DS07-12530-1E

8-bit Proprietary Microcontroller

CMOS

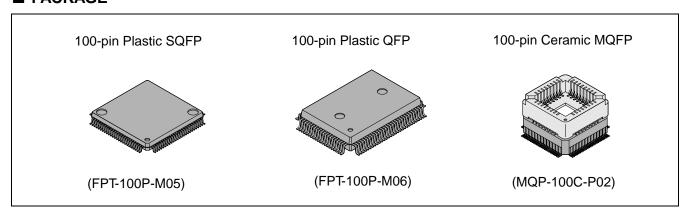
F²MC-8L MB89650AR Series

MB89653AR/655AR/656AR/657AR/P657A MB89PV650A

■ DESCRIPTION

The MB89650AR series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, PWM timers, a serial interface, an A/D converter, external interrupts, an LCD controller/driver, and a watch prescaler.


*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- F²MC-8L family CPU core
- · Dual-clock control system
- Maximum memory space: 64 Kbytes
- Minimum execution time: 0.4 μs/10 MHz
- Interrupt processing time: 3.6 μs/10 MHz
- I/O ports: max. 64 channels
- · 21-bit time-base counter
- 8-bit PWM timers: 2 channels (A maximum of 4 channels can be used for output.)
- 8/16-bit timer/counter: 4 channels (16 bits × 2 channels)
- 8-bit serial I/O: 1 channel
- 8-bit A/D converter: 8 channels

(Continued)

■ PACKAGE

(Continued)

- External interrupt 1
 - Four independent channels with edge detection function
- External interrupt 2 (wake-up function)
 Twelve "L" level-interrupt channels
- Watch prescaler
- LCD controller/driver: 16 to 32 segments × 2 to 4 commons
- Power-on reset function
- Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
- SQFP-100 and QFP-100 packages

■ PRODUCT LINEUP

Part number Parameter	MB89653AR	MB89655AR	MB89656AR	MB89657AR	MB89P657A	MB89PV650A
Classification			ction products M products)		One-time PROM product	Piggyback/ evaluation product (for evaluation and development)
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	24 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal PROM, programming with general- purpose EPROM programmer)	32 K × 8 bits (external ROM)
RAM size	256 × 8 bits	512 × 8 bits	768 × 8 bits		1 K × 8 bits	
LCD display RAM			16	× 8 bits		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: 1, 8, 16 bits Minimum execution time: 0.4 μs/10 MHz to 6.4 μs/10 MHz, 61.0 μs/32.768 kHz Interrupt processing time: 3.6 μs/10 MHz to 57.6 μs/10 MHz, 549.3 μs/32.768 kHz					
Ports	Input ports: Output ports: 8 (All also serve as periph 8 (All also serve as periph I/O ports: 48 (All also serve as periph 48 (All also serve as periph 64				herals.)	
8-bit timer 1, 8-bit timer 2	8-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 μs) 16-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 μs) 2 output channels are enabled when operating as an 8-bit timer.					
8-bit timer 3, 8-bit timer 4	8-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 μs) 16-bit timer operation (toggled output capable, operating clock cycle: 0.8 to 12.8 μs) 2 output channels are enabled when operating as an 8-bit timer.					
Clock timer		21 bits × 1 (i	n main clock m	ode)/15 bits × 1	(at 32.768 kHz)	
8-bit PWM timer 1, 8-bit PWM timer 2	8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 μs to 3.3 ms) 8-bit resolution PWM operation (conversion cycle: 102 μs to 839 ms) Both 8-bit PWM timer 1 and 8-bit PWM timer 2 can output 2 channels.					

(Continued)

Part number Parameter	MB89653AR	MB89655AR	MB89656AR	MB89657AR	MB89P657A	MB89PV650A		
8-bit serial I/O	(one	8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 μs, 3.2 μs, 12.8 μs)						
8-bit A/D converter		8-bit resolution × 8 channels A/D conversion mode (conversion time: 18 μs) Sense mode (conversion time: 5 μs) Continuous activation by an internal timer capable Reference voltage input						
External interrupt 1	4 independent channels (edge selection) Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)							
External interrupt 2 (wake-up function)	"L" level interrupt \times 12 channels							
Standby mode	Subclock mode, sleep mode, watch mode, and stop mode							
Process	CMOS							
Operating voltage*	2.2 V to 6.0 V 2.7 V to 6.0 V							
EPROM for use						MBM27C256A- 20TVM		

^{* :} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") In the case of the MB89PV650A, the voltage varies with the restrictions of the EPROM for use.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89653AR MB89655AR MB89656AR MB89657AR MB89P657A	MB89PV650A
FPT-100P-M05	0	×
FPT-100P-M06	0	×
MQP-100C-P02	×	0

 \bigcirc : Available \times : Not available

Note: For more information about each package, see section "■ Package Dimensions."

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89653AR, the upper half of the register bank cannot be used.
- On the MB89P657A, the program area starts from address 8006H but on the MB89PV650A and MB89657AR starts from 8000H.

(On the MB89P657A, addresses 8000_H to 8005_H comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV650A and MB89657A, addresses 8000_H to 8005_H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P657A.)

• The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- In the case of the MB89PV650A, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume
 more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

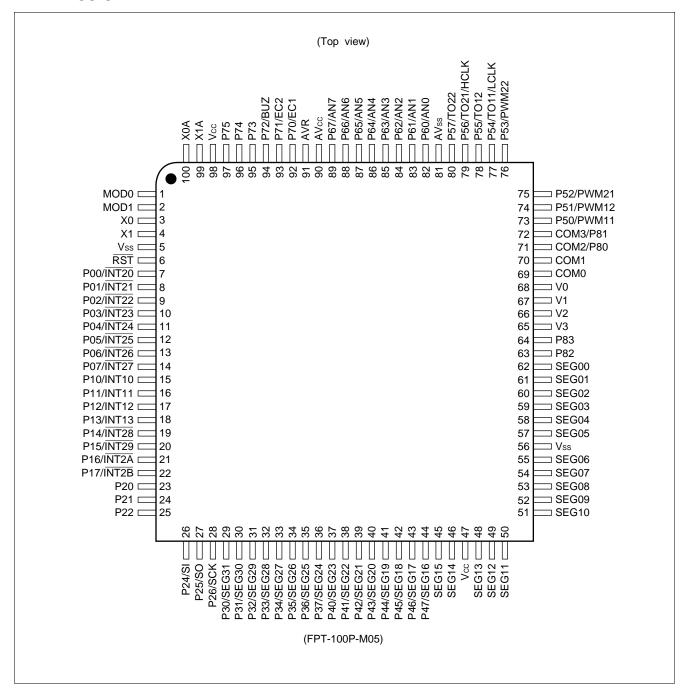
Take particular care on the following points:

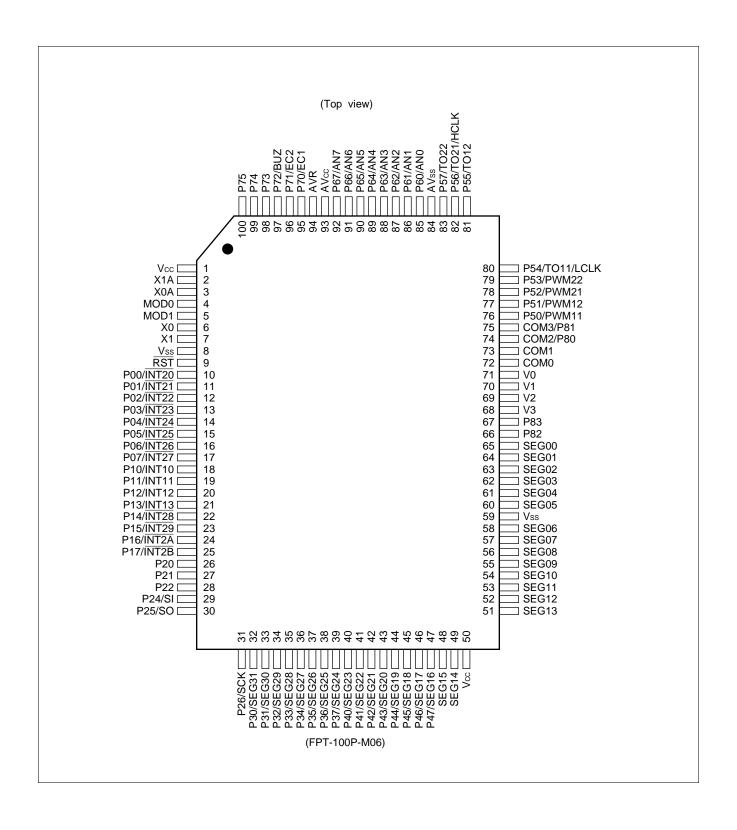
- A pull-up resistor cannot be set for P70 to P75 on the MB89P657A. On this product, a pull-up resistor must be selected in a group of four bits for P14 to P17, P40 to P43, and P44 to P47.
- A pull-up resistor is not selectable for P30 to P37 and P40 to P47 if they are used as LCD pins.
- Options are fixed on the MB89PV650A.

