International **ICR** Rectifier

DESIGN TIP

DT 99-8

International Rectifier • 233 Kansas Street, El Segundo, CA 90245 USA

Using IR2171/IR2172 within DSP-controlled AC Drives

By Dorin O. Neacsu

TOPICS COVERED

Description of the control system including the linear current sensing ICs Using Texas Instruments TMS320C240 DSP Hardware description Software description Open-loop results

1. DESCRIPTION OF THE CONTROL SYSTEM INCLUDING THE LINEAR CURRENT SENSING ICs

Many applications require a three-phase AC drive ranging from hundreds of W to few MW. All of these cases are based on a three-phase inverter controlled by a microcontroller or DSP system. Measurement of at least two phase currents is desired in more advanced systems that are employing Field-Orientation Control of induction or synchronous machines.

There are several methods generally used for measurement of inverter currents:

- shunt resistors on the phase currents followed by linear optocouplers;
- Hall effect current sensors used on the phase currents;
- shunt resistors on the DC link current followed by an OpAmp and extensive reconstruction hardware/software.

IR2171/IR2172 are a promising alternative to these methods and they are based on sensing the phase currents through an external shunt resistor and transfer of the signal to the low side after converting it from analog to digital. The level shift function is realized using IR's high-voltage isolation technology. The output signal is a carrier pulse-width modulated wave with *fc* around 40kHz that can interface to a microcontroller system directly or through a galvanical separation. The duty ratio varies according to the shunt resistor voltage up to ± 260 mV.

This new approach has inherent advantages over the previous solutions in reduced cost and size as well as the possiblity of using the microcontroller system on the same ground level as the power system (especially in low power applications). Design note introduces the IR2171/IR2172 by explaining their use

as current measurement system within a micro-controlled AC drive. The *Texas Instruments* TMS320F(C)240 has been chosen as an example due to its simple interface. Both system interface and software are explained and performance is analyzed based on some results that are finally detailed.

The PWM signal is applied to a counter input and the pulse widths are transformed in digital code by counting at the microcontroller clock frequency. The temperature drift of the output carrier voltage can be cancelled by measuring both intervals corresponding to the low and high level. A software routine is expected to calculate the duty ratio and to transform this data into an equivalent current value.

2. Using TMS320C(F)240 DSP

Texas Instruments TMS320C(F)240DSP is a good performing computing engine with rich peripherals designed for AC motor drive applications. The Field-Orientation control structure based on this DSP contains

- the Event Manager for the generation of the Space Vector PWM signals;
- 2 capture channels for the encoder.

The other two channels of the capture unit are herein used to the phase current measurement.

Figure 1 - IR2171 current measurement in a three-phase inverter drive

In this respect, a timer is selected to count at the CPU clock frequency of 20 or 30MHz and the counter content is saved into a stack at transitions on the capture input pins. The latency from a transition happens on an input pin and the moment the counter value is locked is 3.5-4.5 CPU clock cycles.

Since it is likely to measure both active and inactive state intervals, the timer content should be saved at both rising and falling edges. Unfortunately, the DSP system does not allow to separate the capture event from the interrupt generation event. In other words, we cannot capture both transitions

and ask the capture unit to generate an interrupt for reading data at each second transition. When employing interrupts on both edges, there is not enough time to serve those interrupts and to perform the main Field-Orientation control program. There would be 2 interrupts at each 1/fc for each current measurement, each interrupt service routine lasting for at least $2\mu s$. The DSP utilization factor would therefore be seriously affected.

Another possible problem is related to the minimum pulse width that is basically $2 \mu s$, but can reach its minimum of $\tau min=1.87 \mu s$ due to technological dispersion.

