International **TOR** Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®] TRANSISTOR

IRHNA7360SE

N-CHANNEL SINGLE EVENT EFFECT (SEE) RAD HARD

400Volt, 0.20Ω , (SEE) RAD HARD HEXFET

International Rectifier's (SEE) RAD HARD technology HEXFETs demonstrate immunity to SEE failure. These devices are also capable of surviving transient ionization pulses as high as 1×10^{12} Rads (Si)/Sec, and return to normal operation within a few microseconds. Since the SEE process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRHNA7360SE	400V	0.20Ω	24A

Features:

- Radiation Hardened up to 1 x 10⁵ Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light Weight

Absolute Maximum Ratings

Pre-Irradiation

	Parameter	IRHNA7360SE	Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	24	
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	15	A
IDM	Pulsed Drain Current ①	96	
P _D @ T _C = 25°C	Max. Power Dissipation	300	W
	Linear Derating Factor	2.4	W/K ©
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
IAR	Avalanche Current ①	24	A
EAR	Repetitive Avalanche Energy ①	30	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.0	V/ns
Тј	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Package Mounting	300 (for 5 sec.)	
	Surface Temperature		
	Weight	3.3 (typical)	g

1

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	400	-	—	V	VGS = 0V, ID = 1.0mA
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage		0.51	_	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source	_	-	0.20	_	VGS = 12V, ID = 15A ④
	On-State Resistance	_	—	0.21	Ω	V _{GS} = 12V, I _D = 24A
VGS(th)	Gate Threshold Voltage	2.5	—	4.5	V	$V_{DS} = V_{GS}, I_{D} = 1.0 \text{mA}$
9fs	Forward Transconductance	4.0	—	—	S (ひ)	V _{DS} > 15V, I _{DS} = 15A ④
IDSS	Zero Gate Voltage Drain Current	_	—	50	μA	VDS= 0.8 x Max Rating, VGS=0V
		_	-	250	μΛ	V _{DS} = 0.8 x Max Rating
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	—	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	—	—	-100		VGS = -20V
Qg	Total Gate Charge	—	—	250		VGS = 12V, ID = 24A
Qgs	Gate-to-Source Charge	—	—	60	nC	V _{DS} = Max Rating x 0.5
Qgd	Gate-to-Drain ('Miller') Charge	—	-	120		
^t d(on)	Turn-On Delay Time	_	—	35		$V_{DD} = 200V, I_D = 24A,$
tr	Rise Time	—	—	100		$R_{G} = 2.35\Omega$
^t d(off)	Turn-Off Delay Time	—	—	120	ns	
tf	Fall Time	—	—	100		
LD	Internal Drain Inductance	_	0.8	—	nH	Measured from drain lead, 6mm (0.25 in) from package to center of die. backage to center of die.
LS	Internal Source Inductance	_	2.8	_		Measured from source lead, 6mm (0.25 in) from package to source bond- ing pad.
C _{iss}	Input Capacitance	—	4000	—		$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance	_	1000	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	—	460			

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions	
IS	Continuous Source Current (Body Diode)		_	—	24	Α	Modified MOSFET symbol	
ISM	Pulse Source Current (Body Diode) ${\mathbb O}$			—	96		showing the integral reverse p-n junction rectifier.	
VSD	Diode Forward Voltage			—	1.4	V	Tj = 25°C, IS = 24A, VGS = 0V ④	
t _{rr}	Reverse Recovery Time	Э			750	ns	Tj = 25°C, IF = 24A, di/dt ≤ 100A/μs	
QRR	Reverse Recovery Charge		$ 14 \mu C \qquad \qquad \forall DD \le 50V $				$V_{DD} \leq 50V $ (4)	
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.						

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	0.42	K/W ©	
R _{th} J-PCB	Junction-to-PC board	—	1.6	_	N/W @	soldered to a 2" square copper-clad board

Radiation Performance of Rad Hard HEXFETs

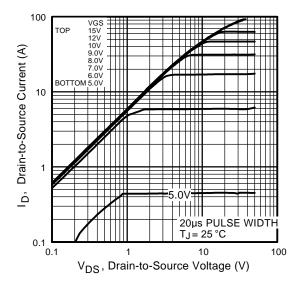
International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier comprises three radiation environments.