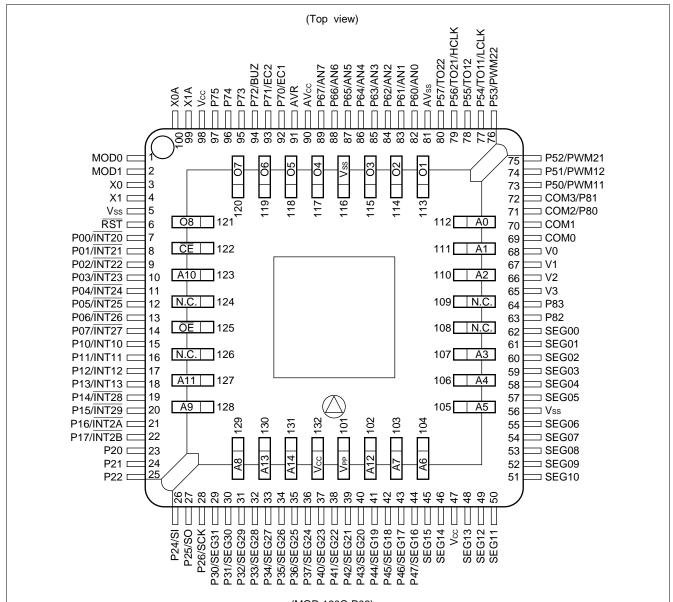
4. Differences between the MB89650A and MB89650AR Series

- Electrical specifications/electrical characteristics
 Electrical specifications of the MB89650AR series are the same with that of the MB89650A series.
 Electrical characteristics of both series are much the same.
- · Oscillation circuit type
 - In the MB89650A series, the circuit type of using an external clock differs from that of using a crystal or ceramic resonator as follows.
 - Circuit type of the MB89650AR series is a circuit type in using external clock even when crystal or ceramic resonator is selected.
- Memory access area and other specifications of both the MB89650A and MB89650AR series are the same.

• I/O circuit type


Туре	Circuit	Remarks
A	X1 X0 X0 X1 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	Crystal or ceramic oscillation type (main clock) MB89PV650A and MB89P657A, external clock input selection versions of MB89653A/655A/656A/657A At an oscillation feedback resistor of approximately 1 MΩ/5.0 V
	X1 X0 X0 X0 X0 X0 X1 X0 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	Crystal or ceramic oscillation type (main clock) Crystal or ceramic oscillation selection versions of MB89653A/655A/656A/657A At an oscillation feedback resistor of approximately 1 MΩ/5.0 V


■ CORRESPONDENCE BETWEEN THE MB89650A AND MB89650AR SERIES


- The MB89650AR series is the reduction version of the MB89650A series.
- The MB89650A and MB89650AR series consist of the following products:

MB89650A series	MB89653A	MB89655A	MB89656A	MB89657A	MB89P657	MB89PV650
MB89650AR	MB89653A	MB89655A	MB89656A	MB89657A	A	A
series	R	R	R	R	, ,	, ,

■ PIN ASSIGNMENT

(MQP-100C-P02)

Pin assignment on package top (MB89PV650A only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
101	V _{PP}	109	N.C.	117	04	125	ŌĒ
102	A12	110	A2	118	O5	126	N.C.
103	A7	111	A1	119	O6	127	A11
104	A6	112	A0	120	07	128	A9
105	A5	113	01	121	08	129	A8
106	A4	114	O2	122	CE	130	A13
107	A3	115	O3	123	A10	131	A14
108	N.C.	116	Vss	124	N.C.	132	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

Pin no.			Oinevit	
QFP*1	MQFP*2 SQFP*3	Pin name	Circuit type	Function
4	1	MOD0	J	Operating mode selection pins
5	2	MOD1		Connect to Vss (GND) when using.
6	3	X0	Α	Main clock crystal oscillator pins (max. 10 MHz)
7	4	X1		
8	5	Vss	_	Power supply (GND) pin
9	6	RST	J	Reset input pin
10 to 17	7 to 14	P00/ <u>INT20</u> to P07/INT27	F	General-purpose I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input (INT20 to INT27) is hysteresis input while port input (P00 to P07) is CMOS input.
18 to 21	15 to 18	P10/INT10 to P13/INT13	F	General-purpose I/O ports Also serve as an external interrupt 1 input. External interrupt 1 input (INT10 to INT13) is hysteresis input while port input (P10 to P13) is CMOS input.
22 to 25	19 to 22	P14/ <u>INT28</u> to P15/ <u>INT2B</u>	F	General-purpose I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input (INT28 to INT2B) is hysteresis input while port input (P14 to P17) is CMOS input.
26 to 28	23 to 25	P20 to P22	С	General-purpose I/O ports
29, 30, 31	26, 27, 28	P24/SI, P25/SO, P26/SCK	F	General-purpose I/O ports The output type can be switched between N-ch opendrain and CMOS. These ports also serve as an 8-bit serial I/O. The P26/SCK pin is a CMOS input type when it functions as the port input (P26) while the pin is a hysteresis input type when it functions as the serial clock input (SCK).
32 to 47	29 to 44	P36/SEG31 to P47/SEG26	Н	General-purpose I/O ports Also serve as an LCD controller/driver segment output.
48, 49	45, 46	SEG15, SEG14	I	LCD controller/driver segment output pins

*1: FPT-100P-M06

*2: FPT-100P-M05

*3: MQP-100C-P02

Pin	no.		0::	
QFP*1	MQFP*2 SQFP*3	Pin name	Circuit type	Function
50	47	Vcc	_	Power supply pin
51 to 58	48 to 55	SEG13 to SEG06	I	LCD controller/driver segment output pins
59	56	Vss	_	Power supply (GND) pin
60 to 65	57 to 62	SEG05 to SEG00	I	LCD controller/driver segment output pins
66, 67	63, 64	P82, P83	С	General-purpose I/O ports
68 to 71	65 to 68	V3 to V0	_	LCD driving power supply pins
72, 73	69, 70	COM0, COM1	I	LCD controller/driver common output pins
74, 75	71, 72	COM2/P80, COM3/P81	Н	General-purpose I/O ports Also serve as an LCD controller/driver common output.
76 to 79	73 to 76	P50/PWM11 to P53/PWM22	G	General-purpose output ports Also serve as an 8-bit PWM timer.
80, 81, 82, 83	77, 78, 79, 80	P54/TO11/LCLK, P55/TO12, P56/TO21/HCLK, P57/TO22	G	General-purpose output ports Also serve as an 8/16-bit timer. P54 and P56 also serve as a 32.768 kHz oscillation output/10 MHz divide-by-two output.
84	81	AVss	_	A/D converter power supply (GND) pin
85 to 92	82 to 89	P60/AN0 to P67/AN7	Е	General-purpose input ports Also serve as an analog input.
93	90	AVcc	_	A/D converter power supply pin
94	91	AVR	_	A/D converter reference voltage input pin
95, 96	92, 93	P70/EC1, P71/EC2	K	General-purpose N-ch open-drain I/O ports Also serve as an 8/16-bit timer to input hysteresis.
97, 98 to 100	94, 95 to 97	P72/BUZ, P73 to P75	D	General-purpose N-ch open-drain I/O ports P72 also serves as a buzzer output.
1	98	Vcc	_	Power supply pin
2	99	X1A	В	Subclock crystal oscillator pins (32.768 kHz)
3	100	X0A		

