International **TOR** Rectifier

8ETH06 8ETH06S 8ETH06-1

 $t_{rr} = 30 ns$

 $I_{F(AV)} = 8Amp$

 $V_{R} = 600V$

Hyperfast Rectifier

Features

- Hyperfast Recovery Time
- · Low Forward Voltage Drop
- Low Leakage Current
- 175°C Operating Junction Temperature

Description/Applications

State of the art Hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, Hyperfast recover time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC Boost stage in the AC-DC section of SMPS, inverters or as freewheeling diodes.

The IR extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

	Parameters	Мах	Units
V _{RRM}	Peak Repetitive Peak Reverse Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current	8	A
I _{FSM}	Non Repetitive Peak Surge Current	120	
I _{FM}	Peak Repetitive Forward Current	16	
T_J,T_STG	Operating Junction and Storage Temperatures	- 65 to 175	°C

Absolute Maximum Ratings

Case Styles								
8ETH06	8ETH06S	8ETH06-1						
- Contraction of the second	TER	TEST						
TO-220AC	D ² PAK	TO-262						

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V _{BR} , V _r	Breakdown Voltage, Blocking Voltage	600	-	-	V	I _R = 100μA
VF	Forward Voltage	-	-	2.1	V	I _F = 8A, T _J = 25°C
		-	-	1.7	V	I _F = 8A, T _J = 150°C
I _R	Reverse Leakage Current	-	-	100	μA	V _R = V _R Rated
		-	-	500	μA	$T_J = 150^{\circ}C, V_R = V_R Rated$
CT	Junction Capacitance	-	-	-	pF	V _R = 600V
L _S	Series Inductance	-	-	-	nH	Measured lead to lead 5mm from package body

Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions		
t _{rr}	Reverse Recovery Time	-	25	30	ns	I _F = 1.0A, di _F /dt = 50A/µs, V _R = 30V		
		-	27	35		I _F = 8A, di _F /dt = 20	200A/µs, V _R = 200V	
		-	-	-]	T _J = 25°C	I _F = 8A	
			-	-		T _J = 125°C	$V_{\rm R} = 200V$	
I _{RRM}	Peak Recovery Current	-	2	-	A	T _J = 25°C	di _F /dt = 200A/µs	
		-	-	-		T _J = 125°C		
Q _{rr}	Reverse Recovery Charge	-	25	56	nC	T _J = 25°C		
		-	-	-	1	T _J = 125°C		

Thermal - Mechanical Characteristics

	Parameters	Min	Тур	Мах	Units
TJ	Max. Junction Temperature Range	-	-	- 65 to 175	°C
T _{Stg}	Max. Storage Temperature Range	-	-	- 65 to 175	
R _{thJC}	Thermal Resistance, Junction to Case Per Leg	-	1.2	2	°C/W
R _{thJA} ①	Thermal Resistance, Junction to AmbientPer Leg	-	-	-	
R _{thCS} ^②	Thermal Resistance, Case to Heatsink	-	0.5	-	Wt
	Weight	-	2.0	-	g
		-	0.07	-	(oz)
	Mounting Torque	6.0	-	12	Kg-cm
		5.0	-	10	lbf.in

① Typical Socket Mount

2 Mounting Surface, Flat, Smooth and Greased