DS05-11402-2E

# **MEMORY**

**CMOS** 

# 8 x 256K x 32 BIT, FCRAM™ CORE BASED DOUBLE DATA RATE SDRAM

# MB81P643287-50/-60

CMOS 8-BANK x 262,144-WORD x 32 BIT, FCRAM Core Based Synchronous Dynamic Random Access Memory with Double Data Rate

#### ■ DESCRIPTION

The Fujitsu MB81P643287 is a CMOS Synchronous Dynamic Random Access Memory (SDRAM) with Fujitsu advanced FCRAM (Fast Cycle Random Access Memory) Core Technology, containing 67,108,864 memory cells accessible in an 32-bit format. The MB81P643287 features a fully synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. The MB81P643287 is designed to reduce the complexity of using a standard dynamic RAM (DRAM) which requires many control signal timin.g constraints. The MB81P643287 uses Double Data Rate (DDR) where data bandwidth is twice of fast speed compared with regular SDRAMs.

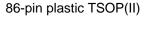
The MB81P643287 is ideally suited for Digital Visual Systems, High Performance Graphic Adapters, Hardware Accelerators, Buffers, and other applications where large memory density and high effective bandwidth are required and where a simple interface is needed.

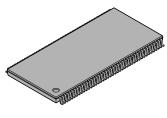
The MB81P643287 adopts new I/O interface circuitry, SSTL\_2 interface, which is capable of extremely fast data transfer of quality under either terminated or point to point bus environment.

#### ■ PRODUCT LINE

| Parameter                  |        | MB81P                   | 643287                  |  |  |
|----------------------------|--------|-------------------------|-------------------------|--|--|
| Farameter                  |        | -50                     | -60                     |  |  |
| Clock Fraguency            | CL = 3 | 200 MHz Max.            | 167 MHz Max.            |  |  |
| Clock Frequency            | CL = 2 | 133 MHz Max.            | 111 MHz Max.            |  |  |
| Buret Made Cycle Time      | CL = 3 | 2.5 ns Min.             | 3.0 ns Min.             |  |  |
| Burst Mode Cycle Time      | CL = 2 | 3.75 ns Min.            | 4.5 ns Min.             |  |  |
| Random Address Cycle Time  |        | 30 ns Min. 36 ns Min.   |                         |  |  |
| DQS Access Time From Clock |        | 0.1 × tcк + 0.2 ns Max. | 0.1 × tcк + 0.2 ns Max. |  |  |
| Operating Current          |        | 460 mA Max.             | 405 mA Max.             |  |  |
| Power Down Current         |        | 35 mA Max.              |                         |  |  |

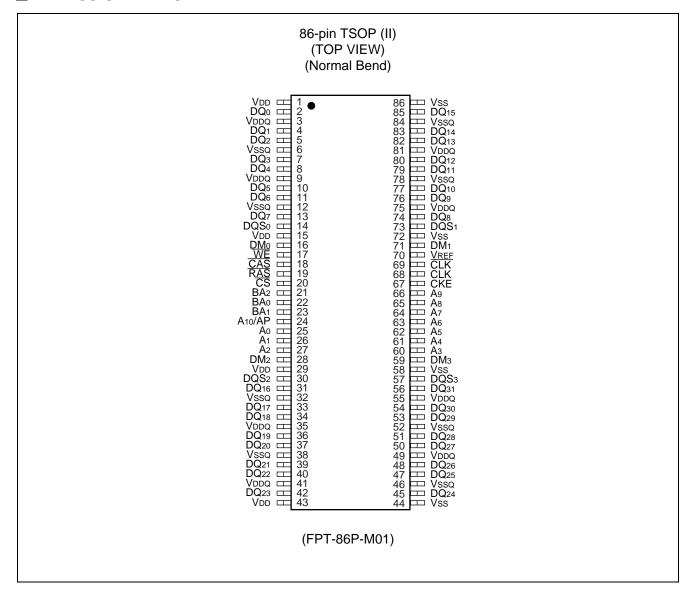
Note: FCRAM is a trademark of Fujitsu Limited, Japan.


#### **■ FEATURES**


- Double Data Rate
- Bi-directional Data Strobe Signal
- Eight bank operation
- Burst read/write operation
- Programmable burst length and CAS latency
- Byte write control by DMo to DM3
- Standby Power Down Mode

- 4096 Auto-refresh cycles in 32 ms
- SSTL\_2 (class 2) for all signals

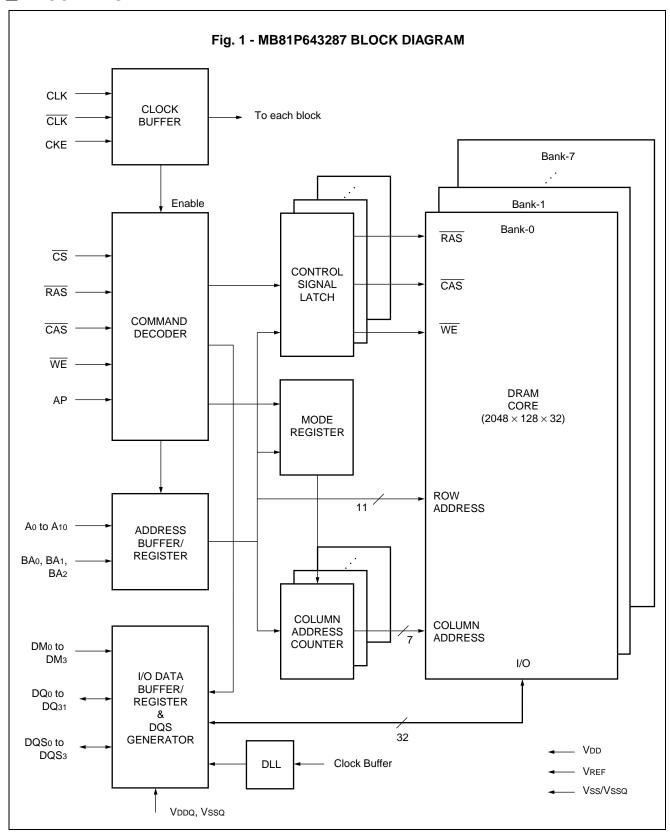
•  $V_{DD}$ : +2.5V Supply ± 0.2V tolerance •  $V_{DDQ}$ : +2.5V Supply ± 0.2V tolerance


#### **■ PACKAGE**





(FPT-86P-M01) (Normal Bend)