The delay between the interrupt request and its service is composed of:

- the synchronization time it takes for the interrupt to be recognized by the peripheral interface and converted into a request to the DSP. It takes:
 - 2 clock cycles for internal interrupts
 - 4 clock cycles for external interrupts.
- the CPU response time to recognize and acknowledge the enabled interrupt request. The minimum latency is **4 clock cycles** and longer for multicycle operations (memory access using wait states, repeat loops, pipeline operation, or serving other interrupt before the interrupts are unmasked again).
- the time needed by ISR to branch to get the specific event that produced the interrupt. possible case leads to minimum **4 clock cycles**.
- the time needed by the software routine designed to serve the interrupt to save the status registers, accumulator and sometimes other registers before doing the expected stack readings, savings of data to memory and other calculations. Minimum time expected for this interrupt routine initialization is **6 clock cycles**.

The overall time necessary to save the capture unit data to memory is very close to the value of the minimum pulse width of the input PWM signal.

Noticing these allows us to propose a solution based on having only one interrupt for each period (around 40kHz) at each falling edge of the capture input signal. During the appropriate interrupt servicing routine, the last two values of the capture stack are read and minor calculations are employed to defining the pulse widths. Such interrupt can be requested by a separate input of the DSP and acting as an external interrupt. The interrupt latency is about the same in this approach when compared to the solution of having two interrupts at each sampling interval, interrupts caused by the capture unit itself. However, the DSP utilization factor is improved allowing further development such as Field-Oriented Control or sensorless control.

Figure 2 - Block diagram of the control system

3. Hardware description

The interface of the two IR2171 devices with the DSP is shown in Fig.2. The TMS320C24x DSP controllers evaluation module has been used for testing the current acquisition. *Table I* provides some information about the interface with IR2171, but the power supply, clock and usual circuitry is not included.

Name of the signal		DSP TMS320C240 pin	Eval.board connector
PWM outputs	PWM1/CMP1	94	P1-pin3
to be	PWM2/CMP2	95	P1-pin4
connected to	PWM3/CMP3	96	P1-pin5
the inverter	PWM4/CMP4	97	P1-pin6
gate drivers	PWM5/CMP5	98	P1-pin7
	PWM6/CMP6	99	P1-pin8
Fault signal	PDPINT	52	P1-pin26
Encoder signals	CAP1/QEP1	67	P1-pin21
8	CAP2/QEP2	68	P1-pin22
2171-ph.A	CAP3/QEP3	69	P1-pin23
2171-ph.B	CAP4/QEP4	70	P1-pin24
2171-ph.A	XINT2	54	P4-pin19
2171-ph.B	XINT3	55	P4-pin20
Scope-ch.1	DACOUT0	-	P2-pin25
Scope-ch.2	DACOUT1	-	P2-pin26
Scope-ch.3	DACOUT2	-	P2-pin27
Scope-ch.4	DACOUT3	-	P2-pin28

Table I

4. Software description

This section describes the software routines that could be included in any control software for a 3-phase motor drive in order to make use of the IR2171 for current measurements.

This solution is not unique and it is presented herein as a test example. Moreover, only those parts of code that refer to the capture unit configuration and current calculations are included herein.

;*******	initial	ization of	variables	5	
;******	Vector a	address de	clarations	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
	.sec	t ".vecto	rs″		
RSVECT	В	START	; PM 0	Reset Vector	1 ;00
INT1	В	CRT_ISR	; PM 2	Int level 1	4 ;02
INT2	В	PWM_ISR	; PM 4	Int level 2	5;04
INT3	В	PHANTOM	; PM 6	Int level 3	6 ;06
.te	ext				
					www.irf.com