^{*1:} FPT-100P-M06

^{*2:} FPT-100P-M05

^{*3:} MQP-100C-P02

• External EPROM pins (MB89PV650A only)

Pin no.	Pin name	I/O	Function
101	V _{PP}	0	"H" level output pin
102 103 104 105 106 107 110 111	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
113 114 115	O1 O2 O3	I	Data input pins
116	Vss	0	Power supply (GND) pin
117 118 119 120 121	O4 O5 O6 O7 O8	I	Data input pins
122	CE	0	ROM chip enable pin Outputs "H" during standby.
123	A10	0	Address output pin
125	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
127 128 129	A11 A9 A8	0	Address output pins
130	A13	0	Address output pin
131	A14	0	Address output pin
132	Vcc	0	EPROM power supply pin
108 109 124 126	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 X0 X1 X0 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	Crystal or ceramic oscillation type (main clock) MB89PV650A and MB89P657A, external clock input selection versions of MB89653AR/655AR/656AR/657AR At an oscillation feedback resistor of approximately 1 MΩ/5.0 V
В	X1A X0A X0A Standby control signal	Crystal or ceramic oscillation type (subclock) MB89PV650A, MB89P657A At an oscillation feedback resistor of approximately 4.5 MΩ/5.0 V
	X1A X0A X0A Standby control signal	Crystal or ceramic oscillation type (subclock) MB89653AR/655AR/656AR/657AR At an oscillation feedback resistor of approximately 4.5 MΩ/5.0 V
С	P-ch N-ch	CMOS I/O Pull-up resistor optional (except P82 and P83)
D	R P-ch N-ch	N-ch open-drain I/O CMOS input Pull-up resistor optional
E	P-ch N-ch	 A/D converter input CMOS input Pull-up resistor optional

Туре	Circuit	Remarks
F	P-ch P-ch N-ch	 CMOS I/O (when selected as general-purpose ports) P24 to P26 outputs can be switched between CMOS and N-ch open-drain. When toggled as hysteresis input peripherals. However, SI input excluded. Pull-up resistor optional
G	P-ch N-ch	CMOS output
Н	P-ch N-ch N-ch N-ch N-ch	LCD controller/driver output CMOS I/O Pull-up resistor optional
I	P-ch T N-ch P-ch N-ch	LCD controller/driver output
J		
К	P-ch N-ch	 Hysteresis input N-ch open-drain output Pull-up resistor optional

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

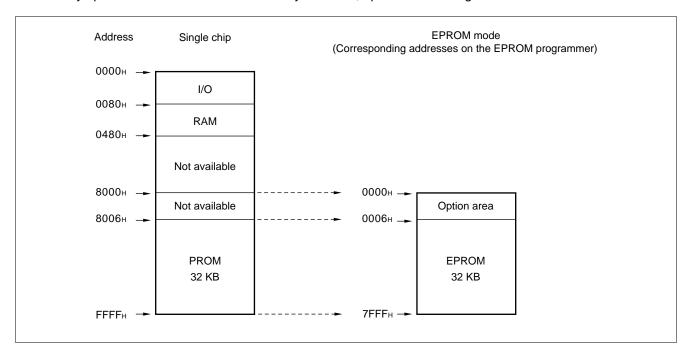
5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P657A


The MB89P657A is an OTPROM version of the MB89650A series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

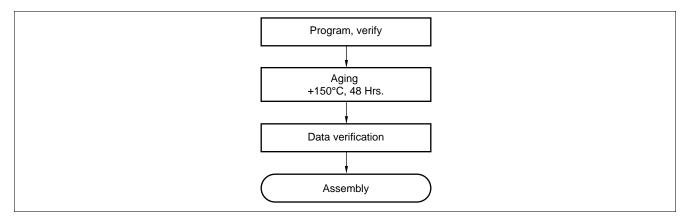
2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P657A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating ROM area for a single chip is 32 Kbytes (8006_H to FFFF_H) the PROM can be programmed as follows:


Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0006_H to 7FFF_H (note that addresses 8006_H to FFFF_H while operating as a single chip assign to 0006_H to 7FFF_H in EPROM mode).

 Load option data into addresses 0000_H to 0005_H of the EPROM programmer. (For information about each corresponding option, see "7. Setting OTPROM Options.")
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-100P-M05	ROM-100SQF-28DP-8L
FPT-100P-M06	ROM-100QF-28DP-8L2

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

Note: Connect the ROM-100SQF-28DP-8L jumper pin to Vss when using.

Depending on the EPROM programmer, inserting a capacitor of about 0.1 μF between V_{PP} and V_{SS} or

Vcc and Vss can stabilize programming operations.

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000н	Vacancy Readable and writable	Vacancy Readable and writable	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes	Single/dual- clock system 1: Dual clock 2: Single clock			
0001н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0002н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0003н	P67	P66	P65	P64	P63	P62	P61	P60
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0004н	P47 to P44	P43 to P40	P26	P25	P24	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0005н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P17 to P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes

Notes: • Set each bit to 1 to erase.

• Do not write 0 to the vacant bit.

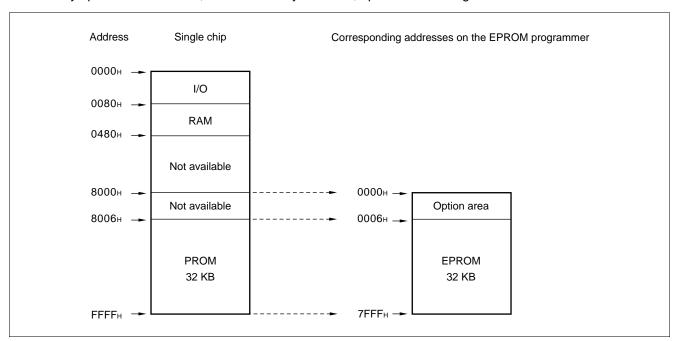
The read value of the vacant bit is 1, unless 0 is written to it.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM

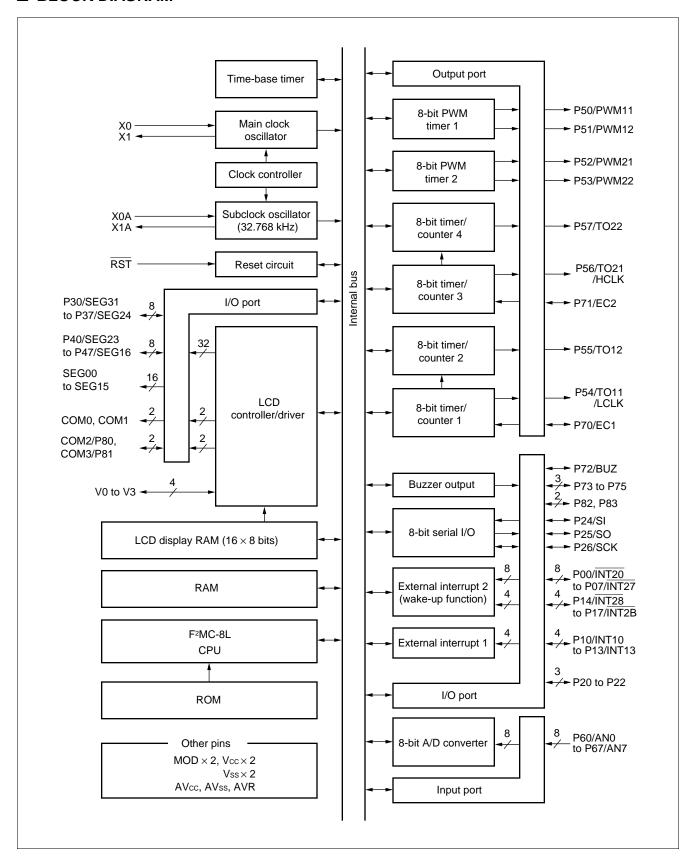
2. Programming Socket Adapter


To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32(Rectangle)	ROM-32LC-28DP-YG
LCC-32(Square)	ROM-32LC-28DP-S