#### **■ PIN ASSIGNMENTS**



### **■** DESCRIPTIONS

| Pin Number                                                                                                                | Symbol                                              | Function                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 3, 9, 15, 29, 35, 41, 43, 49, 55, 75, 81                                                                               | Vdd, Vddq                                           | Supply Voltage                                                                                                                                                                                                          |
| 6, 12, 32, 38, 44, 46, 52, 58, 72, 78, 84, 86                                                                             | Vss, Vssq                                           | Ground                                                                                                                                                                                                                  |
| 2, 4, 5, 7, 8, 10, 11, 13, 31, 33, 34, 36, 37, 39, 40, 42, 45, 47, 48, 50, 51, 53, 54, 56, 74, 76, 77, 79, 80, 82, 83, 85 | DQo to DQ31                                         | <ul> <li>Byte 0: DQ<sub>0</sub> to DQ<sub>7</sub></li> <li>Byte 1: DQ<sub>8</sub> to DQ<sub>15</sub></li> <li>Byte 2: DQ<sub>16</sub> to DQ<sub>23</sub></li> <li>Byte 3: DQ<sub>24</sub> to DQ<sub>31</sub></li> </ul> |
| 14, 30, 57, 73                                                                                                            | DQS <sub>0</sub> to DQS <sub>3</sub>                | <ul> <li>DQSo: for DQo to DQ7</li> <li>DQS1: for DQ8 to DQ15</li> <li>DQS2: for DQ16 to DQ23</li> <li>DQS3: for DQ24 to DQ31</li> </ul>                                                                                 |
| 16, 28, 59, 71                                                                                                            | DMo to DM3                                          | Input Mask                                                                                                                                                                                                              |
| 17                                                                                                                        | WE                                                  | Write Enable                                                                                                                                                                                                            |
| 18                                                                                                                        | CAS                                                 | Column Address Strobe                                                                                                                                                                                                   |
| 19                                                                                                                        | RAS                                                 | Row Address Strobe                                                                                                                                                                                                      |
| 20                                                                                                                        | CS                                                  | Chip Select                                                                                                                                                                                                             |
| 21, 22, 23                                                                                                                | BA <sub>2</sub> , BA <sub>1</sub> , BA <sub>0</sub> | Bank Select (Bank Address)                                                                                                                                                                                              |
| 24                                                                                                                        | AP                                                  | Auto Precharge Enable                                                                                                                                                                                                   |
| 24, 25, 26, 27, 60, 61, 62, 63, 64, 65, 66                                                                                | Ao to A <sub>10</sub>                               | Address Input  • Row: A <sub>0</sub> to A <sub>10</sub> • Column: A <sub>0</sub> to A <sub>6</sub>                                                                                                                      |
| 67                                                                                                                        | CKE                                                 | Power Down                                                                                                                                                                                                              |
| 68                                                                                                                        | CLK                                                 | Clock Input                                                                                                                                                                                                             |
| 69                                                                                                                        | CLK                                                 | Clock Input                                                                                                                                                                                                             |
| 70                                                                                                                        | Vref                                                | Input Reference Voltage                                                                                                                                                                                                 |

#### **■ BLOCK DIAGRAM**



#### **■ FUNCTION TRUTH TABLE (Note\*1)**

#### COMMAND TRUTH TABLE (Note \*2, and \*3)

| Function                                         | Notes   | Symbol       | CKE | CS | RAS | CAS | WE | BA <sub>2-0</sub> | A <sub>10</sub> /AP | <b>A</b> 9-7 | <b>A</b> 6-0 |
|--------------------------------------------------|---------|--------------|-----|----|-----|-----|----|-------------------|---------------------|--------------|--------------|
| Device Deselect                                  | *4      | DESL         | Н   | Н  | Х   | Х   | Х  | Х                 | Х                   | Х            | Х            |
| No Operation                                     | *4      | NOP          | Н   | L  | Н   | Н   | Н  | Χ                 | Х                   | Х            | Х            |
| Burst Stop                                       | *5      | BST          | Н   | L  | Н   | Н   | L  | Х                 | Х                   | Х            | Х            |
| Read                                             | *6      | READ         | Н   | L  | Н   | L   | Н  | V                 | L                   | Х            | V            |
| Read with Auto-precharge                         | *6      | READA        | Н   | L  | Н   | L   | Н  | V                 | Н                   | Х            | V            |
| Write                                            | *6      | WRIT         | Н   | L  | Н   | L   | L  | V                 | L                   | Х            | V            |
| Write with Auto-precharge                        | *6      | WRITA        | Н   | L  | Н   | L   | L  | V                 | Н                   | Х            | V            |
| Bank Active (RAS)                                | *7      | ACTV         | Н   | L  | L   | Н   | Н  | V                 | V                   | V            | V            |
| Precharge Single Bank                            | *8      | PRE          | Н   | L  | L   | Н   | L  | V                 | L                   | Х            | Х            |
| Precharge All Banks                              | *8      | PALL         | Н   | L  | L   | Н   | L  | V                 | Н                   | Х            | Х            |
| Mode Register Set/<br>Extended Mode Register Set | *8,9,10 | MRS/<br>EMRS | Н   | L  | L   | L   | L  | V                 | L                   | V            | V            |

Notes: \*1. V = Valid, L = Logic Low, H = Logic High, X = either L or H, Hi-Z = High Impedance.

- \*2. All commands are assumed to be valid state transitions.
- \*3. All inputs for command are latched on the rising edge of clock(CLK).
- \*4. NOP and DESL commands have the same effect on the part.

  Unless specifically noted, NOP will represent both NOP and DESL command in later descriptions.
- \*5. BST is effective after READ command is issued.
- \*6. READ, READA, WRIT and WRITA commands should only be issued after the corresponding bank has been activated (ACTV command). Refer to "

  STATE DIAGRAM".
- \*7. ACTV command should only be issued after corresponding bank has been page closed by PRE or PALL command.
- \*8. Either PRE or PALL command and MRS or EMRS command are required after power up.
- \*9. MRS or EMRS command should only be issued after all banks have been page closed (PRE or PALL command), and DQs are in Hi-Z. Refer to "■ STATE DIAGRAM".
- \*10. Refer to"■ MODE REGISTER TABLE".

**DM TRUTH TABLE (Effective during Write mode)** 

| Function                                           | Command | CI      | <b>KE</b> | DM₀   | DM <sub>1</sub> | DM <sub>2</sub> | DM <sub>3</sub> |  |
|----------------------------------------------------|---------|---------|-----------|-------|-----------------|-----------------|-----------------|--|
| i dilction                                         | Command | (n - 1) | (n)       | DIVIO | DIVIT           | DIVIZ           | DIVIS           |  |
| Data Mask for DQ <sub>0</sub> to DQ <sub>7</sub>   | MASK0   | Н       | Х         | Н     | Х               | Х               | Х               |  |
| Data Mask for DQ <sub>8</sub> to DQ <sub>15</sub>  | MASK1   | Н       | Х         | Х     | Н               | Х               | Х               |  |
| Data Mask for DQ <sub>16</sub> to DQ <sub>23</sub> | MASK2   | Н       | Х         | Х     | Х               | Н               | Х               |  |
| Data Mask for DQ24 to DQ31                         | MASK3   | Н       | Х         | Х     | Х               | Х               | Н               |  |

#### **CKE TRUTH TABLE**

| Current          | Farm of the same   | N-4             | 0       | CK    | Œ   |    | <del></del> | 040 | W/E | 4.0 | BAo                   | Ao                    | DQ₀                    |
|------------------|--------------------|-----------------|---------|-------|-----|----|-------------|-----|-----|-----|-----------------------|-----------------------|------------------------|
| State            | Function           | Notes           | Command | (n-1) | (n) | CS | RAS         | CAS | WE  | AP  | to<br>BA <sub>2</sub> | to<br>A <sub>10</sub> | to<br>DQ <sub>31</sub> |
| Idle             | Auto-refresh       | *11             | REF     | Н     | Н   | L  | L           | L   | Н   | Х   | Х                     | Χ                     | _                      |
| Idle             | Self-refresh Entry | , *11<br>, *12  | SELF    | Н     | L   | L  | L           | L   | Н   | Х   | Х                     | Х                     | Hi-Z                   |
| Self-<br>refresh | Self-refresh Cont  | inue            | _       | L     | L   | Х  | Х           | Х   | Х   | Х   | Х                     | Х                     | Hi-Z                   |
| Self-            | Self-refresh Exit  |                 | SELFX   | L     | Н   | L  | Н           | Н   | Н   | Х   | Х                     | Х                     | Hi-Z                   |
| refresh          | Sell-lellesii Exit |                 | SELFA   | L     | Н   | Н  | Х           | Х   | Х   | Х   | Х                     | Х                     | Hi-Z                   |
| Idle             | Power Down Enti    | ry *13          | PDEN    | Н     | L   | L  | Н           | Н   | Н   | Х   | Х                     | Х                     | Hi-Z                   |
| lule             | Power Down Enti    | iy 13           | PDEN    | Н     | L   | Н  | Х           | Х   | Х   | Х   | Х                     | Х                     | Hi-Z                   |
| Power<br>Down    | Power Down Cor     | _               | L       | L     | Х   | Х  | Х           | Х   | Х   | Х   | Х                     | Hi-Z                  |                        |
| Power            | Power Down Evit    | Power Down Exit |         |       | Η   | L  | Н           | Н   | Н   | Х   | Х                     | Х                     | Hi-Z                   |
| Down             | Fower Down Exit    |                 | PDEX    | L     | Н   | Н  | Х           | Х   | Х   | Х   | Х                     | Х                     | Hi-Z                   |

