PD - 93806A

International **IOR** Rectifier

PROVISIONAL

IRFBA1404

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Purchase IRFBA1404/P for Solder Plated Option

Description

Seventh Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET ® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The Super-220 ™ is a package that has been designed to have the same mechanical outline and pinout as the industry standard TO-220 but can house a considerably larger silicon die. It has increased current handling capability over both the TO-220 and the much larger TO-247 package.

This makes it ideal to reduce component count in multiparalled TO-220 applications, reduce system power dissipation, upgrade existing designs or have TO-247 performance in a TO-220 outline.

This package has also been designed to meet automotive qualification standard Q101.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	2126	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	150©	A
I _{DM}	Pulsed Drain Current ①	650	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy [®]	2000	mJ
I _{AR}	Avalanche Current ^①	95	A
E _{AR}	Repetitive Avalanche Energy ^①	30	mJ
dv/dt	Peak Diode Recovery dv/dt 3	4.0	V/ns
TJ	Operating Junction and	-40 to + 175	
T _{STG}	Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Recommended clip force	20	N

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.50	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.5		°C/W
$R_{\theta JA}$	Junction-to-Ambient		58	_
www.irf.co	m		•	1

www.irf.com

IRFBA1404

PROVISIONAL

International **tor** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions					
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$					
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.036		V/°C	Reference to 25°C, I _D = 1mA					
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.0035	Ω	V _{GS} = 10V, I _D = 95A ④					
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$					
g fs	Forward Transconductance	106			S	$V_{DS} = 25V, I_D = 60A$					
I _{DSS}	Drain-to-Source Leakage Current			10	μA	$V_{DS} = 40V, V_{GS} = 0V$					
USS				250		$V_{DS} = 32V, V_{GS} = 0V, T_J = 150^{\circ}C$					
1	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$					
I _{GSS}	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V					
Qg	Total Gate Charge		160	200		I _D = 95A					
Q _{gs}	Gate-to-Source Charge		35		nC	$V_{DS} = 32V$					
Q _{gd}	Gate-to-Drain ("Miller") Charge		42	60		V _{GS} = 10V④					
t _{d(on)}	Turn-On Delay Time		17			$V_{DD} = 20V$					
tr	Rise Time		140			I _D = 95A					
t _{d(off)}	Turn-Off Delay Time		72		ns	$R_G = 2.5\Omega$					
t _f	Fall Time		26			R _D = 0.21Ω ④					
	Internal Drain Inductance		2.0				Between lead,				
LD									2.0		nH
	Internal Course Industrian		5.0			from package					
Ls	Internal Source Inductance		5.0			and center of die contact					
C _{iss}	Input Capacitance		7360			$V_{GS} = 0V$					
C _{oss}	Output Capacitance		1680			$V_{DS} = 25V$					
C _{rss}	Reverse Transfer Capacitance		240		рF	f = 1.0MHz, See Fig. 5					
C _{oss}	Output Capacitance		6630			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$					
C _{oss}	Output Capacitance		1490			$V_{GS} = 0V, V_{DS} = 32V, f = 1.0MHz$					
C _{oss} eff.	Effective Output Capacitance S		1540		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$					

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
I _S	Continuous Source Current			040@		MOSFET symbol		
	(Body Diode)					212⑥	A	showing the
I _{SM}	Pulsed Source Current				650		integral reverse	
	(Body Diode) ①				000		p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 95A, V_{GS} = 0V$ (4)		
t _{rr}	Reverse Recovery Time		71	110	ns	$T_J = 25^{\circ}C, I_F = 95A$		
Q _{rr}	Reverse Recovery Charge		180	270	nC	di/dt = 100A/µs ④		
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)						

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\textcircled{3}\ I_{SD} \leq 95A, \, di/dt \leq 150A/\mu s, \, V_{DD} \leq V_{(BR)DSS}, \\ T_J \leq 175^\circ C$

④ Pulse width \leq 300µs; duty cycle \leq 2%.

- S C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © Calculated continuous current based on maximum allowable junction temperature; for recommended current-handing of the package refer to Design Tip # 93-4

www.irf.com

International **TOR** Rectifier

Super-220[™] Package Outline

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-273AA.

LEAD ASSIGNMENTS

MOSFET	IGBT
1 – GATE	1 – GATE
2 – DRAIN	2 - COLLECTOR
3 – SOURCE	3 - EMITTER
4 – DRAIN	4 - COLLECTOR

International

 WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 Data and specifications subject to change without notice. 10/99

www.irf.com