International **TOR** Rectifier

"HALF-BRIDGE" FREDFET MTP

29MT050XH

HEXFET[®] Power MOSFET

Features

- · Low On-Resistance
- High Performance Optimised Built-in Fast Recovery Diodes
- Fully Characterized Capacitance and Avalanche Voltage and Current
- · Optional SMT Thermystor Inside
- Aluminum Nitride DBC
- Very Low Stray Inductance Design for High Speed Operation

MTP

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Low Trr and Soft Diode Reverse Recovery
- · Optimized for Welding, UPS and SMPS Applications
- Outstanding ZVS and High Frequency Operation
- Direct Mounting to Heatsink
- PCB Solderable Terminals
- Very Low Junction-to-Case Thermal Resistance

Absolute Maximum Ratings

	Parameters		Max	Units
ID	Continuos Drain Current @ V _{GS} = 10V	@ T _C = 25°C	46	A
		@ T _C = 100°C	29	
I _{DM}	Pulsed Drain Current (1)		180	
PD	Maximum Power Dissipation	@ T _C = 25°C	800	W
		@ T _C = 100°C	320	1
V _{GS}	Gate-to-Source Voltage		± 30	V
VISOL	RMS Isolation Voltage, Any Terminal to 0	Case, t = 1 min	2500	
dv/dt	Peak Diode Recovery dv/dt (3)		25	V/ ns

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_{C} = 250 \mu A$
ΔV _{(BR)DSS} /	TemperatureCoeff.of		0.6		V/°C	I_D = 1mA, reference to T_J = 25°C
ΔT_{J}	Breakdown Voltage					
R _{DS(ON)}	Static Drain-to-Source On-Resistance		0.087		Ω	$V_{GS} = 15V, I_D = 28A$ (4)
V _{GS(th)}	Gate Threshold Voltage	3		5	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			50	μA	$V_{DS} = 500V, V_{GS} = 0V$
				2	mA	V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			- 100		V _{GS} = - 30V

Dynamic Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Мах	Units	Test Conditions
g fs	Forward Transconductance	21			S	V _{DS} = 50V, I _D = 46A
Qg	Total Gate Charge			380	nC	I _D = 46A
Qgs	Gate-to-Source Charge			80		V _{DS} = 400V
Qgd	Gate-to-Drain ("Miller") Charge			190		$V_{\rm GS} = 10V \tag{4}$
Ciss	Input Capacitance		8110		pF	V _{GS} = 0V
Coss	Output Capacitance		960]	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		130]	f = 1.0 MHz
Coss	Output Capacitance		11200		Ī	V _{GS} = 0V, V _{DS} = 1.0V, f = 1.0 MHz
Coss	Output Capacitance		240			V _{GS} = 0V, V _{DS} = 400V, f = 1.0 MHz
Coss eff.	Effective Output Capacitance		420		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$ (5)

Diode Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current			46	A	MOSFET symbol
	(Body Diode)					showing the
ISM	Pulsed Source Current			180		integral reverse
	(Body Diode) (1)					p-n junction diode
V _{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C, I_S = 46A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		170		ns	T _J = 25°C, I _F = 46A
Q _{rr}	Reverse Recovery Charge		0.8		μC	di/dt = 100A/µs (4)
IRRM	Reverse Recovery Current		8.4		A	

Notes:

(1) Repetitive rating; pulse width limited by max. junction temperature (2) Starting T_J = 25°C, L = 0.86mH, R_G = 25Ω I_{AS} = 46A (3) I_{SD} ≤ 46A, di/dt ≤ 367A/µs, V_{DD} ≤ V_{(BR)DSS}, T_J ≤ 150°C (4) Pulse width \leq 400µs; duty cycle \leq 2% (5) C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

29MT050XH

Target Data 05/01

Thermal- Mechanical Specifications

	Parameters	Min	Тур	Max	Units
TJ	Operating Junction Temperature Range	- 40		150	°C
T _{STG}	Storage Temperature Range	- 40		125	
R _{thJC}	Junction-to-Case			0.35	°C/W
R _{thCS}	Case-to-Sink		0.06		
	(Heatsink Compound Thermal Conductivity = 1 W/mK)				
	Weight		66		g

Avalanche Characteristics

	Parameters		Min	Тур	Max	Units
E _{AS}	Single Pulse Avalanche Energy	(2)			920	mJ
I _{AR}	Avalanche Current	(1)			46	А
E _{AR}	Repetitive Avalanche Energy	(1)			54	mJ

Outline Table

29MT050XH

Data and specifications subject to change without notice. This product has been designed for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 05/01