<sup>\*11:</sup> The REF and SELF commands should only be issued after all banks have been precharged (PRE or PALL command). In case of SELF command, it should also be issued after the last read data have been appeared on DQ. Refer to "■ STATE DIAGRAM".

<sup>\*12:</sup> CKE must bring to Low level together with REF command.

<sup>\*13:</sup> The PDEN command should only be issued after the last read data have been appeared on DQ and after the lopL is satisfied from last write data input.

### **OPERATION COMMAND TABLE (Applicable to single bank)(Note\*13)**

| Current<br>State | cs | RAS | CAS | WE | Address    | Command    | Function                            | Notes |
|------------------|----|-----|-----|----|------------|------------|-------------------------------------|-------|
|                  | Н  | Х   | Х   | Χ  | Х          | DESL       | NOP                                 |       |
|                  | L  | Н   | Н   | Н  | Х          | NOP        | NOP                                 |       |
|                  | L  | Н   | Н   | L  | Х          | BST        | NOP                                 | *15   |
|                  | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Illegal                             | *16   |
|                  | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Illegal                             | *16   |
| Idle             | L  | L   | Н   | Н  | BA, RA     | ACTV       | Bank Active after IRCD              |       |
|                  | L  | L   | Н   | L  | BA, AP     | PRE        | NOP                                 |       |
|                  | L  | L   | Н   | L  | BA, AP     | PALL       | NOP                                 | *15   |
|                  | L  | L   | L   | Н  | Х          | REF/SELF   | Auto-refresh or Self-refresh        | *17   |
|                  | L  | L   | L   | L  | MODE       | MRS        | Mode Register Set (Idle after IMRD) | *17   |
|                  | Н  | Х   | Х   | Х  | Х          | DESL       | NOP                                 |       |
|                  | L  | Н   | Н   | Н  | Х          | NOP        | NOP                                 |       |
|                  | L  | Н   | Н   | L  | Х          | BST        | NOP                                 | *15   |
|                  | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Begin Read; Determine AP            |       |
| Bank Active      | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Begin Write; Determine AP           |       |
| Dalik Active     | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal                             | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PRE        | Precharge                           |       |
|                  | L  | L   | Н   | L  | BA, AP     | PALL       | Precharge                           | *15   |
|                  | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                             |       |
|                  | L  | L   | L   | L  | MODE       | MRS        | Illegal                             |       |

| Current<br>State | cs | RAS | CAS | WE | Address    | Command    | Function Notes                                        |
|------------------|----|-----|-----|----|------------|------------|-------------------------------------------------------|
|                  | Н  | Х   | Х   | Χ  | Х          | DESL       | NOP (Continue Burst to End $\rightarrow$ Bank Active) |
|                  | L  | Н   | Н   | Н  | Х          | NOP        | NOP (Continue Burst to End → Bank Active)             |
|                  | L  | Н   | Н   | L  | Х          | BST        | Terminate Burst → Bank Active                         |
| Read             | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Terminate Burst, New Read;<br>Determine AP            |
| Neau             | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Illegal                                               |
|                  | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal *16                                           |
|                  | L  | L   | Н   | L  | BA, AP     | PRE        | Terminate Burst, Precharge                            |
|                  | L  | L   | Н   | L  | BA, AP     | PALL       | Terminate Burst, Precharge *15                        |
|                  | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                                               |
|                  | L  | L   | L   | L  | MODE       | MRS        | Illegal                                               |
|                  | Н  | Х   | Х   | Х  | Х          | DESL       | NOP (Continue Burst to End → Write Recovering)        |
|                  | L  | Н   | Н   | Н  | Х          | NOP        | NOP (Continue Burst to End → Write Recovering)        |
|                  | L  | Н   | Н   | L  | Х          | BST        | Illegal                                               |
|                  | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Terminate Burst, Start Read; *20 Determine AP         |
| Write            | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Terminate Burst, New Write;<br>Determine AP           |
|                  | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal *16                                           |
|                  | L  | L   | Н   | L  | BA, AP     | PRE        | Terminate Burst, Precharge *18                        |
|                  | L  | L   | Н   | L  | BA, AP     | PALL       | Terminate Burst, Precharge *15, *18                   |
|                  | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                                               |
|                  | L  | L   | L   | L  | MODE       | MRS        | Illegal                                               |

| Current<br>State   | cs | RAS | CAS | WE | Address    | Command    | Function Notes                                                |
|--------------------|----|-----|-----|----|------------|------------|---------------------------------------------------------------|
|                    | Н  | Х   | Х   | Χ  | Х          | DESL       | NOP (Continue Burst to End → Precharge)                       |
|                    | L  | Н   | Н   | Н  | Х          | NOP        | NOP (Continue Burst to End → Precharge)                       |
|                    | L  | Н   | Н   | L  | Х          | BST        | Illegal                                                       |
| Read With          | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Illegal *16                                                   |
| Auto-<br>Precharge | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Illegal                                                       |
| Frecharge          | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal *16                                                   |
|                    | L  | L   | Н   | L  | BA, AP     | PRE        | Illegal *16                                                   |
|                    | L  | L   | Н   | L  | BA, AP     | PALL       | Illegal                                                       |
|                    | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                                                       |
|                    | L  | L   | L   | L  | MODE       | MRS        | Illegal                                                       |
|                    | Н  | Х   | Х   | Х  | Х          | DESL       | NOP (Continue Burst to End → Write Recovering with Precharge) |
|                    | L  | Н   | Н   | Н  | Х          | NOP        | NOP (Continue Burst to End → Write Recovering with Precharge) |
|                    | L  | Н   | Н   | L  | Χ          | BST        | Illegal                                                       |
| Write with         | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Illegal                                                       |
| Auto<br>Precharge  | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Illegal *16                                                   |
| Frecharge          | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal *16                                                   |
|                    | L  | L   | Н   | L  | BA, AP     | PRE        | Illegal *16                                                   |
|                    | L  | L   | Н   | L  | BA, AP     | PALL       | Illegal                                                       |
|                    | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                                                       |
|                    | L  | L   | L   | L  | MODE       | MRS        | Illegal                                                       |

