder (IDT74FCT138A). The
addressinterface chooses which dual-port SRAMtoenable. After the chip
enableisenabled, chipenable arbitration (available onall IDT DPRAMs
except for the IDT7014) and data access can begin.
Inatightly-coupled system i.e., the 68020 processor and dual-port
are on the same board), chip select can be generated from address in
13ns. Inthe best case, the data acknowledge is tied to the 68020 through
a NAND gate (to include other acknowledges). The NAND gate will

WRITEL 1 [| WRITEr
| : : |
DoL | D Y Y D | Dor
| 2 |
| |
DiL + //—|— Dir
o| |o
;! I:
! I3
D Y D o v | = D7r
| E £ I
READL ' ' t READR
_—— — _ —_ e — = 1
3558 drw 03
Figure 3. Simplified Diagram of One Semaphore Cell
Left Right
DO Request Request DO
Function FIF FIF Function
No action 1 1 1 1 | Semaphore Free
L port writes 0 0 0 1 1 |L port has token
R port writes 0 0 0 0 1 |No change; L port keeps token
L port writes 1 1 1 0 0 |Semaphore freed; R port gets it
R port writes 1 1 1 1 1 | Semaphore free
L port writes 0 0 0 1 1 |L port has token
L port writes 1 1 1 1 1 | Semaphore free
Table 1. Semaphore Function Table 35 ol 01

Dual-Port SRAMs with Semaphore Arbritration

Application Note AN-14

SO S2 S4

CLOCK m

| | |
ADDRESS X

25ns
[« |

AS \
25ns

>

DSACKXx

5ns >

DATA

[y
|

A

<
-«

50ns

Figure 4. Read Cycle Timing for 20Mhz 68020

ADDRESS DSACK +5V DATA
/ & | Z\

50ns
3558 drw 04

™| DUALPORT (g
RAM
7
4
F
c]
> P> DUALPORT |q—p»
> RAM
5 7
2 4
1 ™ F
A C
T —: DUAL PORT | g—pm
1 Ll RAM
- 3
8
A | DUALPORT |«—p»
Ll RAM
\ / 74FCT521A 7.2ns V
74FCT138A 5.8ns
— 3558 drw 05
ADDRESS TO CS = 13ns
Figure 5. Memory Interface to One Port of

a Dual-Port RAM System

introduce another 5ns delay. Thisleaves 26.9ns to generate the acknowl-
edge (DSACK) and meetthe 5ns setup time toguarantee thatawait state
willnotbeinserted. Inaless rigorous design where the dual-portand CPU
are on separate boards, 10ns or more may be required for on/off board
buffers and bus delay, etc. This leaves 16ns or less to generate
acknowledge.

Considering the timing constraints, the designer can choose from
several options. Inapplications which require arbitration resolution tothe
memory celllevel, 26.9nsis notenough time to generate DSACK from CE
using the IDT7130L55. One solutioninvolves adding logic to the BUSY/
DSACK path so that a wait state is always inserted until the dual-port
can respond with BUSY. This will slow down the system whenever the
dual-portisaccessed. Ifblock arbitration or highermemory cycle perfor-
mance are required, the designer should utilize the IDT71342. This
configurationwould only be constrained tothe 95ns address todataaccess
time, minus any addressanddata buffertime. The IDT71342 provides high
enough performance for use with the 25MHz 68020. Some software

overhead is required for semaphore access but, given the fact that the
semaphore arbitrationis forablock of locations, the arbitration latency can
be amortized across multiple higher speed accesses. Consequently, the
semaphore approach provides a higher performance solution if block
arbitration is desirable oracceptable.

A Software View of Semaphores

The dictionary defines semaphore as “signaling by flags”. A
semaphoreisimplemented as a specialized type of memorylocation which
canbe accessed by either processorinadual-portdesign. Two different
operations are performed on the semaphore: the request operation which
attempts to gain access and the release operation which signals the
termination of access. These operations are used to guarantee mutual
exclusion, meaning thatonly one processoris accessing aresource atany
giventime. This occurs fromthe time arequestis granted until the time that
the semaphore isreleased.

Asemaphore is chosenwhich both processors associate with one
resource. Firstthe processor requests the semaphore by attempting to
writea “0"tothe semaphorelocation. Thenitreadsthe location. Ifitreceives
a non-zero value (i.e. a “1”), it loops back and reads the semaphore
locationagain. Itwill continue toread thelocationuntilitreceivesa“0”. The
software may be written in such away thatuseful work may be performed
while waiting. When a“0”is read, the processor can access the resource
foraslong, andas manytimes, as desired. The processor mustrelease

WRITE ZERO TO
SEMAPHORE LOCATION

READ
SEMAPHORE

REQUEST:
LOCATIO

MUTUAL EXCLUSION
SECTION OF
PROCESS

v

WRITE ONE TO
SEMAPHORE
LOCATION

RELEASE:

3558 drw 06

Flow Chart 1. Sequence of Operations on Semaphore
to Guarantee Mutual Exclusion

the semaphore whenitis finished with the resource. This is achieved by
writing a “1” to the semaphore location.

