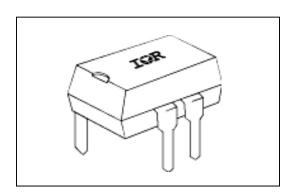
International TOR Rectifier

Series PVI

Photovoltaic Isolator 5-10 Volt Output

General Description

The PVI Photovoltaic Isolator generates an electrically isolated DC voltage upon receipt of a DC input signal. The input of the PVI is a light-emitting diode (LED) which is optically coupled to, but electrically isolated from, the output. A GaAIAS LED is used for high output and maximum stability. The infrared emission from the LED energizes, by photovoltaic action, a series connection of silicon PN junctions. A unique alloyed junction stack which is edge-illuminated is used to form the output photovoltaic generators. This novel structure produces extremely high operating efficiency. Units are available with a single 5-volt output or dual 5-volt outputs which can be series connected to produce 10 volts.


A PVI can serve as an isolator, a coupler and as an isolated voltage source. As an isolator, the PVI can serve as the key component in a solid state relay circuits. The PVI is ideally suited for driving power MOS-FETs and IGBTs or sensitive gate SCRs to form solid state relays.

As a coupler, the PVI can sense a low-level DC signal and transmit a voltage signal to an electrically remote circuit. As a voltage source, the PVI can function as a 'DC transformer' by providing an isolated, low-current DC source for biasing or supplying power to low quiescent current electronic devices.

Conventional optocouplers merely modulate the resistance of an output device such as a transistor, diode or resistor. Such optocouplers require a separate voltage source to detect the presence of an input signal. In contrast, a PVI actually transmits (and transforms) energy across the isolation barrier and directly generates an output voltage. This DC voltage, available at a 2500VAC isolation level, gives circuit designers a new and uniquely useful electronic component.

Features

- Isolated Voltage Source
 - MOSFET Driver ■
 - Up to 10µA Output
 - Fast Response
 - GaAlAs LED ■
- 2500V (RMS) Isolation
 - 8-pin DIP Package ■
- Single or Dual Output ■

Part Identification

Part Number	Outputs	Output Voltage	Output Current
PVI5050	1	5.0V	5µA
PVI5080	1	5.0V	8µA
PVI1050	2	5.0/10.0V	10/5µA

Electrical Specifications (-40°C \leq $T_{A} \leq$ +85°C unless otherwise specified)

INPUT CHARACTERISTICS	PVI Series	Units
Input Current Range (see figure 6)	2.0 to 50	mA (DC)
Maximum Forward Voltage Drop @ 10mA, 25°C (see figure 7)	1.4	V (DC)
Maximum Reverse Voltage	7.0	V(DC)
Maximum Reverse Current @ -7.0V (DC), 25°C	100	μA(DC)
Maximum Pulsed Input Current @ 25°C (see figure 8)	1.0	A(peak)

OUTPUT CHARACTERISTICS	PVI Series	Units
Maximum Forward Voltage @ 10μA	8.0 per channel	V _(DC)
Maxiumum Reverse Current @ -10VDC	10	μA(DC)

COUPLED CHARACTERISTICS		PVI5050	PVI5080	PVI1050	Units
Minimum Open Circuit Voltage @ 10mA, 25°C (see	figures 1 to 4)	5.	0V	5.0V/channel	V (DC)
				10V series	
Minimum Short Circuit Current @ 10mA, 25°C (see f	figures 1 to 3)	5μΑ	8µA	5.0µA/channel	μA (DC)
				10µA parallel	
Maximum Capacitance (Input/Output)		1	.0	2.0	pF
Maximum Turn-On Time @ 20mA Input, 25°C	$R_L=5.0M\Omega$	30	30	30	μs
(see figure 9)	$R_L=1.0M\Omega$	40	40	40	μs
Maximum Turn-Off Time @ 20mA Input, 25°C	$R_L=5.0M\Omega$	400	400	400	μs
(see figure 9)	$R_L=1.0M\Omega$	100	100	100	μs
Insulation Resistance @ 90VDC (Input/Output)		10) ¹²		Ω
Dielectric Strength	Input/Output	25	00		V(RMS)
	Between Outputs	Ν	/A	1200	V(DC)