| Current<br>State | CS | RAS | CAS | WE | Address    | Command    | Function                     | Notes |
|------------------|----|-----|-----|----|------------|------------|------------------------------|-------|
|                  | Н  | Χ   | Χ   | Χ  | Х          | DESL       | NOP (Idle after IRP)         |       |
|                  | L  | Н   | Н   | Н  | Х          | NOP        | NOP (Idle after IRP)         |       |
|                  | L  | Н   | Н   | L  | Х          | BST        | NOP (Idle after IRP)         | *15   |
|                  | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Illegal                      | *16   |
| Drocharging      | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Illegal                      | *16   |
| Precharging      | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal                      | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PRE        | NOP                          | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PALL       | NOP                          | *15   |
|                  | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                      |       |
|                  | L  | L   | L   | L  | MODE       | MRS        | Illegal                      |       |
|                  | Н  | Х   | Х   | Х  | Х          | DESL       | NOP (Bank Active after IRCD) |       |
|                  | L  | Н   | Н   | Н  | Х          | NOP        | NOP (Bank Active after IRCD) |       |
|                  | L  | Н   | Н   | L  | Х          | BST        | NOP (Bank Active after IRCD) | *15   |
|                  | L  | Н   | L   | Н  | BA, CA, AP | READ/READA | Illegal                      | *16   |
| Bank             | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA | Illegal                      | *16   |
| Activating       | L  | L   | Н   | Н  | BA, RA     | ACTV       | Illegal                      | *19   |
|                  | L  | L   | Н   | L  | BA, AP     | PRE        | Illegal                      | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PALL       | Illegal                      |       |
|                  | L  | L   | L   | Н  | Х          | REF/SELF   | Illegal                      |       |
|                  | L  | L   | L   | L  | MODE       | MRS        | Illegal                      |       |

| Current<br>State | CS | RAS | CAS | WE | Address    | Command                   | Function                     | Notes |
|------------------|----|-----|-----|----|------------|---------------------------|------------------------------|-------|
|                  | Н  | Х   | Х   | Х  | Х          | DESL                      | NOP (Bank Active after Iwrd) |       |
|                  | L  | Н   | Н   | Н  | Х          | NOP                       | NOP (Bank Active after Iwrd) |       |
|                  | L  | Н   | Н   | L  | Х          | BST                       | NOP (Bank Active after Iwrd) | *15   |
|                  | L  | Н   | L   | Н  | BA, CA, AP | READ/READA                | Illegal                      | *16   |
| Write            | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA                | New Write; Determine AP      |       |
| Recovering       | L  | L   | Н   | Н  | BA, RA     | ACTV                      | Illegal                      | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PRE                       | Illegal                      | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PALL                      | Illegal                      |       |
|                  | L  | L   | L   | Н  | Х          | REF/SELF                  | Illegal                      |       |
|                  | L  | L   | L   | L  | MODE       | MRS                       | Illegal                      |       |
|                  | Н  | Х   | Х   | Х  | Х          | DESL                      | NOP (Idle after Iwal)        |       |
|                  | L  | Н   | Н   | Н  | Х          | NOP                       | NOP (Idle after IwaL)        |       |
|                  | L  | Н   | Н   | L  | Х          | BST                       | Illegal                      |       |
| Write            | L  | Н   | L   | Н  | BA, CA, AP | READ/READA                | Illegal                      | *16   |
| Recovering       | L  | Н   | L   | L  | BA, CA, AP | WRIT/WRITA                | Illegal                      | *16   |
| with Auto-       | L  | L   | Н   | Н  | BA, RA     | ACTV                      | Illegal                      | *16   |
| precharge        | L  | L   | Н   | L  | BA, AP     | PRE                       | Illegal                      | *16   |
|                  | L  | L   | Н   | L  | BA, AP     | PALL                      | Illegal                      |       |
|                  | L  | L   | L   | Н  | Х          | REF/SELF                  | Illegal                      |       |
|                  | L  | L   | L   | L  | MODE       | MRS                       | Illegal                      |       |
|                  | Н  | Х   | Χ   | Χ  | Х          | DESL                      | NOP (Idle after IRFC)        |       |
|                  | L  | Н   | Н   | Χ  | Х          | NOP/BST                   | NOP (Idle after IRFC)        |       |
| Refreshing       | L  | Н   | L   | Х  | Х          | READ/READA/<br>WRIT/WRITA | Illegal                      |       |
|                  | L  | L   | Н   | Х  | Х          | ACTV/<br>PRE/PALL         | Illegal                      |       |
|                  | L  | L   | L   | Х  | Х          | REF/SELF/<br>MRS          | Illegal                      |       |

#### **OPERATION COMMAND TABLE (Continued)**

| Current<br>State    | CS | RAS | CAS | WE | Address | Command                            | Function Notes        |
|---------------------|----|-----|-----|----|---------|------------------------------------|-----------------------|
|                     | Н  | Х   | Х   | Χ  | Х       | DESL                               | NOP (Idle after Imrd) |
|                     | L  | Н   | Н   | Н  | Х       | NOP                                | NOP (Idle after Imrd) |
| Mode                | L  | Н   | Н   | L  | Х       | BST                                | Illegal               |
| Register<br>Setting | L  | Н   | L   | Х  | Х       | READ/READA/<br>WRIT/WRITA          | Illegal               |
|                     | L  | L   | Х   | Х  | Х       | ACTV/PRE/<br>PALL/REF/<br>SELF/MRS | Illegal               |

Abbreviations: RA = Row Address BA = Bank Address CA = Column Address AP = Auto Precharge

Notes: \*14. All entries assume the CKE was High during the proceeding clock cycle and the current clock cycle.

- \*15. Entry may affect other banks.
- \*16. Illegal to bank in specified state; entry may be legal in the bank specified by BA, depending on the state of that bank.
- \*17. Illegal if any bank is not idle.
- \*18. Must mask preceding data that don't satisfy IDPL.
- \*19. Legal if other bank specified in BA is idle state and IRRD is satisfied for that bank.
- \*20. Must mask preceding data that don't satisfy IWRD.

### COMMAND TRUTH TABLE FOR CKE

| Current<br>State | CKE<br>(n-1) | CKE<br>(n) | cs | RAS | CAS | WE | Address | Function Notes                                                               |
|------------------|--------------|------------|----|-----|-----|----|---------|------------------------------------------------------------------------------|
|                  | Н            | Х          | Х  | Х   | Х   | Х  | Х       | Invalid                                                                      |
|                  | L            | Н          | Н  | Х   | Х   | Х  | Х       | Exit Self-refresh (Self-refresh Recovery → Idle after tpdex + lscd or lxsnr) |
| Self-<br>refresh | L            | Н          | L  | Н   | Н   | Н  | Х       | Exit Self-refresh (Self-refresh Recovery → Idle after tpdex + lscd or lxsnr) |
|                  | L            | Н          | L  | Н   | Н   | L  | Х       | Illegal                                                                      |
|                  | L            | Н          | L  | Н   | L   | Х  | Х       | Illegal                                                                      |
|                  | L            | Н          | L  | L   | Х   | Х  | Х       | Illegal                                                                      |
|                  | L            | L          | Х  | Х   | Х   | Х  | Х       | NOP (Maintain Self-refresh)                                                  |
|                  | L            | Х          | Х  | Х   | Х   | Х  | Х       | Invalid                                                                      |
|                  | Н            | Н          | Н  | Х   | Х   | Х  | Х       | Idle after Isco or Ixsnr                                                     |
| Self-            | Н            | Н          | L  | Н   | Н   | Н  | Х       | Idle after Isco or Ixsnr                                                     |
| refresh          | Н            | Н          | L  | Н   | Н   | L  | Х       | Illegal                                                                      |
| Recovery         | Н            | Н          | L  | Н   | L   | Х  | Х       | Illegal                                                                      |
|                  | Н            | Н          | L  | L   | Х   | Х  | Х       | Illegal                                                                      |
|                  | Н            | L          | Х  | Х   | Х   | Х  | Х       | Illegal                                                                      |
|                  | Н            | Х          | Х  | Х   | Х   | Х  | Х       | Invalid                                                                      |
|                  | L            | Н          | Н  | Х   | Х   | Х  | Х       | Power Down Exit → Return to original state after tpdex                       |
| Power            | L            | Н          | L  | Н   | Н   | Н  | Х       | Power Down Exit → Return to original state after tpdex                       |
| Down             | L            | Н          | L  | Н   | Н   | L  | Х       | Illegal                                                                      |
|                  | L            | Н          | L  | Н   | L   | Х  | Х       | Illegal                                                                      |
|                  | L            | Н          | L  | L   | Х   | Х  | Х       | Illegal                                                                      |
|                  | L            | L          | Х  | Х   | Х   | Х  | Х       | NOP (Maintain Power Down Mode)                                               |

