PD-91863A

International

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®] TRANSISTOR

IRHF7430SE

Pre-Irradiation

N-CHANNEL SINGLE EVENT EFFECT (SEE) RAD HARD

500Volt, 1.6Ω , SEE RAD HARD HEXFET

International Rectifier's (SEE) RAD HARD technology HEXFETs demonstrate immunity to SEE failure. No compensation of gate drive circuitry is required because pre and post-irradiation electrical test conditions are identical. These devices are also capable of surviving transient ionization pulses as high as 1 x 10¹² Rads (si)/Sec, and return to normal operation within a few microseconds. Since the SEE process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

Product Summary

Part Number	BVDSS	RDS(on)	İD
IRHF7430SE	500V	1.6Ω	2.6A

Features:

- Radiation Hardened up to 1 x 10⁵ Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated

Absolute Maximum Ratings

	Parameter	IRHF7430SE	Units			
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	2.6				
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	1.6	A			
IDM	Pulsed Drain Current ①	10.4				
P _D @ T _C = 25°C	Max. Power Dissipation	25	W			
	Linear Derating Factor	0.2	W/°C			
VGS	Gate-to-Source Voltage	±20	V			
EAS	Single Pulse Avalanche Energy 2	148	mJ			
IAR	Avalanche Current ①	2.6	A			
EAR	Repetitive Avalanche Energy ①	2.5	mJ			
dv/dt	Peak Diode Recovery dv/dt 3	8.0	V/ns			
Тј	Operating Junction	-55 to 150				
T _{STG} Storage Temperature Range			°C			
	Lead Temperature	300 (0.063 in. (1.6mm) from				
		case for 10 sec.)				
	Weight	0.98 (typical)	g			

www.irf.com

1

Pre-Irradiation

	Parameter	Min	Тур	Мах	Units	Test Conditions	
BVDSS	Drain-to-Source Breakdown Voltage	500	—	—	V	VGS = 0V, ID = 1.0mA	
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	—	0.56	_	V/°C	Reference to 25°C, ID = 1.0mA	
RDS(on)	Static Drain-to-Source On-State Resistance	_	—	1.6	Ω	VGS = 12V, ID = 1.6A ④	
VGS(th)	Gate Threshold Voltage	2.5	—	4.5	V	$V_{DS} = V_{GS}, I_{D} = 1.0 \text{mA}$	
9fs	Forward Transconductance	1.2	—	_	S (ひ)	VDS > 15V, IDS =1.6A ④	
IDSS	Zero Gate Voltage Drain Current	_	—	50	μA	VDS= 0.8 x Max Rating,VGS=0V	
		—	—	250	μΑ	V _{DS} = 0.8 x Max Rating V _{GS} = 0V, T _J = 125°C	
IGSS	Gate-to-Source Leakage Forward		—	100		VGS = 20V	
IGSS	Gate-to-Source Leakage Reverse		—	-100	nA	VGS = -20V	
Qg	Total Gate Charge	—	—	30		VGS = 12V, ID = 2.6A	
Qgs	Gate-to-Source Charge	—	—	7.0	nC	VDS = Max Rating x 0.5	
Qgd	Gate-to-Drain ('Miller') Charge	—	—	18			
^t d(on)	Turn-On Delay Time	—	—	20		$V_{DD} = 250V, I_D = 2.6A,$	
tr	Rise Time	—	—	27	ns	RG = 7.5Ω	
^t d(off)	Turn-Off Delay Time	—	—	65	115		
tf	FallTime	—	—	45	1		
LD	Internal Drain Inductance	_	5.0	—	nH	Measured from drain lead, 6mm (0.25 in) from package to center of die. Modified MOSFET symbol show- ing the internal inductances.	
LS	Internal Source Inductance	_	15	_		Measured from source lead, 6mm (0.25 in) from package to source bonding pad.	
C _{iss}	Input Capacitance	—	620	—		$V_{GS} = 0V, V_{DS} = 25V$	
C _{OSS}	Output Capacitance	—	148	—	pF	f = 1.0MHz	
C _{rss}	Reverse Transfer Capacitance	—	52	—			

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)			_	2.6	Α	Modified MOSFET symbol showing the integral
ISM	Pulse Source Current (Body Diode) ①			—	10.4		reverse p-n junction rectifier.
VSD	Diode Forward Voltage		-	_	1.4	V	Tj = 25°C, IS = 2.6A, VGS = 0V ④
trr	Reverse Recovery Time		-	—	600	ns	Tj = 25°C, IF = 2.6A, di/dt \leq 100A/ μ s
QRR	Reverse Recovery Charge		-	_	2.2	μC	$V_{DD} \le 50V $ (4)
ton	Forward Turn-On Time Intrinsic	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	—	—	5.0	00 AM	
R _{thJA}	Junction-to-Ambient	—	—	175	°C/W	Typical socket mount

Radiation Characteristics

IRHF7430SE Devices

Radiation Performance of Rad Hard HEXFETs

International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier comprises 3 radiation environments.

Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019 condition A. International Rectifier has imposed a standard gate condition of 12 volts per note 5 and a V_{DS} bias condition equal to 80% of the device rated voltage per note 6. Post-irradiation limits of the devices irradiated to 1×10^5 Rads (Si) are presented in Table 1, column 1, IRHF7430SE. The values in Table 1 will be met for either of the two low

dose rate test circuits that are used. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. It should be noted that at a radiation level of 1×10^5 Rads (Si) the only parameter limit change is V_{GSTh} minimum.

High dose rate testing may be done on a special request basis using a dose rate up to 1×10^{12} Rads (Si)/Sec (See Table 2).

International Rectifier radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3.

Table 1. Low Dose Rate 5 6		IRHF/4	-305E		
	Parameter	ter 100K Rads (Si)		Units	Test Conditions ®
		Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	500	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
VGS(th)	Gate Threshold Voltage ④	2.0	4.5		$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	—	100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Leakage Reverse	—	-100	1	V _{GS} = -20V
IDSS	Zero Gate Voltage Drain Current	_	50	μA	V _{DS} =0.8 x Max Rating, V _{GS} =0V
R _{DS(on)1}	Static Drain-to-Source ④	—	1.6	Ω	VGS = 12V, I _D = 1.6A
	On-State Resistance One				
V _{SD}	Diode Forward Voltage ④	—	1.4	V	$T_{C} = 25^{\circ}C, I_{S} = 2.6A, V_{GS} = 0V$

Table 1. Low Dose Rate 5 6

Table 2. High Dose Rate 0

		10 ¹¹ Rads (Si)/sec 10 ¹² Rads (Si)/sec							
	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Test Conditions
VDSS	Drain-to-Source Voltage	—	—	400	—	—	400	V	Applied drain-to-source voltage during
									gamma-dot
IPP		—	2.3	_	—	2.3	—	A	Peak radiation induced photo-current
di/dt		—	15	—	—	3	—	A/µsec	Rate of rise of photo-current
L ₁		—	27	—	—	133	—	μH	Circuit inductance required to limit di/dt

Table 3. Single Event Effects

lon	LET (Si) (MeV/mg/cm ²)	Fluence (ions/cm ²)	Range (μm)	V _{DS} Bias (∀)	V _{GS} Bias (∀)
Cu	28	3x 10⁵	~43	375	-5
Br	38	3x 10⁵	39	350	-5

Pre-Irradiation

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com

Pre-Irradiation

IRHF7430SE Devices

Fig 8. Maximum Safe Operating Area

www.irf.com

Forward Voltage

Pre-Irradiation

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

6

Pre-Irradiation

IRHF7430SE Devices

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

www.irf.com

① Repetitive Rating; Pulse width limited by maximum junction temperature.

- ② Starting T_J = 25°C, $E_{AS} = [0.5 * L * (I_2)]$ Peak IL = 2.6A, VGS =12 V, $25 \le RG \le 200\Omega$
- ③ ISD \leq 2.6A, di/dt \leq 400A/µs, $V_{DD} \le BV_{DSS}, T_J \le 150^{\circ}C$ Suggested RG = 7.5Ω
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%

Pre-Irradiation

- **⑤** Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- 6 Total Dose Irradiation with VDS Bias. VDS = 0.8 rated BVDSS (pre-irradiation) applied and $V_{GS} = 0$ during irradiation per MIL-STD -750, method 1019, condition A.
- ⑦ This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse.
- ⑧ All Pre-Irradiation and Post-Irradiation test conditions are identical to facilitate direct comparison for circuit applications.

Case Outline and Dimensions — TO-205AF (Modified TO-39)

All dimensions are shown in millimeters (inches)

International **ICR** Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 5/99 www.irf.com