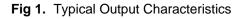
Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019 condition A. International Rectifier has imposed a standard gate condition of 12 volts per note 6 and a V_{DS} bias condition equal to 80% of the device rated voltage per note 7. Post-irradiation limits of the devices irradiated to 1 x 105 Rads (Si) are presented in Table 1, column 1, IRHNA7360SE. The values in Table 1 will be met for either of the two low

dose rate test circuits that are used. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. It should be noted that at a radiation level of 1 x 10⁵ Rads (Si) the only parametric limit change is V_{GSTh} minimum.

High dose rate testing may be done on a special request basis using a dose rate up to 1 x 10¹² Rads (Si)/Sec (See Table 2).

International Rectifier radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3.


Table 1.	able 1. Low Dose Rate 6 Ø		360SE				
	Parameter	100K Rads (Si)		100K Rads (Si)		Units	Test Conditions
		Min	Max				
BV _{DSS}	Drain-to-Source Breakdown Voltage	400	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$		
VGS(th)	Gate Threshold Voltage ④	2.0	4.5		$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$		
I _{GSS}	Gate-to-Source Leakage Forward	_	100	nA	$V_{GS} = 20V$		
I _{GSS}	Gate-to-Source Leakage Reverse	—	-100		V _{GS} = -20V		
IDSS	Zero Gate Voltage Drain Current	_	50	μA	V _{DS} =0.8 x Max Rating, V _{GS} =0V		
R _{DS(on)1}	Static Drain-to-Source ④	—	0.20	Ω	VGS = 12V, I _D =15A		
	On-State Resistance One						
V _{SD}	Diode Forward Voltage ④	_	1.4	V	$T_{C} = 25^{\circ}C, I_{S} = 24A, V_{GS} = 0V$		


Table 2. High Dose Rate ®

		1011 F	Rads (ads (Si)/sec 10 ¹² Rads (Si)/sec					
	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Test Conditions
VDSS	Drain-to-Source Voltage	—	—	320	-	—	320	V	Applied drain-to-source voltage during
									gamma-dot
IPP		—	6.4	_	—	6.4	—	A	Peak radiation induced photo-current
di/dt		—	—	16	—	—	2.3	A/µsec	Rate of rise of photo-current
L ₁		20	—		137	_	_	μH	Circuit inductance required to limit di/dt

Table 3. Single Event Effects

lon	LET (Si)	Fluence	Range	V _{DS} Bias	V _{GS} Bias
	(MeV/mg/cm ²)	(ions/cm ²)	(µm)	(V)	(∀)
Cu	28	3x 10⁵	~43	325	-5

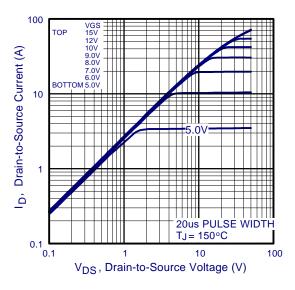
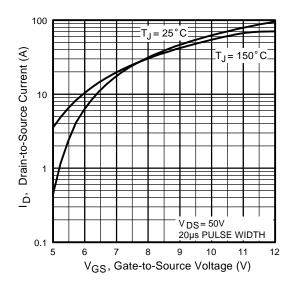
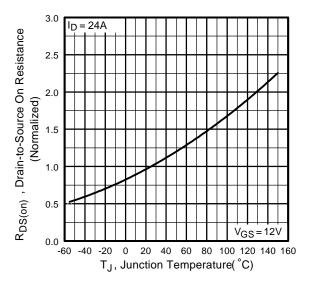
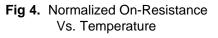
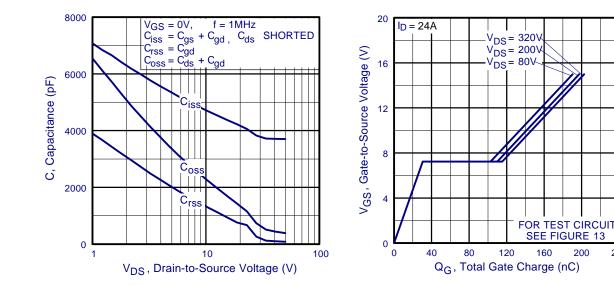
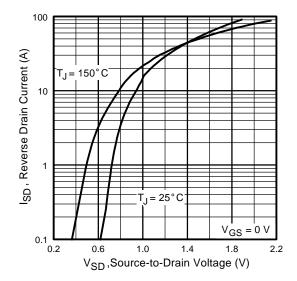
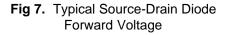