### **COMMAND TRUTH TABLE FOR CKE (continued)**

| Current<br>State | CKE<br>(n-1) | CKE<br>(n) | CS | RAS | CAS | WE | Address | Function Notes                    |
|------------------|--------------|------------|----|-----|-----|----|---------|-----------------------------------|
|                  | Н            | Н          | Н  | Х   | Х   | Х  | Х       | NOP                               |
|                  | Н            | Н          | L  | Н   | Х   | Х  | V       | Refer to the Command Truth Table. |
|                  | Н            | Н          | L  | L   | Н   | Х  | V       | Refer to the Command Truth Table. |
|                  | Н            | Н          | L  | L   | L   | Н  | Х       | Auto-refresh                      |
|                  | Н            | Н          | L  | L   | L   | L  | V       | Mode Register Set *21             |
| All              | Н            | L          | Н  | Х   | Х   | Х  | Х       | Power Down Entry *22              |
| Banks            | Н            | L          | L  | Н   | Н   | Н  | Х       | Power Down Entry *22              |
| Idle             | Н            | L          | L  | Н   | Н   | L  | Х       | Illegal                           |
|                  | Н            | L          | L  | Н   | L   | Х  | Х       | Illegal                           |
|                  | Н            | L          | L  | L   | Н   | Х  | Х       | Illegal                           |
|                  | Н            | L          | L  | L   | L   | Н  | Х       | Self-refresh Entry *22            |
|                  | Н            | L          | L  | L   | L   | L  | Х       | Illegal                           |
|                  | L            | Х          | Х  | Х   | Х   | Х  | Х       | Invalid                           |
|                  | Н            | Н          | Х  | Х   | Х   | Х  | Х       | Refer to the Command Truth Table. |
| Bank Active      | Н            | L          | Χ  | Х   | Х   | Χ  | Х       | Illegal                           |
| Dank Active      | L            | Н          | Χ  | Х   | Х   | Х  | Х       | Invalid                           |
|                  | L            | L          | Х  | Х   | Х   | Х  | Х       | Invalid                           |

### **COMMAND TRUTH TABLE FOR CKE (continued)**

| Current<br>State            | CKE<br>(n-1) | CKE<br>(n) | cs | RAS | CAS | WE | Address | Function Notes                    |
|-----------------------------|--------------|------------|----|-----|-----|----|---------|-----------------------------------|
| Bank                        | Н            | Н          | Х  | Х   | Х   | Х  | Х       | Refer to the Command Truth Table. |
| Activating,<br>Read, Write, | Н            | L          | Х  | Х   | Х   | Х  | Х       | Illegal *23                       |
| Write                       | L            | Н          | Х  | Х   | Х   | Х  | Х       | Invalid                           |
| Recovering,<br>Precharging  | L            | L          | Х  | Х   | Х   | Х  | Х       | Invalid                           |
| Any State                   | L            | Х          | Х  | Х   | Х   | Х  | Х       | Invalid                           |
| Other Than                  | Н            | Н          | Х  | Х   | Х   | Х  | Х       | Refer to the Command Truth Table. |
| Listed Above                | Н            | L          | Х  | Х   | Х   | Х  | Х       | Illegal *23                       |
|                             | Н            | L          | Н  | L   | L   | L  | Х       | Illegal                           |
|                             | Н            | L          | L  | Н   | Н   | Н  | Х       | Illegal                           |
|                             | Н            | L          | L  | Н   | Н   | L  | Х       | Illegal                           |
| Refresh                     | Н            | L          | L  | Н   | L   | Х  | Х       | Illegal                           |
| Kellesii                    | Н            | L          | L  | L   | Х   | Х  | Х       | Illegal                           |
|                             | L            | L          | Х  | Х   | Х   | Х  | Х       | Invalid                           |
|                             | L            | Н          | Х  | Х   | Х   | Χ  | Х       | Invalid                           |
|                             | Η            | Н          | Х  | Х   | Х   | Χ  | Х       | Refer to the Command Truth Table. |

Notes: \*21. Refer to "■ MODE REGISTER TABLE".

<sup>\*22.</sup> PDEN and SELF command should only be issued after the last read data have been appeared on DQ.

<sup>\*23.</sup> The Clock Suspend mode is not supported on this device and it is illegal if CKE is brought to Low during the Burst Read or Write mode.

#### **■ STATE DIAGRAM**

#### MINIMUM CLOCK LATENCY OR DELAY TIME FOR SINGLE BANK OPERATION

| Second command (same bank) First command | MRS                                | ACTV                      | READ               | READA                 | WRIT               | WRITA                 | BST          | *1<br>PRE                       | PALL                            | REF                             | SELF                               |
|------------------------------------------|------------------------------------|---------------------------|--------------------|-----------------------|--------------------|-----------------------|--------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------|
| MRS                                      | <b>I</b> MRD                       | <b>I</b> MRD              |                    |                       |                    |                       | <b>I</b> MRD | <b>I</b> MRD                    | <b>I</b> MRD                    | <b>I</b> MRD                    | Imrd                               |
| ACTV                                     |                                    |                           | Ircd               | *4<br>IRCD            | Ircd               | *4<br><b>I</b> RCD    | 1            | Iras                            | Iras                            |                                 |                                    |
| READ                                     |                                    |                           | 1                  | 1 *4                  | *3<br><b>I</b> RWD | *3, 4<br><b>I</b> RWD | 1            | 1                               | 1                               |                                 |                                    |
| READA                                    | *5, 6<br>BL/2<br>+ I <sub>RP</sub> | BL/2<br>+ I <sub>RP</sub> |                    |                       |                    |                       |              | *4<br>BL/2<br>+ I <sub>RP</sub> | *4<br>BL/2<br>+ I <sub>RP</sub> | *6<br>BL/2<br>+ I <sub>RP</sub> | *5, 6<br>BL/2<br>+ I <sub>RP</sub> |
| WRIT                                     |                                    |                           | *7<br><b>I</b> WRD | *4, 7<br><b>I</b> WRD | 1                  | 1 * 4                 |              | *4,7<br>  <sub>DPL</sub>        | *4,7<br>  DPL                   |                                 |                                    |
| WRITA                                    | *6<br><b>I</b> WAL                 | <b>I</b> WAL              |                    |                       |                    |                       |              | *4<br><b>[</b> WAL              | *4<br><b>I</b> WAL              | *6<br><b>I</b> WAL              | *6<br><b>I</b> wal                 |
| BST                                      |                                    |                           | 1                  | 1                     | *3<br>IBSNC        | *3<br>IBSNC           | 1            | 1                               | 1                               |                                 |                                    |
| PRE                                      | *5, 6<br><b>I</b> RP               | <b>I</b> RP               |                    |                       |                    |                       | 1            | 1                               | 1                               | *6<br><b>I</b> RP               | *5, 6<br><b>I</b> RP               |
| PALL                                     | *5<br><b>I</b> RPA                 | Irpa                      |                    |                       |                    |                       | 1            | 1                               | 1                               | <b>I</b> RPA                    | *5<br>Irpa                         |
| REF                                      | IRFC                               | Irfc                      |                    |                       |                    |                       | IRFC         | IRFC                            | IRFC                            | IRFC                            | IRFC                               |
| SELFX                                    | Ixsnr                              | Ixsnr                     |                    |                       |                    |                       | Ixsnr        | IXSNR                           | Ixsnr                           | IXSNR                           | Ixsnr                              |

Notes: \*1. BL/2 =  $tck \times BL/2$ . (Example: In case of BL = 4, BL/2 means 2 clocks.)