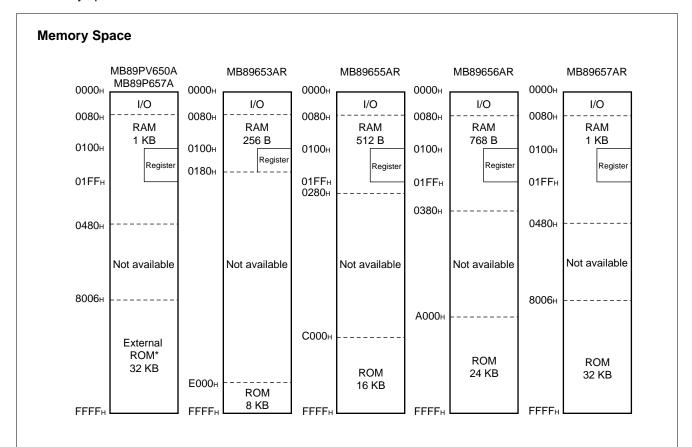
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space


Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0006_H to 7FFF_H.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89650AR series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89650AR series is structured as illustrated below.

^{*:} This is an internal PROM on the MB89P657A.

Since addresses 8000_H to 8005_H for the MB89P657A comprise an option area, do not use this area for the MB89PV650A.

2. Registers

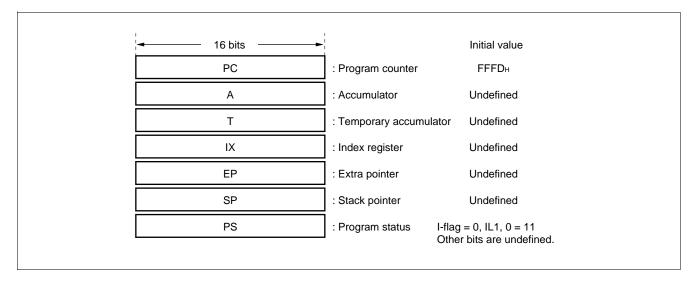
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

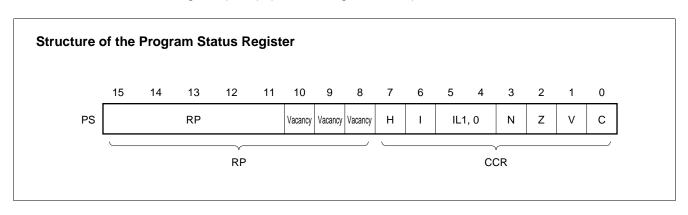
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

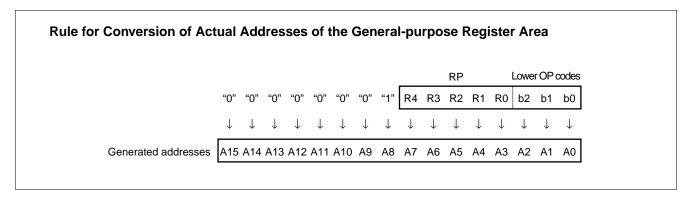
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

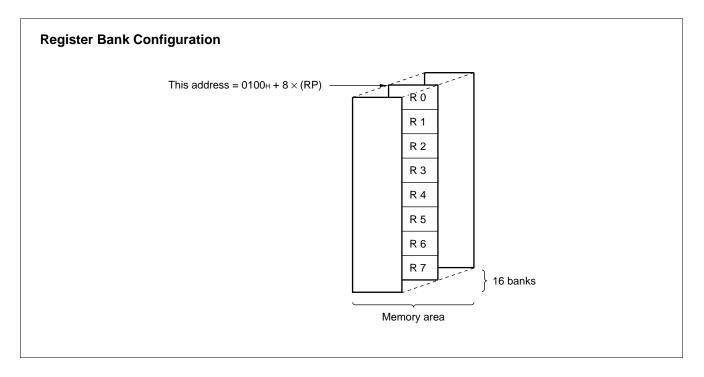
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	- 	†
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.


C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89653AR (RAM 256×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size. Up to a total of 32 banks can be used on other than the MB89653AR.

■ I/O MAP

Address	Read/write	Register name	Register description		
00н	(R/W)	PDR0	Port 0 data register		
01н	(W)	DDR0	Port 0 data direction register		
02н	(R/W)	PDR1	Port 1 data register		
03н	(W)	DDR1	Port 1 data direction register		
04н	(R/W)	PDR2	Port 2 data register		
05н	(R/W)	DDR2	Port 2 data direction register		
06н			Vacancy		
07н	(R/W)	SCC	System clock control register		
08н	(R/W)	SMC	System mode control register		
09н	(R/W)	WDTC	Watchdog time control register		
ОАн	(R/W)	TBTC	Time-base timer control register		
0Вн	(R/W)	WCR	Watch prescaler control register		
0Сн	(R/W)	PDR3	Port 3 data register		
0Dн	(R/W)	DDR3	Port 3 data direction register		
0Ен	(R/W)	PDR4	Port 4 data register		
0Fн	(R/W)	DDR4	Port 4 data direction register		
10н	(R/W)	T4CR	Timer 4 control register		
11н	(R/W)	T3CR	Timer 3 control register		
12н	(R/W)	T4DR	Timer 4 data register		
13н	(R/W)	T3DR	Timer 3 data register		
14н			Vacancy		
15н			Vacancy		
16н	(R/W)	PDR5	Port 5 data register		
17н			Vacancy		
18н			Vacancy		
19н			Vacancy		
1Ан	(W)	ICR6	Port 6 input control register		
1Вн	(R)	PDR6	Port 6 data register		
1Сн	(R/W)	PDR7	Port 7 data register		
1Dн	(R/W)	CHG2	Port 2 switching register		
1Ен	(R/W)	CNTR1	PWM 0/1 control register		
1F _H	(W)	COMP1	PWM 0/1 compare register		

(Continued)

Address	Read/write	Register name	Register description
20н	(R/W)	CNTR2	PWM 2/3 control register
21н	(W)	COMP2	PWM 2/3 compare register
22н			Vacancy
23н			Vacancy
24н	(R/W)	T2CR	Timer 2 control register
25н	(R/W)	T1CR	Timer 1 control register
26н	(R/W)	T2DR	Timer 2 data register
27н	(R/W)	T1DR	Timer 1 data register
28н	(R/W)	SMR	Serial mode register
29н	(R/W)	SDR	Serial data register
2Ан			Vacancy
2Вн			Vacancy
2Сн			Vacancy
2Dн	(R/W)	ADC1	A/D converter control register 1
2Ен	(R/W)	ADC2	A/D converter control register 2
2Fн	(R/W)	ADCD	A/D converter data register
30н	(R/W)	EIE1	External interrupt 1 enable register
31н	(R/W)	EIF1	External interrupt 1 flag register
32н	(R/W)	EIE2	External interrupt 2 enable register
33н	(R/W)	EIF2	External interrupt 2 flag register
34н to 5Fн			Vacancy
60н to 6Fн	(R/W)	VRAM	Display data RAM
70н	(R/W)	LCR1	LCD controller/driver control register 1
71н	(R/W)	LCR2	LCD controller/driver control register 2
72н	(R/W)	PDR8	Port 8 data register
73н	(W)	DDR8	Port 8 data direction register
74н to 7Вн			Vacancy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7Fн			Vacancy

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Dovernator	Cumbal	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	Vcc AVcc	Vss-0.3	Vss + 7.0	V	*1
A/D converter reference input voltage	AVR	Vss - 0.3	Vss + 7.0	V	I
LCD power supply voltage	V0 to V3	Vss-0.3	Vss + 7.0	V	V0 to V3 must not exceed Vcc.
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	Except P70 to P75*2
input voitage	V _{I2}	Vss-0.3	Vss + 7.0	V	P70 to P75
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	Except P70 to P75*2
Output voltage	V _{O2}	Vss-0.3	Vss + 7.0	V	P70 to P75
"L" level maximum output current	Гог	_	20	mA	
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating rate)
"L" level total maximum output current	∑lo∟	_	100	mA	
"L" level total average output current	Σ lolav	_	40	mA	Average value (operating current × operating rate)
"H" level maximum output current	Іон	_	-20	mA	
"H" level average output current	Гонач	_	-4	mA	Average value (operating current × operating rate)
"H" level total maximum output current	∑Іон	_	-50	mA	
"H" level total average output current	∑Iohav		-20	mA	Average value (operating current × operating rate)
Power consumption	PD	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

^{*1:} Use AVcc and Vcc set at the same voltage.