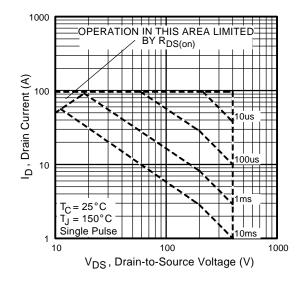
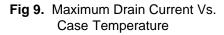
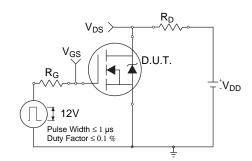
Fig 2. Typical Output Characteristics

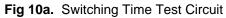





Fig 3. Typical Transfer Characteristics


200


240


Fig 8. Maximum Safe Operating Area

Pre-Irradiation

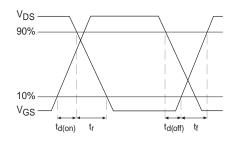


Fig 10b. Switching Time Waveforms

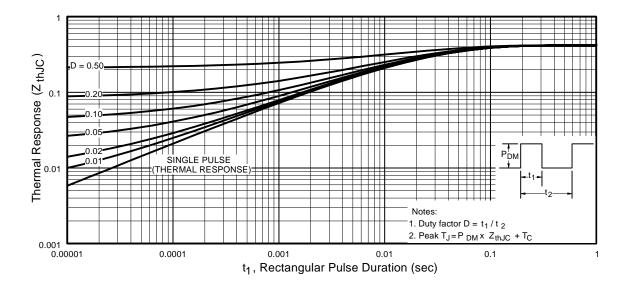
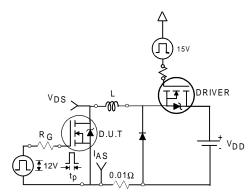



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

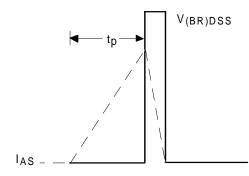
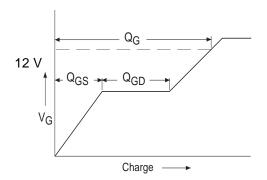
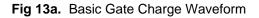




Fig 12b. Unclamped Inductive Waveforms

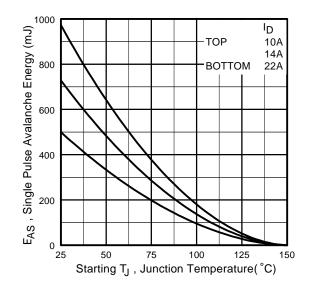


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

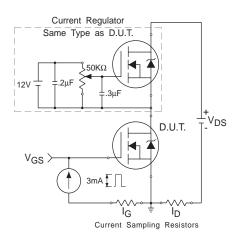
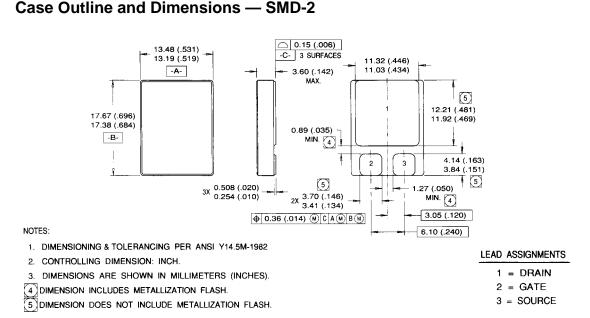



Fig 13b. Gate Charge Test Circuit

Pre-Irradiation

- Repetitive Rating; Pulse width limited by maximum junction temperature.
 Refer to current HEXFET reliability report.
- ② Ø VDD = 50V, starting TJ = 25°C, EAS = [0.5 * L * (IL²)] Peak IL = 24A, VGS = 12V, 25 ≤ RG ≤ 200Ω
- ③ ISD ≤ 24A, di/dt ≤ 120A/µs, VDD ≤ BVDSS, TJ ≤ 150°C Suggested RG = 2.35Ω
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- S K/W = °C/W W/K = W/°C

- ⑥ Total Dose Irradiation with V_{GS} Bias. 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- Total Dose Irradiation with V_{DS} Bias.
 V_{DS} = 0.8 rated BV_{DSS} (pre-irradiation) applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- ⑧ This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse.
- ③ All Pre-Irradiation and Post-Irradiation test conditions are identical to facilitate direct comparison for circuit applications.

SMD-2

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 228, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 6/98

www.irf.com

International