Illegal Command

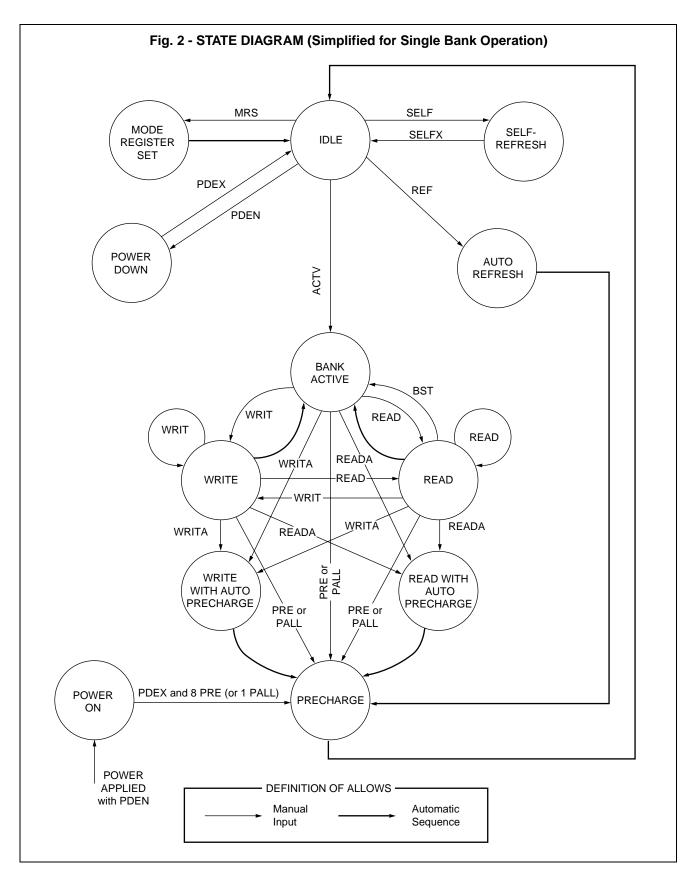
<sup>\*2.</sup> Assume PALL command does not affect any operation on the other bank(s).

<sup>\*3.</sup> Assume no I/O conflict.

<sup>\*4.</sup> IRAS must be satisfied.

<sup>\*5.</sup> Assume all outputs are in High-Z state.

<sup>\*6.</sup> Assume all other banks are in idle state.


<sup>\*7.</sup> IDPL and IWRD are specified from last data input and assumed preceding pair of write data are masked by DMo to DM3 input.

#### MINIMUM CLOCK LATENCY OR DELAY TIME FOR MULTIPLE BANK OPERATION

|                                       |                                   |                    |                      |                      |                        |                     | OI LIVA         |              | 1                        | 1                              | 1                                 |
|---------------------------------------|-----------------------------------|--------------------|----------------------|----------------------|------------------------|---------------------|-----------------|--------------|--------------------------|--------------------------------|-----------------------------------|
| Second command<br>(other bank)<br>*10 | MRS                               | ACTV               | *8<br>READ           | *8<br>READA          | *8<br>WRIT             | *8<br>WRITA         | *9<br>BST       | *2, 9<br>PRE | PALL                     | REF                            | SELF                              |
| command                               |                                   |                    |                      |                      |                        |                     |                 |              |                          |                                |                                   |
| MRS                                   | <b>I</b> MRD                      | <b>I</b> MRD       |                      |                      |                        |                     | <b>I</b> MRD    | <b>I</b> MRD | <b>I</b> MRD             | <b>I</b> MRD                   | <b>I</b> MRD                      |
| ACTV                                  |                                   | *6<br><b>I</b> rrd | *11<br><b>1</b>      | *11<br><b>1</b>      | *11<br><b>1</b>        | *11<br><b>1</b>     | *11<br><b>1</b> | 1            | Iras                     |                                |                                   |
| READ                                  |                                   | 1                  | 1                    | 1                    | * 3<br><b>I</b> RWD    | *3<br><b>I</b> RWD  | 1               | 1            | 1                        |                                |                                   |
| READA                                 | *5, 6<br>BL/2+<br>I <sub>RP</sub> | 1                  | 1                    | 1                    | * 3, 4<br><b>I</b> RWD | * 3, 4<br> <br> RWD |                 | 1            | BL/2+                    | *6<br>BL/2+<br>I <sub>RP</sub> | *5, 6<br>BL/2+<br>I <sub>RP</sub> |
| WRIT                                  |                                   | 1                  | *7<br><b>I</b> wrd   | *7<br><b>I</b> WRD   | 1                      | 1                   |                 | 1            | *4,7<br>I <sub>DPL</sub> |                                |                                   |
| WRITA                                 | *6<br><b>I</b> WAL                | 1                  | *4<br>BL/2<br>+ Iwrd | *4<br>BL/2<br>+ Iwrd | 1                      | 1                   |                 | 1            | Iwal                     | *6<br><b>I</b> WAL             | *6<br><b>I</b> WAL                |
| BST                                   |                                   | 1                  | *11<br><b>1</b>      | *11<br><b>1</b>      | *3, 11<br> BSNC        | *3, 11<br>IBSNC     | 1               | 1            | 1                        |                                |                                   |
| PRE                                   | *5, 6<br><b>I</b> RP              | 1                  | *11<br><b>1</b>      | *11<br><b>1</b>      | *3, 11<br><b>1</b>     | *3, 11<br><b>1</b>  | *11<br><b>1</b> | 1            | 1                        | *6<br><b>I</b> RP              | *5, 6<br><b> </b> RP              |
| PALL                                  | *5<br>IRPA                        | IRPA               |                      |                      |                        |                     | 1               | 1            | 1                        | Irpa                           | *5<br>IRPA                        |
| REF                                   | IRFC                              | IRFC               |                      |                      |                        |                     | IRFC            | IRFC         | IRFC                     | IRFC                           | IRFC                              |
| SELFX                                 | Ixsnr                             | Ixsnr              |                      |                      |                        |                     | Ixsnr           | Ixsnr        | Ixsnr                    | Ixsnr                          | Ixsnr                             |

- Notes: \*1. BL/2 =  $tck \times BL / 2$ . (Example: In case of BL = 4, BL/2 means 2 clocks.)
  - \*2. Assume PALL command does not affect any operation on the other bank(s).
  - \*3. Assume no I/O conflict.
  - \*4. IRAS must be satisfied.
  - \*5. Assume all outputs are in High-Z state.
  - \*6. Assume the other bank(s) is in idle state.
  - \*7. IDPL and IWRD are specified from last data input and assumed preceding pair of write data are masked by DM₀ to DM₃ input.
  - \*8. Assume the other bank(s) is in active state and IRCD is satisfied.
  - \*9. Assume the other bank(s) is in active state and IRAS is satisfied.
  - \*10. Second command have to follow the minimum clock latency or delay time of single bank operation in other bank (second command is asserted.)
  - \*11. Assume other banks are not in READA/WRITA state.

|  | Illegal Command |
|--|-----------------|
|--|-----------------|



#### **■ FUNCTIONAL DESCRIPTION**

#### **DDR, Double Data Rate Function**

The regular SDRAM read and write cycle have only used the rising edge of external clock input. When clock signal goes to High from Low at the read mode, the read out data will be available at every rising clock edge after the specified latency up to burst length. The MB81P643287 DDR FCRAM features a twice of data transfer rate within a same clock period by transferring data at every rising and falling clock edge. Refer to Figure 3.