Take care so that AVR does not exceed AVcc + 0.3 V and AVcc does not exceed Vcc, such as when power is turned on.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Syllibol	Min.	Max.	Oilit	Kemarks
	.,	2.2*	6.0*	V	Normal operation assurance range* MB89653AR/655AR/656AR/657AR
Power supply voltage	Vcc AVcc	2.7*	6.0*	V	Normal operation assurance range* MB89PV650A/P657A
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AVcc	V	
LCD power supply voltage	V0 to V3	Vss	Vcc	V	LCD power supply range (The optimum value is dependent on the LCD element in use.)
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

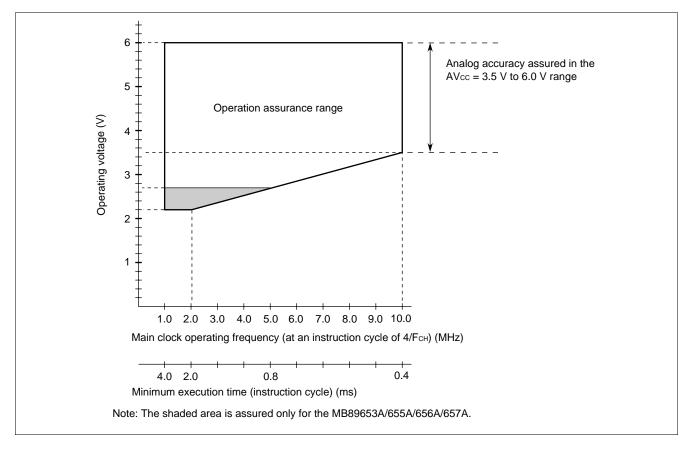


Figure 1 Operating Voltage vs. Main Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fch. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

3. DC Characteristics

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Sum			VCC - 3.0 V	Value	7 35 - U.U V		40°C to +85°C)
Parameter	Sym- bol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	V _{IH1}	P20 to P26, P30 to P37, P40 to P47, P60 to P67, P80 to P83	_	0.7 Vcc	_	Vcc + 0.3	V	
<i></i>	V _{IH2}	P72 to P75		0.7 Vcc	_	Vss + 6.0	V	Without pull- up resistor
"H" level input voltage	VIHS	P00 to P07, P10 to P17, RST, MOD0, MOD1, P26 (at SC input)	_	0.8 Vcc	_	Vcc + 0.3	V	
	V _{IHS2}	P70, P71	_	0.8 Vcc	_	Vss + 6.0	V	Without pull- up resistor
	VıL	P20 to P26, P30 to P37, P40 to P47, P60 to P67, P72 to P75, P80 to P83	_	Vss - 0.3	_	0.3 Vcc	V	
"L" level input voltage	Vis	P00 to P07, P10 to P17, P26 (at SC input), P70, P71, RST, MOD0, MOD1	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output	VD	P24 to P26	_	Vss-0.3		Vss + 0.3	V	N-ch open- drain
pin application voltage	V _{D2}	P70 to P75	_	Vss - 0.3	_	Vss+ 6.0	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P50 to P57, P80 to P83	Iон = -2.0 mA	4.0	_	_	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P50 to P57, P70 to P75, P80 to P83	loL = 4.0 mA	_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	lu	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P60 to P67, P70 to P75, P80 to P83, MOD0, MOD1, RST	0.0 V < Vı < Vcc	_	_	±5	μΑ	Without pull- up resistor
Pull-up resistance	RPULL	P00 to P07, P10 to P17, P20 to P26, P30 to P37, P40 to P47, P60 to P67, P70 to P75, P80 to P81	V _I = 0.0 V	25	50	100	kΩ	With pull-up resistor

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Denometer	Sym-	Pin	Condition		Value			Remarks
Parameter	bol	FIII	Condition	Min.	Тур.	Max.	Unit	Remarks
	Icc1		FcH = 10 MHz Vcc = 5.0 V $t_{inst}^{*2} = 0.4 \mu\text{s}$	_	12	20	mA	
	Icc2		F _{CH} = 10 MHz V _{CC} = 3.0 V	_	1.0	2	mA	MB89653AR/ 655AR/656AR/ 657AR/PV650A
			$t_{inst}^{*2} = 6.4 \; \mu s$	_	1.5	2.5	mA	MB89P657A
	Iccs ₁		FCH = 10 MHz VCC = 5.0 V Et inst ² = 0.4 μs FCH = 10 MHz VCC = 3.0 V	_	3	7	mA	
	Iccs2		FCH = 10 MHz Vcc = 3.0 V t_{inst}^2 = 6.4 µs	_	0.5	1.5	mA	
	Iccl	Vcc	FcL = 32.768 kHz, Vcc = 3.0 V	_	50	100	μΑ	MB89P657A/ 655AR/656AR/ 657AR/PV650A
			Subclock mode	_	500	700	μΑ	MB89P657A
Power supply current*1	Iccls		FcL = 32.768 kHz, Vcc = 3.0 V Subclock sleep mode	_	15	50	μΑ	
	Ісст		FcL = 32.768 kHz, Vcc = 3.0 V • Watch mode • Main clock stop mode at dual- clock system	_	3	15	μΑ	
	Іссн		T _A = +25°C • Subclock stop mode • Main clock stop mode at single-clock system	_	_	1	μΑ	
	IA		FcH = 10 MHz, when A/D conversion is activated	_	1.5	3	mA	
	Іан	AVcc	Fch = 10 MHz, TA = +25°C, when A/D conversion is stopped		_	1	μА	

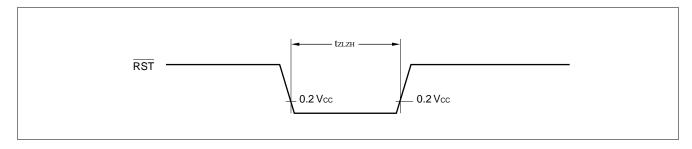
(Continued)

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Sym-		Condition		Value		Unit	Remarks
Parameter	bol	FIII	Condition	Min.	Тур.	Max.	Offic	Remarks
LCD divided resistance	RLCD		Between Vcc and V0 at Vcc = 5.0 V	300	500	750	kΩ	
COM0 to 3 output impedance	Rvсом	COM0 to 3	V1 to V3 = 5.0	_		2.5	kΩ	
SEG0 to 31 output impedance	Rvseg	SEG0 to 31	V	_	_	15	kΩ	
LCD controller/ driver leakage current	ILCDL	V0 to V3, COM0 to 3, SEG0 to SEG31	_	_	_	±1	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} The power supply current is measured at the external clock.

Note: For pins which serve as the LCD and ports (P30 to P37, P40 to P47, and P80 to P81), see the port parameter when these pins are used as ports and the LCD parameter when they are used as LCD pins.

