#### **IR21571: Dual Lamp Series Configuration**

by T. Ribarich, E. Thompson, A. Mathur, International Rectifier

**TOPICS COVERED** 

Basic Circuit Considerations Schematic Diagrams Waveforms Bill of Materials

Dual lamps in series configuration are fast becoming the industry standard for fluorescent lighting. To make such a ballast's design efficient and compact, the IR21571 can be used with some modifications to the output stage. Through externally programmable components, the IR21571 affords flexibility of various features such as preheat time and frequency, ignition ramp characteristics, and running mode operating frequency. Comprehensive protection features protect the circuit against conditions such as lamp strike failures, filament failures, low DC bus, thermal overload, or ramp failure during normal operation. *This circuit switches off both lamps when one is taken out, and automatically restarts when both lamps are in place.* 

#### BASIC CIRCUIT CONSIDERATIONS

The overall circuitry for a dual lamp configuration is shown below. As can be seen, the design for this setup is mainly the same as that for a single lamp, with differences only in the output stage.



**Note:** Thick traces represent high-frequency, high-current paths. Lead lengths should be minimized to avoid high-frequency noise problems. The above configuration shows the middle filaments connected in parallel. The configuration the right shows the middle filaments connected in series with the secondary windings of L4.



The configuration in Fig. 1 shows the middle filaments connected in parallel. The turns ratio for L4 is 1:2, primary:secondary. This setup doubles the current for the two middle filaments. As filament current begins to flow, the filament with the larger resistance draws less current which provides more current for the other cathode. This positive temperature coefficient effect balances the currents in the filaments. The configuration in Fig. 2 shows the filaments in series with the secondary winding of L4. The turns ratio in this case is 1:1. The same current flows through each filament. For either configuration, if one of the middle cathodes is removed, an over-current condition is sensed at the current sense pin. This causes a fault condition and the IC shuts down.

The threshold for the current sense pin is determined by the value of the resistor at the ROC pin. The ROC pin has a constant current output of 55uA. When the upper lamp is removed and reinserted, VCC recycles below the UV(-) threshold, and the IC returns to preheat mode.

The rectified line is connected to VCC through the upper filament. When the upper filament is removed, the charge pump no longer supplies the IC and VCC falls below under voltage lockout (UVLO). Pulling out the upper filament has interrupted the micropower supply path. When the lamp is re-inserted, the IC returns to preheat mode.

When the lower cathode is in place, current flows through the lamp, through resistor R17, and thus keeps the Shutdown pin (SD) low (below 2V). When the lower filament is removed, VCC pulls SD high through resistors R17 and R18. At this point, both IR21751 half-bridge outputs are pulled low, and the IC enters micropower mode. When the lower filament is reinserted, SD is pulled low which triggers a reset signal that restarts the chip from the beginning of the control sequence.

This setup, like the single lamp setup provides protective features such as DC Bus Voltage Detection and Half Bridge Current Sensing and Protection. (For additional information on these protective features please see the IR21571 datasheet.)

#### WAVEFORMS



Note that in the parallel filament configuration, the middle filament currents are twice the amplitude of the upper and lower filaments. Transformer L4 doubles the current which flows through the two middle filaments. In the series filament configuration, the upper, middle and lower currents are similar to the waveform on the left. The waveforms on this page were taken during the preheat and ignition modes.





Middle Filament Voltages

Note that the filament voltages for the upper, middle and lower filaments are similar. This is the case for either the parallel or series filament configuration.



Upper and Lower Filament Ignition Currents (1A/Div)

Middle Filament Ignition Current (1A/Div)

Note that the ignition current for the middle filaments is twice the amplitude of the upper and lower filaments in the parallel filament configuration. In the series filament configuration, the upper, middle and lower currents are similar to the waveform shown at left.



Lamp Ignition Voltage

The above waveform is the ignition voltage at the top of the upper lamp with reference to ground. This is the same for either filament configuration.



Note that in the parallel filament configuration, the current amplitude in the middle filaments is twice that in the upper and lower filaments. In the series filament configuration, the upper, middle and lower currents are similar to the waveform on the left. These waveforms show currents during the preheat, ignition and run modes.



Lamp Voltage

This waveform shows the lamp voltage during preheat, ignition and run modes. This is the same for either filament configuration.



CH#2 (CS), CH#4 (VS)

The above waveforms show an overcurrent condition when the upper or middle filaments open during running. The voltage at the current sense pin goes above the threshold as determined by ROC and shuts the IC off. CH#2 (SD), CH#4 (VS)

The above waveforms show what happens when the lower filament opens during Running. The voltage at the SD pin rises above 2V and shuts the IC off.

The above waveforms are similar for either filament configuration.