GENERAL CHARACTERISTICS		PVI Series	Units
Ambient Temperature Range	Operating	-40 to +100	
	Storage	-40 to +100	°C
Maximum Lead Temperature (1.6mm below seating	plane for 10 seconds)	280	

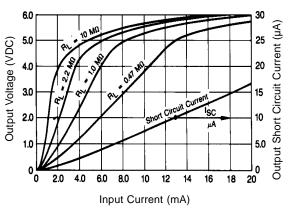


Figure 1. PVI5050 Typical Output Characteristics

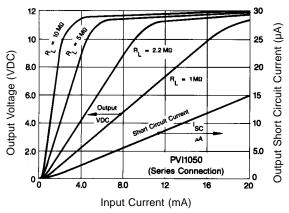


Figure 2. PVI1050 Typical Output Characteristics

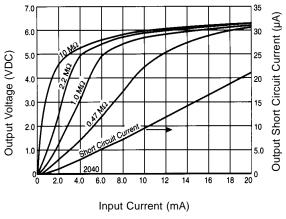


Figure 3. PVI5080 Typical Output Characteristics

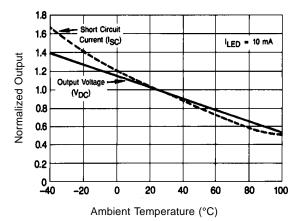
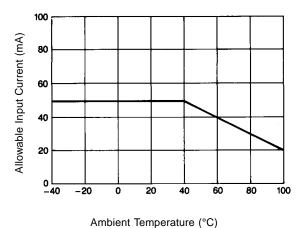



Figure 4. Typical Variation of Output

CAUTION: Provide current limiting so that 50mA maximum steady-state control current is not exceeded.

110

12

12

14

10

0

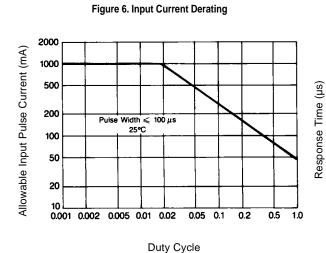
0

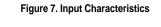
0

0

0

1.5


1.0


1.5

2.0

, ,

LED Forward Voltage Drop (VDC)

10,000

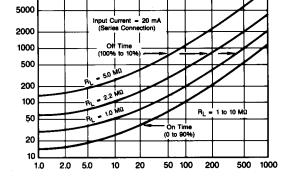
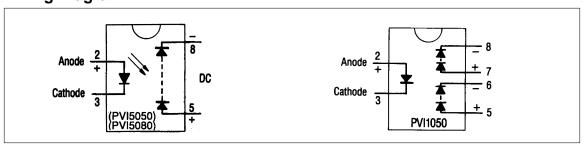
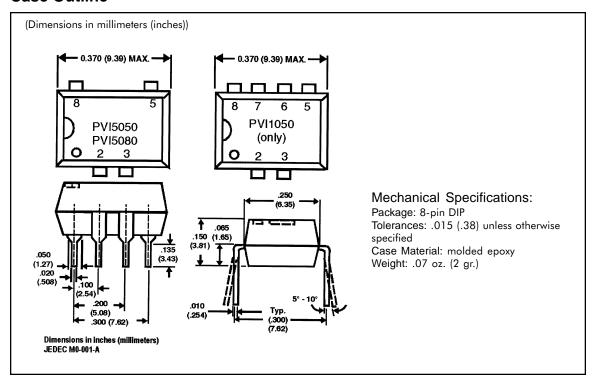



Figure 8. Input Pulse Capability

Load Capacitance (pF)

Figure 9. PVI1050 (PVI5050) Typical Response Time

Wiring Diagram



Application Note:

The outputs of the PVI1050 (pins 5-6 and 7-8) may be placed in series connection to produce a 10-volt output with a 5μ A minimum short circuit current. Alternatively, the two output of the PVI1050 may be connected in parallel to produce a 5.0-volt output with a 10μ A minimum short circuit current.

The two outputs of the PVI1050 may be applied separately with a maximum 1200VDC between the outputs. Input-to-output isolation to either output is 2500V (RMS).

Case Outline

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd., Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++ 44 (0) 20 8645 8000

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon Hong Kong Tel: (852) 2803-7380

Data and specifications subject to change without notice. 6/29/2000