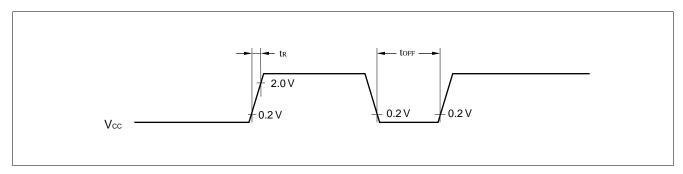

^{*2:} For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

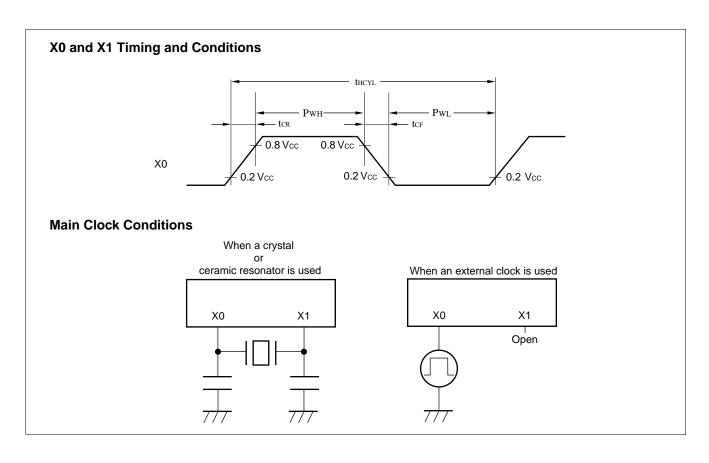
Parameter	Symbol	Condition	Valu	ne	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Ollit	Remarks
RST "L" pulse width	t zlzh	_	48 thcyl	_	ns	

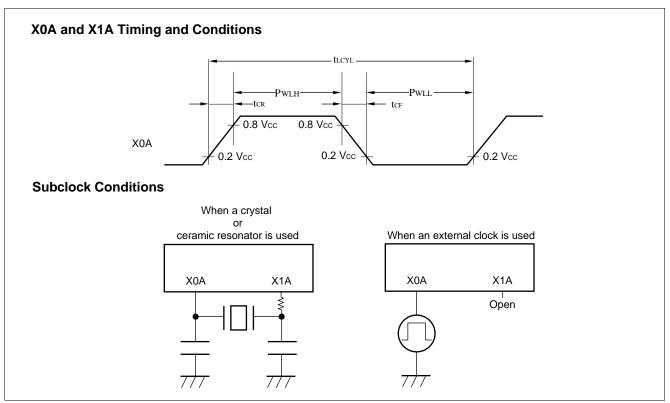

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Val	ue	Unit	Remarks	
Farameter	Syllibol	Condition	Min.	Max.	Ollit	relial K5	
Power supply rising time	t R		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff		1	_	ms	Due to repeated operations	

Note: Make sure that power supply rises within the selected oscillation stabilization time.


If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.



(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks	
Parameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Oilit	Remarks	
Clock frequency	Fсн	X0, X1		1	_	10	MHz		
	FcL	X0A, X1A		_	32.768	_	kHz		
Clock cycle time	thcyL	X0, X1		100	_	1000	ns		
	t LCYL	X0A, X1A		_	30.5	_	μs		
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	_	ns	External clock	
	P _{WLH} P _{WLL}	X0A		_	15.2	_	μs	External clock	
Input clock rising/ falling time	tcr tcr	X0		_	_	10	ns	External clock	

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Гсн, 8/Гсн, 16/Гсн, 64/Гсн	μs	(4/FcH) $t_{inst} = 0.4 \mu s$ when operating at FcH = 10 MHz
		2/FcL	μs	t _{inst} = 61.036 μs when operating at FcL = 32.768 kHz

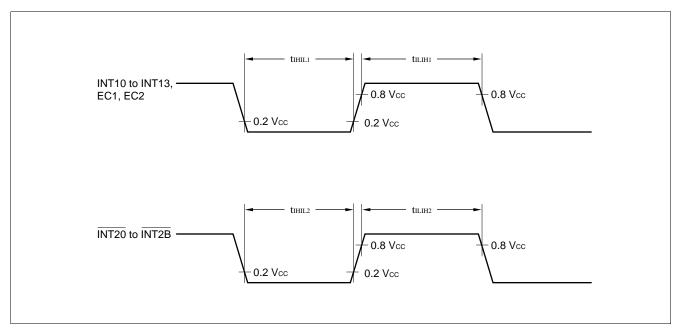

Note: When operating at 10 MHz, the cycle varies with the set execution time.

(5) Serial I/O Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks	
Farameter	Symbol	FIII	Condition	Min.	Max.	Offic	iveillai ks	
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs		
$SCK \downarrow \to SO time$	tslov	SCK, SO	Internal shift	-200	200	ns		
Valid SI → SCK ↑	tivsh	SI, SCK	clock mode	1/2 tinst*	_	μs		
$SCK \uparrow \to valid \; SI \; hold \; time$	tsнıx	SCK, SI		1/2 tinst*	_	μs		
Serial clock "H" pulse width	tshsl	SCK	External shift clock mode	1 tinst*	_	μs		
Serial clock "L" pulse width	t slsh	SUK		1 t inst*	_	μs		
$SCK \downarrow \to SO time$	tslov	SCK, SO		0	200	ns		
Valid SI \rightarrow SCK $↑$	tivsh	SI, SCK		1/2 tinst*	_	μs		
SCK $\uparrow \rightarrow$ valid SI hold time	t shix	SCK, SI		1/2 tinst*	_	μs		

*: For information on tinst, see "(4) Instruction Cycle."



(6) Peripheral Input Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Value		Unit	Remarks
Farameter	Symbol	FIII	Min.	Max.	Offic	IVEIIIAI NS
Peripheral input "H" pulse width 1	t _{ILIH1}	INT10 to INT13, EC1,	1 tinst*	_	μs	
Peripheral input "L" pulse width 1	t _{IHIL1}	EC2	1 tinst*	_	μs	
Peripheral input "H" pulse width 2	t _{ILIH2}	INT20 to INT2B	2 tinst*	_	μs	
Peripheral input "L" pulse width 2	t _{IHIL2}	INIZU W INIZD	2 tinst*	_	μs	

*: For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +3.5 \text{ V to } +6.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Danamatan	Symbol	Pin	Ì	c = Vcc = +3.5 V to +6.0 V, AVss = Vss = 0.0 V, IA Value				ĺ
Parameter			Condition	Min.	Тур.	Max.	Unit	Remarks
Resolution			_	_	_	8	bit	
Total error				_	_	±1.5	LSB	
Linearity error			AVR = AVcc	_	_	±1.0	LSB	
Differential linearity error					_	±0.9	LSB	
Zero transition voltage	Vот			AVss – 1.0 LSB	AVss + 0.5 LSB	AVss + 2.0 LSB	mV	
Full-scale transition voltage	V _{FST}	_		AVR – 3.0 LSB	AVR – 1.5 LSB	AVR	mV	
Interchannel disparity				_	_	0.5	LSB	
A/D mode conversion time	_				44 tinst*	_	μs	
Sense mode conversion time					12 tinst*	_	μs	
Analog port input current	IAIN	AN0 to	_	_	_	10	μА	
Analog input voltage		AIN		0.0	_	AVR	V	
Reference voltage				0.0	_	AVcc	V	
Reference voltage supply current	lr	AVR	AVR = 5.0V, when A/D conversion is activated	_	100		μА	
	lгн		AVR = 5.0V, when A/D conversion is stopped	_	_	1	μΑ	

^{*:} For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

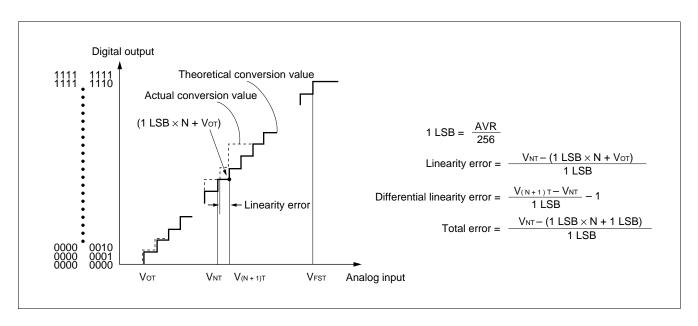
(1) A/D Glossary

• Resolution

Analog changes that are identifiable with the A/D converter.