Using Semaphores at the
Software Level

One example of where semaphores mightbe applied involves two
processors working together to generate a video display for animated
images. The “MASTER"” processor generates a picture layoutin the form
ofadisplay list. The “SLAVE” processor reads the display list, interprets
itand generates animage inadisplay buffer. As the image is displayed,
the video buffer is cleared. The displayed list is reinterpreted and

Dual-Port SRAMs with Semaphore Arbritration

Application Note AN-14

displayed. Ifthe display listis changed, theimage appears as thoughithas
moved, giving the illusion of animation.

A dual-port SRAM is used to store the display list. The SLAVE
interprets one display listrepeatedly to generate the display bufferimage,
while the MASTER generates and updates another display list. The
SLAVE processor continuously updates the video display buffer since the
bufferis wiped clean whenits contents are dumped to the video screen.

Inthis particular application, the dual-port SRAM s broken up into
three areas. Thefirstarea contains commoninformation concerningwhich

HIGH SPEED DUAL-PORT

statements accessingavariable called SEM. The semaphoreisreleased
by writing a “1” to that variable.

Semaphores and Caches

Inhigh-performance dual-port systems, semaphores can be used
with caches to achieve valid data synchronization. The use of cachesis
an established method of speeding up access between a processorand
main memory. Main memory may be slower due to the use of lower cost,
higher density DRAMs or system bus latency. The cache operates by

MEMORY WITH SEMAPHORES

oo []

|

(%3]
m)
=<
o

MASTER |— o 4—| SWAVE VIDEO DISPLAY
uP HP
SEM1
SEM2 E‘_’
3558 drw 07

Figure 5B. Software Block Diagram of Video Display System for Animation

display listis being accessed and which one is being updated. Itislocked
with the semaphore SEMo. Two buffers comprise the otherareasand are
locked by semaphores SEM1 and SEM2. Atany given time one bufferis
used forthe display list currently being interpreted and the otheris used
forthe listbeing built. The common area stores the pointerwhichindicates
which bufferis being updated.

Thekeytotheeffectiveness ofthis approachlies atthe software level.
The flow chart for the master processor begins with a buffer request via
asemaphore. Once granted, itbuilds adisplay list. Thenitreleases the
bufferthrough the semaphore mechanism. Nextit calls aroutine toinform
the SLAVE processor to switch over to the new buffer. Itthen loops back
torequestaccesstothe otherbuffer.

The SLAVE processor functions by first fetching the current buffer
number. Then it requests the buffer via the semaphore mechanism
(involving SEM1 or SEM2). Once the SLAVE gains access to the buffer,
itbuilds the display from the list. After releasing the buffer, itgoes back to
fetching the current buffer/number. This is necessary because the
MASTER processor may have switched buffers. Fetching the current
buffer/numberrequires access tothe common areawhichis achieved by
obtaining the semaphore SEMo. After accessing the data, the SLAVE
releases SEMo which allows the MASTER to come in and update the
commonarea.

The software code forthe MASTER and SLAVE processorsislisted
on the following pages. It is in the form of a pseudo-"C" language-
type program. The request for a semaphore is made by the WHILE

REQUEST
BUFFER

GOTIT

BUILD DISPLAY
LIST

v

RELEASE
BUFFER

v

TELL SLAVE
TO SWITCH

v

PREPARE TO WORK
IN OTHER BUFFER

g 3558 drw 08

Flow Chart 2. Sequence of Operations for Master Processor

Dual-Port SRAMs with Semaphore Arbritration

Application Note AN-14

FETCHS CURRENT
BUFFER NUMBER

Y

REQUEST
BUFFER

BUILD DISPLAY
LIST

v

RELEASE
BUFFER

* 3558 drw 09

Flow Chart 3. Sequence of Operations for Slave Processor

monitoring data transfer between the processorand memory. When write
operations are performed, the cache remembers the data and location.
Whenareadis performeditcompares the address of the requestwitha
listoflocationsithas datafor. Ifthe address matches, the cache supplies
the dataand abortsthe mainmemory access. lfnomatch occurs, the cache
allows the mainmemory access to proceed and notes the dataand location.