4

START: ;******** SYSTEM CONFIGURATION ***** LDP #04h ; MAR *,1 ; LAR AR0,#initar ; ;******** CONFIGURE EVENT MANAGER ; Configure I/O pins as capture units ----LDP #0E1h ; SPLK #0FF00H,OPCRA; SPLK #00F0H,OPCRB; ;******** INITIALIZE EVENT MANAGER ;----- Configure CAPCON and enable capture operation ---SPLK #1001101000001111b,CAPCON ; ;----- External digital inputs used for interrupting at current measurement LDP #0E0h ; SPLK #100000000000001b,XINT2 CNTL; SPLK #10000000000001b,XINT3_CNTL; #04h MAIN LDP ; NOP ; NOP В MAIN ; CLRC INTM ; PWM_ISR: SST #0,stk1 SST #1,stk2 LDP #00h ; ; save STO - Forced Page O ; save ST1 - Forced Page 0 SACL stk3 ; save ACCL SACH stk4 ; save ACCH LDP #0E8h ; SPLK #0FFFFh, IFRA ; Clear all Group A interrupt flags ;****** Phase Current calculation - Phase A = IaDelta2/[IaDelta1+IaDelta2] LDP #04h ; LACC IaDelta2 ADD IaDeltal GPR2 SACL ZALR IaDelta2 ; #15 ; Place 16-bit pos. divisor in data memo RPT SUBC GPR2 ; Execute SUBC for 16 times ; L-ACC=quotient and H-ACC=remainder ; Save `Ia' in D0 format (norm.) SACL Ia ;****** Phase Current calculation - Phase B = IbDelta1/[IbDelta1+IbDelta2] LACC IbDelta2 ; ADD IbDeltal ; SACL GPR2 ; ZALR IbDelta2 ; #15 RPT ; Place 16-bit pos. divisor in data memo SUBC GPR2 ; Execute SUBC for 16 times ; L-ACC=quotient and H-ACC=remainder ; Save 'Ib' in D0 format (norm.) SACL Ib

.....

;****	configure LDP LACC SACH LACC SACH LACL SACL LACL	DAC for scope #04h ; Ia,12 ; DAC0_VAL ; Ib,12 ; DAC1_VAL ; IaTime1 ; DAC2_VAL ; IaTime2 ;	Set data page pointer to 0000h Load Ta to channel 1 of DAC Load Tb to channel 2 of DAC Load Tc to channel 3 of DAC
	OUT	DAC3_VAL ; DAC0_VAL,0000h	; Write to the DAC0 register
	OUT OUT OUT OUT	DAC1_VAL,0001h DAC2_VAL,0002h DAC3_VAL,0003h DAC3_VAL,0004h	; Write to the DAC1 register ; Write to the DAC2 register ; Write to the DAC3 register ; Start DAC conversions by writing DAC
update reg	3.	_ ,	
;*******	Restore r	regs	
	LDP	#00h ;	
	ZALH	stk4 ;	restore ACCH
	ADDS	stK3 ; #1 a+b2 ;	restore ACCL
	LST	#0. stk1 ;	restore STO
	RET	;	
;*******	Routine Na	me: C R T _ I S	S R *********
CRT_ISR	SST	#0,*- ;	
	SST	#1,*- ;	
	LDP	#UEUh ;	
	BCND	Th ISR TC :	If TC=1 run XINT3 S ISR (Tb)
Ia ISR	LDP	#0E8h ;	Set data page pointer to 7400h
—	LAR	AR6,FIFO3 ;	Read the old stack data to AR6
	LAR	AR7,FIFO3 ;	Read the newer stack data to AR7
	SACL	*;	
	SACH	* - ; TNTM ;	
	LDP	#04h ;	
	SAR	AR6,IaTime1 ;	Save first reading to `IaTime1'
	LACC	IaTime1 ;	
	SUB	IaTime2 ;	
	SACL	IaDeltal ;	Calculate the 'off' time.
	SAR	AR7, laTime2 ;	Save second reading to 'laTime2'
	SUB	IaTimel ;	Calculate the `on' time
	SACL	IaDelta2 ;	
	В	SAVEREG ;	
Ib_ISR	LDP	#0E8h ;	Set data page pointer to 7400h
	LAR	AR4,FIF04 ;	Read the old stack data to AR6
	LAR SACT	AR5,F1F04 ;	Read the newer stack data to AR/
	SACH	*_ ;	
	CLRC	INTM ;	
	LDP	#04h ;	
	SAR	AR4,IbTime1 ;	Save first reading to `IbTimel'
	LACC	IbTime1 ;	
	SUB	IbTime2 ;	Calquiate the loff time
	SACL	AR5. ThTime? :	Save second reading to 'IbTime?'
	LACC	IbTime2 ;	Sale Second reading to ibiimez
	SUB	IbTimel ;	
	SACL	IbDelta2 ;	Calculate the `on' time