#### International **TOR** Rectifier

#### BILL OF MATERIALS AND CIRCUIT SCHEMATIC

| Item# | Qty | Manufacturer            | Part Number   | Description                    | Reference              |
|-------|-----|-------------------------|---------------|--------------------------------|------------------------|
| 1     | 1   | International Rectifier | DF10S         | Bridge Rectifier, 1A 1000V     | BR1                    |
| 2     | 1   | Roederstein             | WY0222MCMBF0K | Capacitor, 2.2nF 275 VAC Y Cap | C1                     |
| 3     | 1   | Roederstein             | F1772433-2200 | Capacitor, 0.33uF 275 VAC      | C2                     |
| 4     | 2   | Wima                    | MKP10         | Capacitor, 0.01uF 400 VDC      | C3, C15                |
| 5     | 2   | Panasonic               | ECU-V1H103KBM | Capacitor, 0.01uF SMT 1206     | C4, CSTART             |
| 6     | 3   | Panasonic               | ECJ-3YB1E474K | Capacitor, 0.47uF SMT 1206     | C5, C6, C13            |
| 7     | 4   | Panasonic               | ECU-V1H104KBM | Capacitor, 0.1uF SMT 1206      | C9, COC, C10, C11      |
| 8     | 1   | Panasonic               | EEU-EB2V100   | Capacitor, 10uF 350VDC 105C    | C8                     |
| 9     | 1   | Panasonic               | ECU-V1H471KBM | Capacitor, 470pF SMT 1206      | СТ                     |
| 10    | 1   | Panasonic               | ECJ-3VB1E334K | Capacitor, 0.33uF SMT 1206     | CRAMP                  |
| 11    | 1   | Panasonic               | ECJ-3VB1E274K | Capacitor, 0.27uF SMT 1206     | CPH                    |
| 12    | 1   | Panasonic               | ECE-A1HGE010  | Capacitor, 1uF 50VDC 105C      | C12                    |
| 13    | 1   | Vitramon                | 1812A152KXE   | Capacitor, 1.5nF 1KV SMT 1812  | C14                    |
| 14    | 1   | Vitramon                | 1812A102KXE   | Capacitor, 1nF 1KV SMT 1812    | C16                    |
| 15    | 1   | Panasonic               | ECW-H16682JV  | Capacitor, 6.8nF 1.6KV         | C17                    |
| 16    | 1   | Panasonic               | ECU-V1H101KBM | Capacitor, 100pF SMT 1206      | CCS                    |
| 17    | 3   | Diodes                  | LL4148DICT-ND | Diode, 1N4148 SMT DL35         | D1, D5, D6             |
| 18    | 2   | International Rectifier | 10BF60        | Diode, SMT SMB                 | D2, D4                 |
| 19    | 1   | Diodes                  | ZMM5250BCT    | Diode, Zener 20V SMT DL35      | D3                     |
| 20    | 1   | Motorola                | MC34262       | IC, Power Factor Controller    | IC1                    |
| 21    | 1   | International Rectifier | IR21571       | IC, Ballast Driver             | IC2                    |
| 22    | 1   | Panasonic               | ELF-15N007A   | EMI Inductor, 1X10mH 0.7Apk    | L1                     |
| 23    | 1   | R.G. Allen              | RGA-K86960    | PFC Inductor, 2.0mH 2.0Apk     | L2                     |
| 24    | 1   |                         |               | Inductor, 2mH 3.0Apk           | L3                     |
| 25    | 1   |                         |               | Inductor, 1:2, EF20, no gap    | L4                     |
|       |     |                         |               | 50 Turns:100 Turns, AWG 28     |                        |
|       |     |                         |               | Inductor, 1:1, EF20, no gap    |                        |
|       |     |                         |               | 100 Turns:100 Turns, AWG 28    |                        |
| 26    | 3   | International Rectifier | IRF840        | Transistor, MOSFET             | M1, M2, M3             |
| 27    | 5   | Panasonic               | ERJ-8GEYJ680K | Resistor, 680K ohm SMT 1206    | R1, R2, R4, R5, R17    |
| 28    | 2   | Panasonic               | ERJ-8GEYJ10K  | Resistor, 10K ohm SMT 1206     | R3, RSTART             |
| 29    | 1   | Panasonic               | ERJ-8GEYJ8.2K | Resistor, 8.2K ohm SMT 1206    | R6                     |
| 30    | 1   | Panasonic               | ERJ-8GEYJ100K | Resistor, 100K ohm SMT 1206    | R7                     |
| 31    | 1   | Panasonic               | ERJ-8GEYJ22K  | Resistor, 22K ohm SMT 1206     | R8                     |
| 32    | 3   | Panasonic               | ERJ-8GEYJ22   | Resistor, 22 ohm SMT 1206      | R9, R13, R15           |
| 33    | 1   | Dale                    | CW-1/2        | Resistor, 0.5 ohm 1/2 watt     | R10                    |
| 34    | 1   | Panasonic               | ERJ-8GEYJ56K  | Resistor, 56K ohm SMT 1206     | R11                    |
| 35    | 1   | Yageo                   | 2.2MQBK-ND    | Resistor, 2.2megohm ¼ watt     | R12                    |
| 36    | 1   | Dale                    | CW-1/2        | Resistor, 0.68 ohm 1/2 watt    | RCS                    |
| 37    | 1   | Panasonic               | ERJ-8GEYJ6.8K | Resistor, 6.8K ohm SMT 1206    | RDT                    |
| 38    | 1   | Panasonic               | ERJ-8GEYJ30K  | Resistor, 30K ohm SMT 1206     | ROC                    |
| 39    | 1   | Panasonic               | ERJ-8GEYJ68K  | Resistor, 68K ohm SMT 1206     | RPH                    |
| 40    | 1   | Panasonic               | ERJ-8GEYJ20K  | Resistor, 20K ohm SMT 1206     | RT                     |
| 41    | 4   | Yageo                   | 110KQBK-ND    | Resistor, 110K ohm ¼ watt      | R14A, R14B, R14C, R14D |
| 42    | 1   | Panasonic               | ERJ-8GEYJ1K   | Resistor, 1K ohm SMT 1206      | R16                    |
| 43    | 1   | Panasonic               | ERJ-8GEYJ1.0M | Resistor, 1.0megohm SMT 1206   | R18                    |
| 44    | 1   | Yageo                   | 100KQBK-ND    | Resistor, 100K ohm ¼ watt      | R19                    |
| 45    | 1   | Panasonic               | ERZ-V05D471   | Transient Suppressor           | RV1                    |
| Total | 67  |                         |               |                                |                        |

International **IOR** Rectifier

С