One mightfirstassume thatthe dual-port SRAM can always be used
with cached memory accesses. However, extra considerations mustbe

CPU |-

~¢—p| DUAL-PORT [g¢——p[cPu
SRAM

SRAM

3558 drw 10

Flow Chart 4. Dual-Port SRAM in a Cached Memory Environment

made. When dataiis written to amemory location in dual-port SRAM, the
cache storesthe acquired value and its associated location. The nexttime
thatlocationisread, the cache will registera “match” and bypass reading
from the location in dual-port SRAM. This might result in an error if a
processor on the other port has written new data to the location.
Oneway toremedy the situationis to putthe dual-port SRAMinto non-
cached /O address space and block data transfer between the dual-port
SRAM and cached address space where standard SRAM exists. To
make this approach work, semaphores mustbe employed tolock abuffer
inthe dual-port SRAM while the dataisin the cached SRAM. In this way
a“check out” procedure canbeimplemented toensure dataintegrity. The
semaphore latches mustbe addressed throughnon-cached /O spacein
orderforthe request and release mechanism to function correctly.

Conclusion

There are anumber of ways to handle dual-port SRAM arbitration.
Choice ofthe mostefficienttechnique concems whatgranularity of address
arbitrationis required, whether a processor mustbe locked out of ablock
of memory for multiple accesses from the other processor and what
constraints areimposed by the memory access cycle timing. Semaphores
provide analternative which can resultin higher performance systemsand
provide functions which are not otherwise achievable. The followingis a
quicksummary.

No Busy Logic- Some applications guarantee by definition that the two
processorswill notaccess the samelocations simultaneously or, if they do,
it doesn’t matter. The IDT7134 is also ideal for use in large dual-port
designs where one arbiter is used for an array of dual-port devices.
Interrupt Logic - Interrupt logic provides a signaling method from one
processor to the other to provide a mechanism for handshaking.
Hardware Busy Logic- Hardware busy logic provides the lowest
latency overhead when accessing multiple individual unrelated memory
locations. The MASTER/SLAVE concept was introduced by IDT to
provide a single arbiter, thus avoiding deadlocks encountered with
multiple arbiters when using more than one dual-port in wide bus
applications.

Semaphore Logic- Semaphorelogic provides the bestoverhead trade-
offwhenaccessingablock of datacomprised of multiple related locations.
Thisfacility may also be requiredin high performance applications where
one ofthe processors does nothave aready/busy input or the overhead
ofwait states cannotbe tolerated.

Semaphores provide a mechanism for one processor to bar the
other processor from seeing an incomplete update of a block of data.
This is achieved through a software mechanism supported by on-chip
circuitry which provides a test and set facility that arbitrates between
simultaneousrequests.

Dual-Port SRAMs with Semaphore Arbritration Application Note AN-14

CODE FORMASTER PROCESSOR

MAIN () |
I* code to initialize */
FOREVER {
SEM (CUR_BUF):= 0
UNTIL (SEM (CUR_BUF) = 0); [*request*/
BUILD_DISPLAY (CUR_BUFF); /*Build new display list*/
SEM (CUR_BUFF):= 1 [*release*/

SWITCH_BUFF (CUR_BUFF);

IF (CUR -= BUFF = 1)
CUR_BUFF:= 2;

else CUR_BUFF:= 1;

}
} /*end MAIN*/

SWITCH_BUFF (NBUFF) {
SEMO:= 0
UNTIL (SEMO = 0); [*request*/
BUFF:= NBUFF,;

CMD:= NEW;
SEM:= 1; /*release*/
RETURN ()
}
CODE FOR SLAVE PROCESSOR
MAIN () {
FOREVER {

CUR_BUFF:= FETCH_BUFF ();
PROCESS (CUR_BUFF);

}
}

FETCH_BUFF () {
SEM 0:= 0;
UNTIL (SEMO = 0); [*request*/
A BUFF:= BUFF,
CMD:= OLD;
RETURN (ABUFF);
SEMO:= 1; /*release*/

PROCESS (BUFF)
SEM’ (BUFF):= O0;

UNTIL (SEM (BUFF) = 0); [*request*/

REFRESH (BUFF): [*code to refresh display*/

SEM (BUFF):= 1; [*release*/

}
CORPORATE HEADQUARTERS for SALES: for Tech Support:

IDT 2975 Stender Way 800-345-7015 or 408-727-6116 | 831-754-4613
Santa Clara, CA 95054 fax: 831-754-4608 DualPortHelp@idt.com
www.idt.com

The IDT logo are registered trademarks of Integrated Device Technology, Inc.