#### **FCRAM™**

The MB81P643287 utilizes FCRAM core technology. The FCRAM is an acronym of Fast Cycle Random Access Memory and provides very fast random cycle time, low latency and low power consumption than regular DRAMs.

#### **CLOCK INPUT (CLK, CLK)**

The MB81P643287 adopts differential clock scheme. CLK is a master clock and its rising edge is used to latch all command and address inputs. CLK is a complementary clock input.

The MB81P643287 implements Delay Locked Loop (DLL) circuit. This internal DLL tracks the signal cross point between CLK and CLK and generate some clock cycle delay for the output buffer control at Read mode.

The internal DLL circuit requires some Lock-on time for the stable delay time generation. In order to stabilize the delay, a constant stable clock input for lpcd period is required during the Power-up initialization and a constant stable clock input for lscd period is also required after Self-refresh exit as specified lscd prior to the any command.

#### **POWER DOWN (CKE)**

CKE is a synchronous input signal and enables power down mode.

When all banks are in idle state, CKE controls Power Down (PD) and Self-refresh mode. The PD and Self-refresh is entered when CKE is brought to Low and exited when it returns to High.

During the Power Down and Self-refresh mode, both CLK and CLK are disabled after specified time.

CKE does not have a Clock Suspend function unlike CKE pin of regular SDRAMs, and it is illegal to bring CKE into Low if any read or write operation is being performed. For the detail, refer to Timing Diagrams.

It is recommended to maintain CKE to be Low until  $V_{DD}$  gets in the specified operating range in order to assure the power-up initialization.

#### CHIP SELECT (CS)

 $\overline{\text{CS}}$  enables all commands inputs,  $\overline{\text{RAS}}$ ,  $\overline{\text{CAS}}$ , and  $\overline{\text{WE}}$ , and address input. When  $\overline{\text{CS}}$  is High, all command signals are negated but internal operation such as burst cycle will not be suspended.

#### COMMAND INPUTS (RAS, CAS and WE)

As well as regular SDRAMs, each combination of RAS, CAS and WE input in conjunction with CS input at a rising edge of the CLK determines SDRAM operation. Refer to "■FUNCTION TRUTH TABLE".

#### BANK ADDRESS (BA<sub>0</sub> to BA<sub>2</sub>)

The MB81P643287 has eight internal banks and each bank is organized as 256K words by 32-bit. Bank selection by BA occurs at Bank Active command (ACTV) followed by read (READ or READA), write (WRIT or WRITA), and Precharge(PRE) command.

#### ADDRESS INPUTS (Ao to A10)

Address input selects an arbitrary location of a total of 2,097,152 words of each memory cell matrix within each bank. A total of twenty address input signals are required to decode such a matrix. DDR SDRAM adopts an address multiplexer in order to reduce the pin count of the address line. At a Bank Active command (ACTV), eleven Row addresses are initially latched as well as three Bank addresses and the remainder of seven Column addresses are then latched by a Column address strobe command of either a read command (READ or READA) or write command (WRIT or WRITA).

#### DATA STROBE (DQS<sub>0</sub> to DQS<sub>3</sub>)

DQS<sub>0</sub> to DQS<sub>3</sub> are bi-directional signal and represent byte 0 to byte 3, respectively. During Read operation, DQS<sub>0</sub> to DQS<sub>3</sub> provides the read data strobe signal that is intended to use input data strobe signal at the receiver circuit of the controller(s). It turns Low before first data is coming out and toggle High to Low or Low to High till end of burst read. Refer to Figure 3 for the timing example.

The CAS Latency is specified to the first Low to High transition of these DQSo to DQSo output.

During the write operation, DQS<sub>0</sub> to DQS<sub>3</sub> are used to latch write data and Data Mask signals. As well as the behavior of read data strobe, the first rising edge of DQS<sub>0</sub> to DQS<sub>3</sub> input latches first input data and following falling edge of DQS<sub>0</sub> to DQS<sub>3</sub> signal latches second input data. This sequence shall be continued till end of burst count. Therefore, DQS<sub>0</sub> to DQS<sub>3</sub> must be provided from controller that drives write data.

Note that DQS₀ to DQS₃ input signal should not be tristated from High at the end of write mode.

#### DATA INPUTS AND OUTPUTS (DQ0 to DQ31)

Input data is latched by DQS<sub>0</sub> to DQS<sub>3</sub> input signal and written into memory at the clock following the write command input. Output data is obtained together with DQS<sub>0</sub> to DQS<sub>3</sub> output signals at programmed read CAS latency.

The polarity of the output data is identical to that of the input. Data is valid after DQS<sub>0</sub> to DQS<sub>3</sub> output signal transitions ( $t_{QSQ}$ ) as specified in Data Valid Time ( $t_{DV}$ ).

#### WRITE DATA MASK (DMo to DM3)

 $DM_0$  to  $DM_3$  are active High enable inputs and represent byte 0 to byte 3 respectively.  $DM_0$  to  $DM_3$  have a data input mask function, and are also sampled by  $DQS_0$  to  $DQS_3$  input signal together with input data.

During write cycle,  $DM_0$  to  $DM_3$  provide byte mask function. When DMx = High is latched by a  $DQS_0$  to  $DQS_3$  signal edge, data input at the same edge of  $DQS_0$  to  $DQS_3$  is masked.

During read cycle, all DM<sub>0</sub> to DM<sub>3</sub> are inactive and do not have any effect on read operation. Refer to DM<sub>0</sub> to DM<sub>3</sub> TRUTH TABLE.

#### **BURST MODE OPERATION AND BURST TYPE**

The burst mode provides faster memory access and MB81P643287 read and write operations are burst oriented. The burst mode is implemented by keeping the same Row address and by automatic strobing Column address in every single clock edge till programmed burst length(BL). Access time of burst mode is specified as tacc. The internal column address counter operation is determined by a mode register which defines burst type(BT) and burst count length(BL) of 2, 4 or 8 bits of boundary. In order to terminate or to move from the current burst mode to the next stage while the remaining burst count is more than 2, the following combinations will be required.

| Current Stage | Next Stage  | М             | Method (Assert the following command)             |  |  |  |  |  |
|---------------|-------------|---------------|---------------------------------------------------|--|--|--|--|--|
| Burst Read    | Burst Read  | Read Comman   | Read Command                                      |  |  |  |  |  |
| Burst Read    | Burst Write | 1st Step      | Burst Stop Command (BST)                          |  |  |  |  |  |
| Buist Reau    | Burst write | 2nd Step      | Write Command after IBSNC                         |  |  |  |  |  |
| Burst Write   | Burst Write | Write Comman  | Write Command                                     |  |  |  |  |  |
| Burst Write   | Burst Read  | 1st Step      | Data Mask Input                                   |  |  |  |  |  |
| Duist write   | buist Read  | 2nd Step      | Read Command after lwrd from last data input      |  |  |  |  |  |
| Burst Read    | Precharge   | Precharge Con | nmand                                             |  |  |  |  |  |
| Burst Write   | Prochargo   | 1st Step      | Data Mask Input                                   |  |  |  |  |  |
| Duist Wille   | Precharge   | 2nd Step      | Precharge Command after IDPL from last data input |  |  |  |  |  |

