International TOR Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET® TRANSISTOR

IRHN9130 IRHN93130 P-CHANNEL RAD HARD

-100 Volt, 0.3Ω , RAD HARD HEXFET

International Rectifier's P-Channel RAD HARD technology HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiation doses as high as 3 X 10⁵ Rads (Si). Under **identical** pre- and postradiation test conditions, International Rectifier's P-Channel RAD HARD HEXFETs retain identical electrical specifications up to 1 x 10⁵ Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1 x 1012 Rads (Si)/Sec, and return to normal operation within a few microseconds. Single Event Effect (SEE) testing of International Rectifier P-Channel RAD HARD HEXFETs has demonstrated virtual immunity to SEE failure. Since the P-Channel RAD HARD process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

P-Channel RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

Product Summary

Part Number	BVDSS	RDS(on)	lb
IRHN9130	-100V	0.3Ω	-11A
IRHN93130	-100V	0.3Ω	-11A

Features:

- Radiation Hardened up to 3 x 10⁵ Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Surface Mount
- Lightweight

Absolute Maximum Ratings

Pre-Irradiation

	Parameter	IRHN9130, IRHN93130	Units
ID @ VGS = -12V, TC = 25°C	Continuous Drain Current	-11	
ID @ VGS = -12V, TC = 100°C	Continuous Drain Current	-7.0	Α
IDM	Pulsed Drain Current ①	-44	
P _D @ T _C = 25°C	Max. Power Dissipation	75	W
	Linear Derating Factor	0.6	W/°C
VGS	Gate-to-Source Voltage	± 20	V
EAS	Single Pulse Avalanche Energy ②	190	mJ
I _{AR}	Avalanche Current ①	-11	Α
E _{AR}	Repetitive Avalanche Energy ①	7.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	-10	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s	∘C
	Weight	2.6 (typical)	g

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	,						
	Parameter	Min	Тур	Max	Units	Test Co	onditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	_	_	V	VGS =0 V	, I _D = -1.0mA
ΔBVDSS/ΔTJ	Temperature Coefficient of Breakdown Voltage	_	-0.1	_	V/°C	Reference to 2	25°C, ID = -1.0mA
RDS(on)	Static Drain-to-Source	_	_	0.3			2V, ID = -7.0A ④
	On-State Resistance	_	_	0.325	Ω		$2V, I_D = -11A$
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	VDS = VGS	s, I _D = -1.0mA
9fs	Forward Transconductance	2.5	_	_	S (7)	V _{DS} > -15V,	IDS = -7.0A ④
IDSS	Zero Gate Voltage Drain Current	_	_	-25	μА	VDS= 0.8 x Ma	x Rating,VGS=0V
		_	-	-250	μΑ	V _{DS} = 0.8	x Max Rating
						VGS = 0V	[∕] , TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	—	-100	- ^	VGS	; =-20 V
IGSS	Gate-to-Source Leakage Reverse	_	_	100	nA	VGS	S = 20V
Qg	Total Gate Charge	_	_	45		Vgs = -12	2V, I _D = -11A
Qgs	Gate-to-Source Charge	_	_	10	nC	V _{DS} = Ma	x Rating x 0.5
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	25			
td(on)	Turn-On Delay Time	_	_	30		VDD = -50	OV, ID = -11A,
tr	Rise Time	_	—	50	200	RG	$=7.5\Omega$
td(off)	Turn-Off Delay Time	_	_	70	ns		
tf	Fall Time	_	_	70			
LD	Internal Drain Inductance	_	2.0	_	nH	Measured from drain lead, 6mm (0.25 in) from package to center of die.	Modified MOSFET symbol showing the internal inductances.
Ls	Internal Source Inductance	_	4.1			Measured from source lead, 6mm (0.25 in) from package to source bonding pad.	S S S S S S S S S S S S S S S S S S S
Ciss	Input Capacitance	_	1200	_		VGS = 0V,	V _{DS} = -25 V
Coss	Output Capacitance	_	300	_	pF		I.0MHz
C _{rss}	Reverse Transfer Capacitance	_	74	_	1		

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)	_	_	-11	Α	Modified MOSFET symbol
ISM	Pulse Source Current (Body	urce Current (Body Diode) ①			-44		showing the integral reverse a p-n junction rectifier.
VSD	Diode Forward Voltage			_	-3.0	V	$T_j = 25$ °C, $I_S = -11A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time		_	_	250	ns	$T_j = 25$ °C, $I_F = -11$ A, $di/dt ≤ -100$ A/μs
QRR	Reverse Recovery Charge		_	_	0.84	μС	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case		_	1.67	°C/W	
R _{thJ-PCB}	Junction-to-PC board		7.5	_	C/VV	soldered to a 1" square copper-clad bord

Radiation Characteristics

IRHN9130, IRHN93130 Device

Radiation Performance of Rad Hard HEXFETs

International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier comprises three radiation environments.

Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019 condition A. International Rectifier has imposed a standard gate condition of -12 volts per note 5 and a $V_{\rm DS}$ bias condition equal to 80% of the device rated voltage per note 6. Pre- and post- irradiation limits of the devices irradiated to 1 x 10 $^{\rm 5}$ Rads (Si) are identical and are presented in Table1,column1, IRHN9130. Post-irradiation limits of the devices irradiated to 3 x 10 $^{\rm 5}$ Rads (Si) are presented in Table 1, column 2, IRHN93130. The values in Table 1 will be met for either of the two low dose rate test circuits that are used. Both pre- and post-irradiation performance

are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. It should be noted that at a radiation level of 3 x 10 $^{\rm 5}$ Rads (Si) the only parametric limit change is $\rm V_{\rm GS(th)}$ maximum.

High dose rate testing may be done on a special request basis using a dose rate up to 1 x 10¹² Rads (Si)/Sec (See Table 2). International Rectifier radiation hardened P-Channel HEXFETs are considered to be neutron-tolerant, as stated in MIL-PRF-19500 Group D.

International Rectifier radiation hardened P-Channel HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3.

Table 1. Low Dose Rate © ©	IRHN9130 IRHN93130	

Table 1: Fow Bose Rate 9 9			11(111(3130)		111111111111111111111111111111111111111		
	Parameter 100K Rads (S		ads (Si)	300K R	ads (Si)	Units	Test Conditions ®
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	_	-100	_	V	$V_{GS} = 0V, I_D = -1.0mA$
VGS(th)	Gate Threshold Voltage 4	-2.0	-4.0	-2.0	-5.0		$V_{GS} = V_{DS}$, $I_D = -1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward		-100	_	-100	nA	$V_{GS} = -20V$
I _{GSS}	Gate-to-Source Leakage Reverse	_	100	_	100		$V_{GS} = 20V$
IDSS	Zero Gate Voltage Drain Current	_	-25	_	-25	μA	V _{DS} =0.8 x Max Rating, V _{GS} =0V
R _{DS(on)1}	Static Drain-to-Source ④		0.3	_	0.3	Ω	$V_{GS} = -12V, I_{D} = -7A$
	On-State Resistance One						
V _{SD}	Diode Forward Voltage 4	_	-3.0	_	-3.0	V	$T_C = 25$ °C, $I_S = -11A, V_{GS} = 0V$

Table 2. High Dose Rate ②

		10 ¹¹ Rads (Si)/sec 10 ¹² Rads (Si)/sec		I					
	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Test Conditions
V	Drain-to-Source Voltage	_	_	-80	_	_	-80	V	Applied drain-to-source voltage during
055									gamma-dot
IPP		—	-60	_	_	-60	_	Α	Peak radiation induced photo-current
di/dt		_	_	-800	_	_	-160	A/µsec	Rate of rise of photo-current
L ₁		0.1	_	_	0.5	_	_	μH	Circuit inductance required to limit di/dt

Table 3. Single Event Effects

lon	LET (Si) (MeV/mg/cm²)	Fluence (ions/cm²)	Range (µm)	V _{DS} Bias (V)	V _{GS} Bias
Ni	28	1x 10 ⁵	~41	-100	5

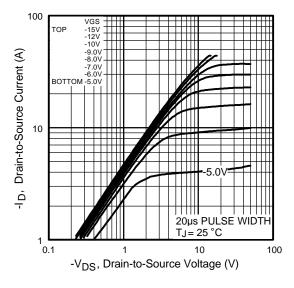


Fig 1. Typical Output Characteristics

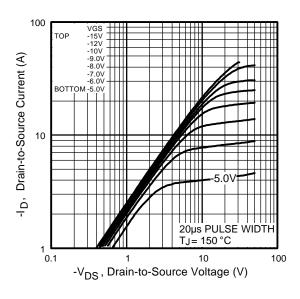
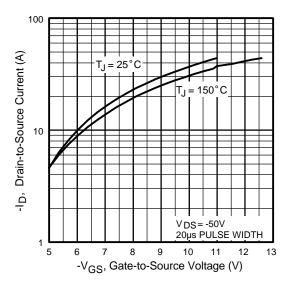
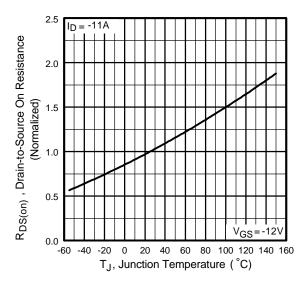
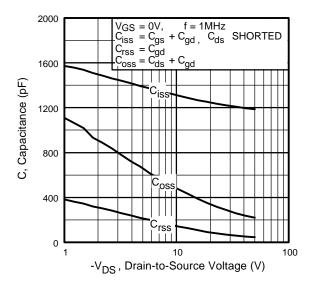
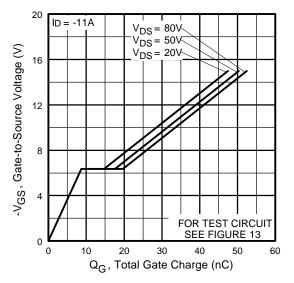