When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.

• Linearity error (unit: LSB)

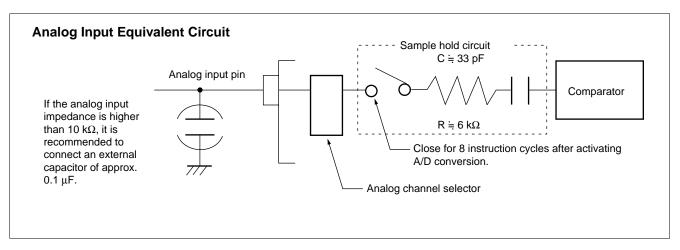

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics

• Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

• Total error (unit: LSB)

The difference between theoretical and actual conversion values

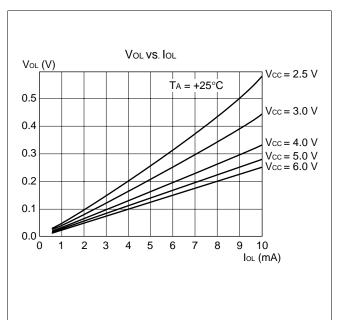

(2) Precautions

· Input impedance of the analog input pins

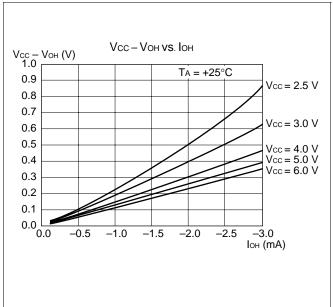
The A/D converter used for the MB89650AR series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \text{ k}\Omega$).

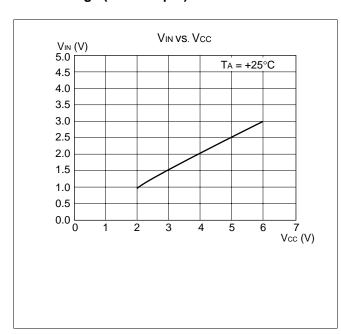
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about 0.1 μ F for the analog input pin.

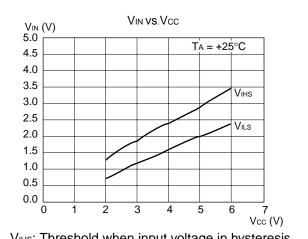


• Error

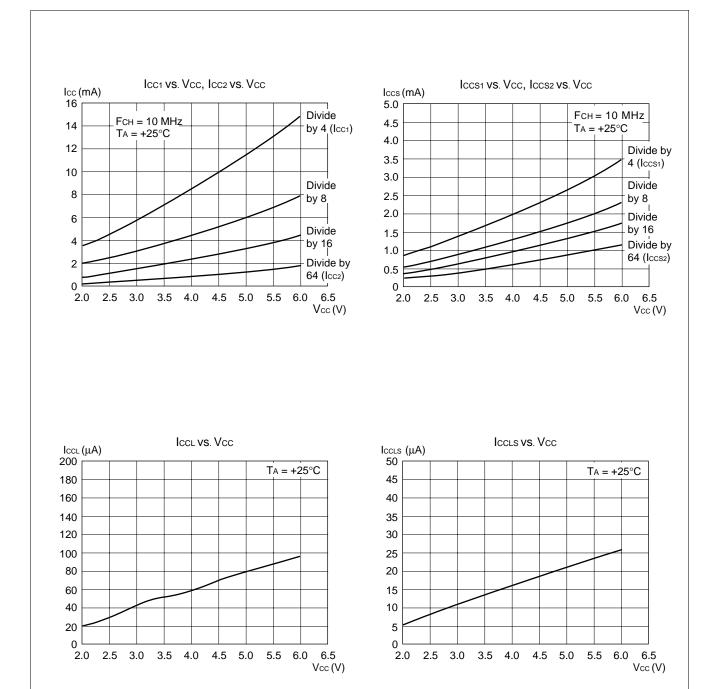

The smaller the | AVR - AVss |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS

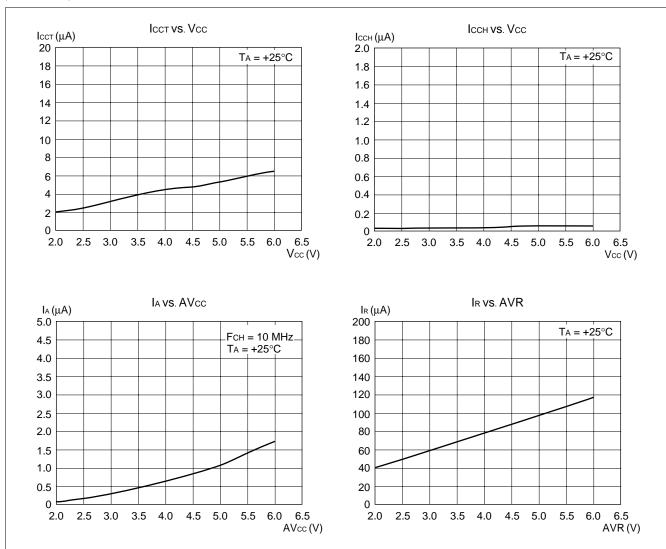

(1) "L" Level Output Voltage


(2) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

V_{IHS}: Threshold when input voltage in hysteresis characteristics is set to "H" level


VILS: Threshold when input voltage in hysteresis characteristics is set to "L" level

(5) Power Supply Current (External Clock)

(Continued)

(Continued)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

• AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

 Table 2
 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	ı	ı	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
	_	_	$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	АН	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	ΑH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
100000000000000000000000000000000000000		_	$(AL) \leftarrow ((IX) + off + 1)$	/ \L	7 (1 1	ai i		00
MOVW A,ext	5	3	$(AH) \leftarrow ((IX) \mid OH \mid T)$ $(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (CAC), (AL) \leftarrow (CAC)$ $(AH) \leftarrow (AH) \leftarrow$	AL	AH	dH	<u> </u>	93
MOVW A, @EP	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$ $(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	· ·	C7
MOVW A, @ LF	2	1	$(A) \leftarrow (EP)$	_	_	dH		F3
MOVW A,E1	3	3	(EP) ← d16	_	_			E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	-	-			E2
MOVW IX,A	2	1	$(IX) \leftarrow (IX)$ $(A) \leftarrow (IX)$	_	_	dH		F2
MOVW A,IA	2	1	(SP) ← (A)	_	_	_		E1
MOVW SP,A	2	1			_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (SP)$	_	-	uп _		82
	4		$((A)) \leftarrow (T)$	_	_	_		
MOVW @A,T		1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	— -		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b ← 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): b \leftarrow 0	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_			42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	(A) ← (PC)	_	_	dH		F0

Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	-	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_		++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22 38 to 3F
SUBC A,Ri SUBC A,#d8	2	2	$(A) \leftarrow (A) - (Ri) - C$ $(A) \leftarrow (A) - d8 - C$	_	_	_	++++	36 10 37
SUBC A,#do	3	2	$(A) \leftarrow (A) - dB - C$ $(A) \leftarrow (A) - (dir) - C$		_		++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - (IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	(AL) ← (TL) − (AL) − C	_	_	_	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dΗ	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) − 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	 .		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A DIVU A	19 21	1	$(A) \leftarrow (AL) \times (TL)$	طا ح	-	dH 00		01
ANDW A	3	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$ $(A) \leftarrow (A) \land (T)$	dL –	00	dH	++R-	11 63
ORW A	3	1	$(A) \leftarrow (A) \land (1)$ $(A) \leftarrow (A) \lor (T)$		_	dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \lor (T)$ $(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	53
CMP A	2	1	(TL) - (AL)	_	_	_	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	$C \rightarrow A \rightarrow$	_	_	_	++-+	03
ROLC A	2	1	C ← A ←				++-+	02
					_			
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) - ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) – ((IX) +off) (A) – (Ri)	_	_	_	++++	16
CMP A,Ri	3	1	Decimal adjust for addition	_	_	_	++++	18 to 1F
DAA DAS	2 2	1	Decimal adjust for addition Decimal adjust for subtraction	_	_	_	++++	84 94
XOR A	2	1	$(A) \leftarrow (AL) \forall (TL)$		_		++++ ++R-	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$	_	_		++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \forall ((EP))$	_	_	_	++R-	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ ((IX) + off)$	_	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	_	_	_	+ + R -	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \wedge (TL)$	_	_	_	+ + R -	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	_	_	_	+ + R -	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	+ + R –	65

