International Rectifier

MBRS360TR

SCHOTTKY RECTIFIER

3 Amp

Major Ratings and Characteristics

Chai	racteristics	MBRS360TR	Units
I _{F(AV)}	Rectangular waveform	3.0	Α
V _{RRM}		60	٧
I _{FSM}	@t _p =5μs sine	790	Α
V _F	@3.0Apk,T _J =125°C	0.61	V
T _J	range	- 55 to 150	°C

Description/Features

The MBRS360TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Bulletin PD-20586 rev. A 02/02

International Rectifier

Voltage Ratings

Partnumber	MBRS360TR	
V _R Max. DC Reverse Voltage (V)	60	
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

Parameters		Value	Units	Conditions		
I _{F(AV)} Max. Average Forward Current		3.0	Α	50%duty cycle@T _L =118°C, rectangular waveform		
		4.0		50% duty cycle @T _L =105°C, re	ectangular waveform	
I _{FSM}	Max.PeakOneCycleNon-Repetitive	790	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and	
	SurgeCurrent	80		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied	
E _{AS}	Non Repetitive Avalanche Energy	6	mJ	T _J =25°C,I _{AS} =2.0A,L=10mH		
I _{AR}	Repetitive Avalanche Current	0.6	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical		

Electrical Specifications

Parameters		Тур	Max	Units	Conditions	3	
V _{FM}	Max. Forward Voltage Drop	(1)	0.57	0.74	V	@ 3A	T = 25 °C
			0.72	0.9	V	@ 6A	T _J = 25 °C
			0.51	0.61	V	@ 3A	T 405 °C
			0.62	0.77	V	@ 6A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage	(1)	-	0.5	mA	T _J = 25 °C	
	Current		1	20	mA	T _J = 100°C	V _R = rated V _R
			-	30	mA	T _J = 125 °C	
C _T	C _T Max. Junction Capacitance		-	180	pF	V _R = 5V _{DC} (test signal range 100KHz to 1Mhz) 25°C	
Ls	L _S Typical Series Inductance		-	3.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	dv/dt Max. Voltage Rate of Change		1	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

- Р					
	Parameters		Units	Conditions	
T_J	Max.JunctionTemperatureRange (*)	-55 to 150	°C		
T _{stg}	Max.StorageTemperatureRange	-55 to 150	°C		
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DCoperation	
R _{thJA}	Max.Thermal Resistance Junction to Ambient	46	°C/W	DCoperation	
wt	Approximate Weight	0.24(0.008)	g(oz.)		
	Case Style		;	Similar to DO-214AB	
Device Marking		IR36			

^(*) $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

^(**) Mounted 1 inch square PCB

Bulletin PD-20586 rev. A 02/02

Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

Fig. 5-Maximum Average Forward Dissipation Vs. Average Forward Current

Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1} = 80\%$ rated V_R

Tape & Reel Information

Marking & Identification

 ${\sf Each device} \ has \ marking \ and \ identification \ on two \ rows.$

- The first row designates the device as manufactured by International Rectifier as indicated by the letters "IR", then Current and Voltage.
- -The second row shows the data code: Year and Week.

See below marking diagram.

FIRST ROW

IR 36

SECOND ROW

Date Code YY WW Ordering Information

MBRS360TR - TAPE AND REEL

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS360TR-6000 PIECES

MBRS360TR
Bulletin PD-20586 rev. A 02/02

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 02/02