Fig 2. Typical Output Characteristics


Fig 3. Typical Transfer Characteristics

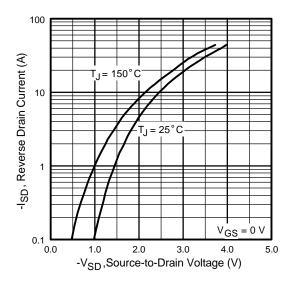

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

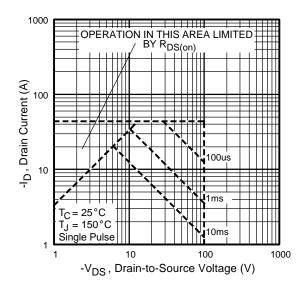
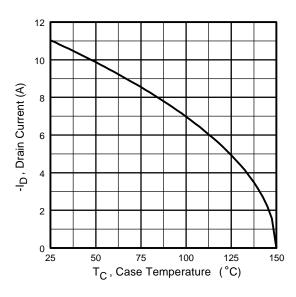



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

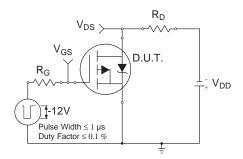


Fig 10a. Switching Time Test Circuit

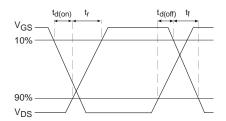


Fig 10b. Switching Time Waveforms

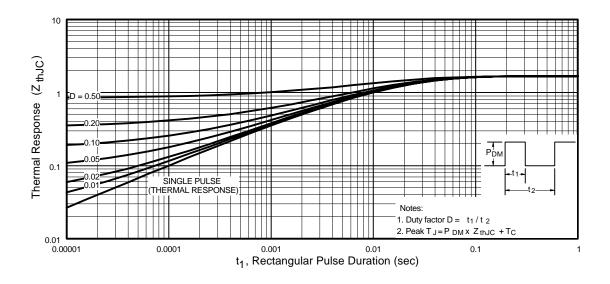


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

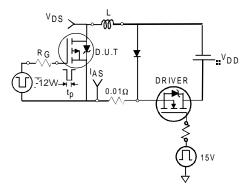


Fig 12a. Unclamped Inductive Test Circuit

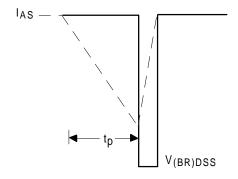


Fig 12b. Unclamped Inductive Waveforms

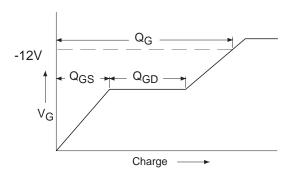
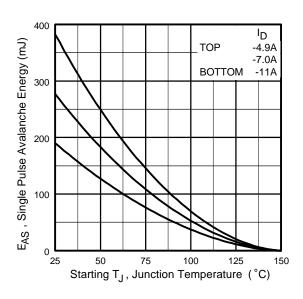



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

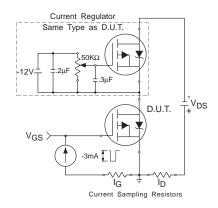
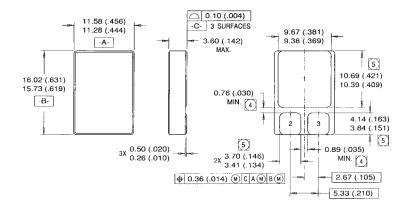


Fig 13b. Gate Charge Test Circuit


IRHN9130, IRHN93130 Device

Pre-Irradiation

- Repetitive Rating; Pulse width limited by maximum junction temperature.
 Refer to current HEXFET reliability report.
- $\begin{tabular}{ll} @ VDD = -25V, & Starting TJ = 25°C, \\ EAS = [0.5 * L * (IL^2)] \\ Peak IL = -11A, VGS = -12V, 25 \le RG \le \Omega \\ \end{tabular}$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- ⓐ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%

- Total Dose Irradiation with VGS Bias.
 -12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- ® Total Dose Irradiation with V_{DS} Bias.
 V_{DS} = 0.8 rated BV_{DSS} (pre-Irradiation) applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse.
- All Pre-Irradiation and Post-Irradiation test conditions are identical to facilitate direct comparison for circuit applications.

Case Outline and Dimensions — SMD-1

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4 DIMENSION INCLUDES METALLIZATION FLASH.
- 5 DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

LEAD ASSIGNMENTS

- 1 = DRAIN
- 2 = GATE
- 3 = SOURCE

SMD-1

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 2/99