(Continued)

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	-	_	+ + R -	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \wedge (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R –	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R –	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((ÉP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (ŚP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	-	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If V \forall N = 0 then PC \leftarrow PC + rel	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then PC \leftarrow PC + rel	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	ı	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

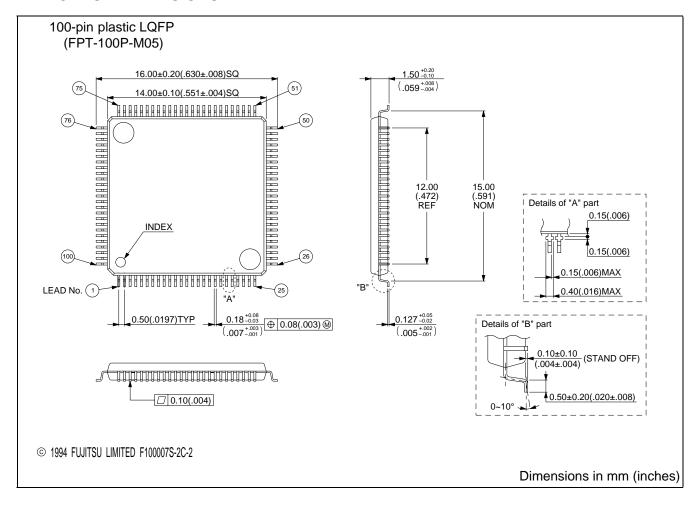
■ INSTRUCTION MAP

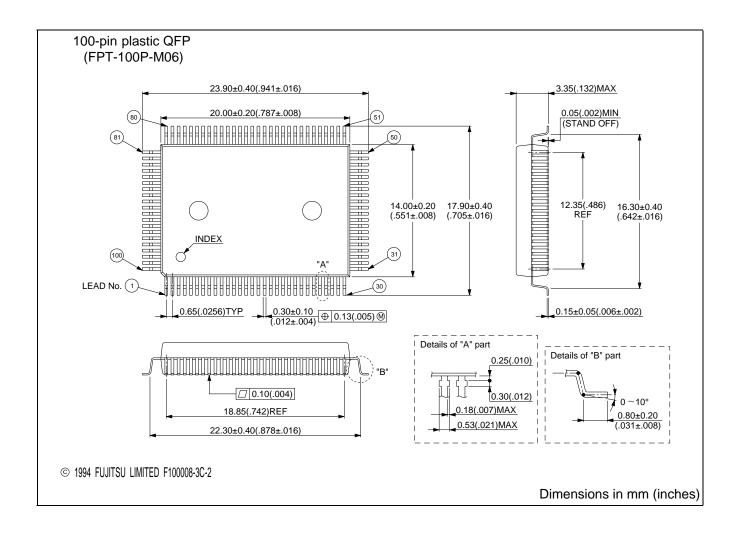
	NSIR	UCII	ON M	AP												
ц	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
В	JMP @A	MOWW SP,A	MOWW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP;#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX +d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
၁	INCW A	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
A	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP,#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX +d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX+d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND A	ANDW	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
2	POPW A	POPW IX	XOR	XORW	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
ı	SWAP	DIVU A	CMP	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	MON	MULU	ROLC A	RORC	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
H/1	0	-	2	ဗ	4	2	9	7	8	6	4	a	ပ	O	ш	F

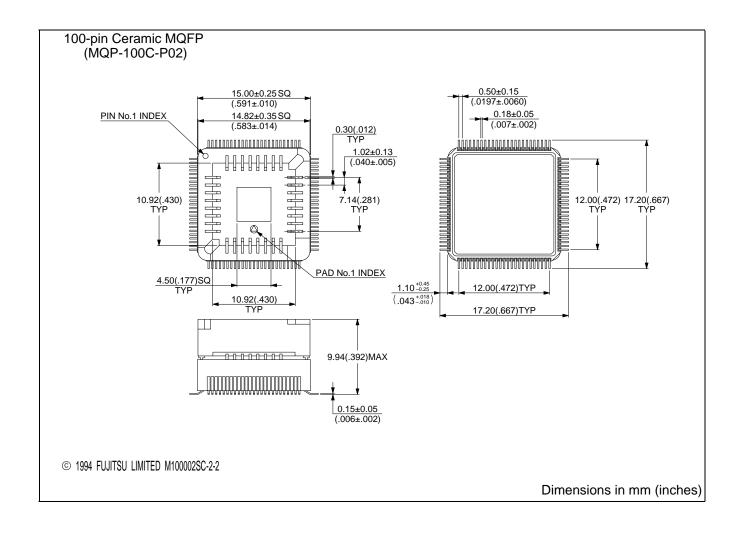
■ MASK OPTIONS

No	Part number	MB89653AR MB89655AR MB89656AR MB89657AR	MB89P657A	MB89PV650A
No.	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
1	Pull-up resistors P00 to P07, P10 to P17, P20 to P22, P24 to P26, P30 to P37, P40 to P47, P60 to P67, P70 to P75, P80 to P81	Specify by pin	Can be set per pin. (Select in a group of four bits for P14 to P17, P40 to P43, and P40 to P47.) (P75 to P70 are available only for without a pull-up resistor.)	Fixed to without pull-up resistor
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	With power-on reset	Fixed to with power-on reset
3	Selection of the oscillation stabilization time initial value Crystal oscillator: 2 ¹⁸ /FcH (Approx. 26.2 ms*1) Ceramic oscillator: 2 ¹³ /FcH (Approx. 26.2 ms*1)	Selectable	2 ¹⁸ /Fcн (Approx. 26.2 ms ^{*1})	Fixed to 2 ¹⁸ /F _{CH} (Approx. 26.2 ms ^{*1})
4	Selection either single- or dual-clock system Single clock Dual clock	Selectable	Setting possible	Fixed to dual-clock system
5	Selection of a built-in booster*2 Without booster With booster (Segment output switching) 16 segments:Selection of P30 to P37 and P40 to P47 20 segments:Selection of P30 to P37 and P40 to P43	Selectable	Can be selected from the following six options: -101: Without booster -102: 16 segments -103: 20 segments	Fixed to without booster
	24 segments:Selection of P30 to P37 28 segments:Selection of P30 to P33 32 segments:No port selection		-104: 24 segments -105: 28 segments -106: 32 segments	

^{*1:} The value at FcH = 10 MHz


Note: Reset is input asynchronized with the internal clock whether with or without power-on reset.


^{*2:} On microcontrollers with a built-in booster, only 1/3 bias can be used. The 1/2 duty cannot be used.


■ ORDERING INFORMATION

Part number	Package	Remarks
MB89653APFV MB89655APFV MB89656APFV MB89657APFV MB89P657APFV-101 MB89P657APFV-102 MB89P657APFV-103 MB89P657APFV-104 MB89P657APFV-105 MB89P657APFV-106	100-pin Plastic SQFP (FPT-100P-M05)	
MB89653APF MB89655APF MB89656APF MB89657APF MB89P657APF-101 MB89P657APF-102 MB89P657APF-103 MB89P657APF-104 MB89P657APF-105 MB89P657APF-106	100-pin Plastic QFP (FPT-100P-M06)	
MB89PV650ACF	100-pin Ceramic MQFP (MQP-100C-P02)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi,

Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0004

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.