SAVEREG	SETC	INTM	;
	MAR	*+,AR0	;
	LACC	*+,16	;
	ADDS	* +	;
	LST	#1,*+	;
	LST	#0,*	;
	CLRC	INTM	;
	RET		;

5. Results

Several tests have been made in order to validate both hardware and software. In the beginning, openloop tests have been carried out by applying pure sinusoidal input signals to the IR2171/2172 development board. Most of the waveforms are obtained by reconstruction through 12-bit D/A converters. The data is sent to this converter when currents are calculated by DSP from input data during the interrupt routine for inverter switching PWM generation that occurs at each 4kHz. Effects of sampling could be noticed in most waveforms. However, they are inherent in a digital system and provide information about the real data used by the control loop. The worst case shows a delay of 38µs that corresponds to 13.68° for 1kHz input signal. This delay is measured from the original sinusoidal signal to the left-end point of each S/H level and it contains not only IR2171 phase delay (about 10° phase shift) but also delay due to DSP internal S/H.

5-A Waveforms (Fif. 3)

Trace 3 (up) = input signal Trace 4 (mid)=2171 to DSP signal (40kHz) Trace 2 (dwn)= signal reconstructed through the D/A conv.

5-B Phase delays (Fig. 4)

Trace 3 =	input signal
Trace A =	DSP signal

Figure 3b Input signal: freq.=500Hz, amplitude of 240mV

Figure 3c Input signal: freq.= 1kHz, ampl. of 240mV

Figure 4 Phase delay measurement for 1kHz signal

5-C Capture operation

A better understanding of the counter operation and capture units can be achieved by looking at the Fig.5. Both low and large duty ratio cases are presented. One has to keep in mind that the internal counter counts up to *OFFFFh* (16 bits) while the D/A converter allows us to see 12 bits only. As a result, the counter content would look truncated on the scope. This, however, does not affect the meaning of these waveforms. Also, the D/A signals are output during the very fast interrupt routine that occurs during current acquisition (at about 40kHz). Figure 5 presents:

Trace 3 (up) = input signal Trace 4 (mid) = 2171 to DSP signal (40kHz) Traces 2,1 (down) = counter at reading time

Figure 5b Large duty ratio

5-D Transfer characteristics

Trace 3 (up) = input signal

Trace A (down) = signal reconstructed through the D/A converter

The IN/OUT characteristics are presented at two different frequencies (50Hz and 1kHz) and it is possible to see the effect of sampling the current measurement at the PWM frequency.

The same characteristics are plotted as X-Y functions they are allowing us to observe their linearity.

Figure 6 Transfer characteristics

5-E Operation at overvoltage

When the shunt resistor voltage is higher than the allowed maximum voltage at the IC input, IR2171/2172 automatically limits the pulse width and the resulting reconstructed signal is shown in Fig.7. Trace 2=input voltage Trace 3=D/A result

Fig.7 Voltage limitation at IR2172(40kHz). Results for 36Hz and 300mV

6. CONCLUSION

The suitability of IR2171/2172 to the DSP-controlled three-phase AC drives is herein demonstrated and a possible software implementation of the phase current measurement is detailed

International ICOR Rectifier IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++44 (0) 20 8645 8000 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 81 (0) 33 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 2803-7380 Data and specifications subject to change without notice. 3/2000