The burst type is sequential only. The sequential mode is an incremental decoding scheme within a boundary address to be determined by count length, it assigns +1 to the previous (or initial) address until reaching the end of boundary address and then wraps round to the least significant address(= 0). If the first access of column address is even (0), the next address will be odd (1), or vice-versa.

| Burst Length | Starting Column Address<br>A <sub>2</sub> A <sub>1</sub> A <sub>0</sub> | Sequential Mode |
|--------------|-------------------------------------------------------------------------|-----------------|
| 2            | X X 0                                                                   | 0 – 1           |
| 2            | X X 1                                                                   | 1 – 0           |
|              | X 0 0                                                                   | 0-1-2-3         |
| 4            | X 0 1                                                                   | 1-2-3-0         |
| 4            | X 1 0                                                                   | 2-3-0-1         |
|              | X 1 1                                                                   | 3-0-1-2         |
|              | 0 0 0                                                                   | 0-1-2-3-4-5-6-7 |
|              | 0 0 1                                                                   | 1-2-3-4-5-6-7-0 |
|              | 0 1 0                                                                   | 2-3-4-5-6-7-0-1 |
| 8            | 0 1 1                                                                   | 3-4-5-6-7-0-1-2 |
| 0            | 1 0 0                                                                   | 4-5-6-7-0-1-2-3 |
|              | 1 0 1                                                                   | 5-6-7-0-1-2-3-4 |
|              | 1 1 0                                                                   | 6-7-0-1-2-3-4-5 |
|              | 1 1 1                                                                   | 7-0-1-2-3-4-5-6 |

#### **BURST STOP COMMAND (BST)**

The Burst Stop command (BST) terminates the burst read operation except for a case that Auto-precharge option is asserted. When the BST command is issued during the burst read operation, the all output buffers, DQs and DQS<sub>0</sub> to DQS<sub>3</sub>, will turn to High-Z state after some latencies that to be matched with programmed CAS latency and internal bank state remains active state.

In a case of terminating the burst write operation, the BST command should not be issued at any time during burst write operation. Refer to previous page for the write interrupt and termination rule.

#### PRECHARGE AND PRECHARGE OPTION (PRE, PALL)

The DDR SDRAM memory core is the same as conventional DRAMs', requiring precharge and refresh operations. Precharge rewrites the bit line and to reset the internal Row address line and is executed by the precharge operation (PRE or PALL). With the precharge operation, DDR SDRAM will automatically be in standby state after specified precharge time (IRR, IRPA).

The precharged bank is selected by combination of AP and bank address (BA) when precharge command is issued. If AP = High, all banks are precharged regardless of BA (PALL command). If AP = Low, a bank to be selected by BA is precharged (PRE command).

The auto-precharge enters precharge mode at the end of burst mode of read or write without Precharge command issue. This auto-precharge is entered by AP = High when a Read (READ) or Write (WRIT) command is issued. Applying BST is illegal if the Auto-precharge option is used.

Refer to "■FUNCTION TRUTH TABLE".

#### **AUTO-REFRESH (REF)**

Auto-refresh uses the internal refresh address counter. The MB81P643287 Auto-refresh command (REF) automatically generates Bank Active and Precharge command internally. All banks of SDRAM should be precharged prior to the Auto-refresh command. The Auto-refresh command should also be issued within every 8 µs period.

#### SELF-REFRESH ENTRY (SELF)

Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the refresh operation until cancelled by SELFX.

The Self-refresh mode is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once MB81P643287 enters the self-refresh mode, all inputs except for CKE can be either logic high or low level state and outputs will be in a High-Z state. During Self-refresh mode, CKE = Low should be maintained. SELF command should only be issued after last read data has been appeared on DQ.

Note: When the burst refresh method is used, a total of 4096 auto-refresh commands within 4 ms must be asserted prior to the self-refresh mode entry.

#### **SELF-REFRESH EXIT (SELFX)**

To exit Self-refresh mode, CKE must bring to High for at least 2 clock cycles together with NOP condition. Refer to Timing Diagram for the detail procedure. It is recommended to issue at least one Auto-refresh command just after the IRFC period to avoid the violation of refresh period.

WARNING: A stable clock for Isco period with a constant duty cycle must be supplied prior to applying any read command to insure the DLL is locked against the latest device conditions.

Note: When the burst refresh method is used, a total of 4096 auto-refresh commands within 4 ms must be asserted both before the self-refresh entry and after the self-refresh exit.

#### **MODE REGISTER SET (MRS)**

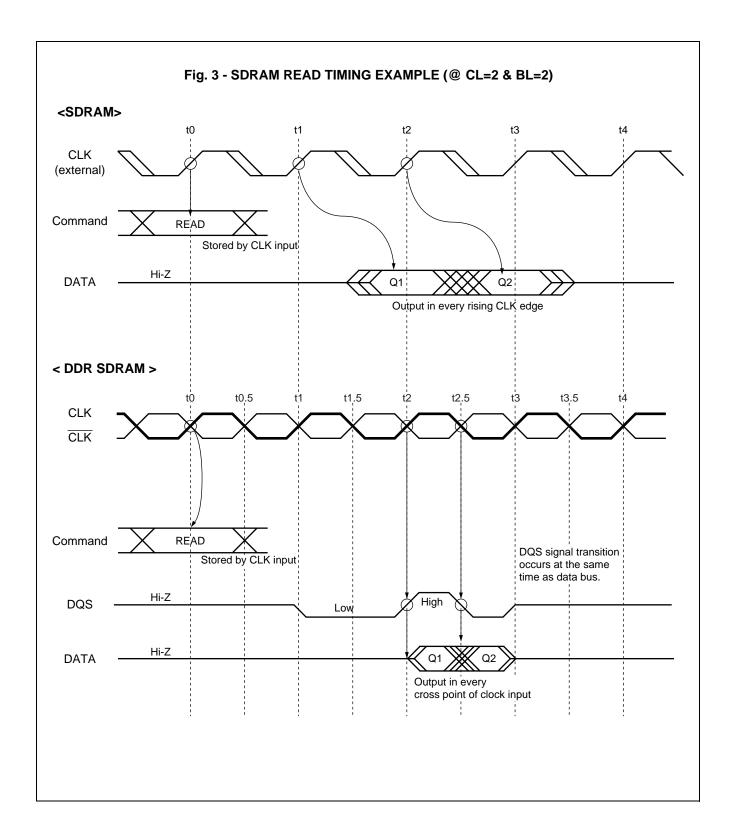
The mode register of SDRAM provides a variety of different operations. The register consists of four operation fields; Burst Length, Burst Type, CAS Latency, and Test Mode Entry (This Test Mode Entry must not be used). Refer to MODE REGISTER TABLE.

The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address line. Once a mode register is programmed, the contents of the register will be held until re-programmed by another MRS command (or part loses power). MRS command should only be issued on condition that all banks are in idle state and all DQS are in High-Z. The condition of the mode register is undefined after the power-up stage. It is required to set each field at power-up initialization.

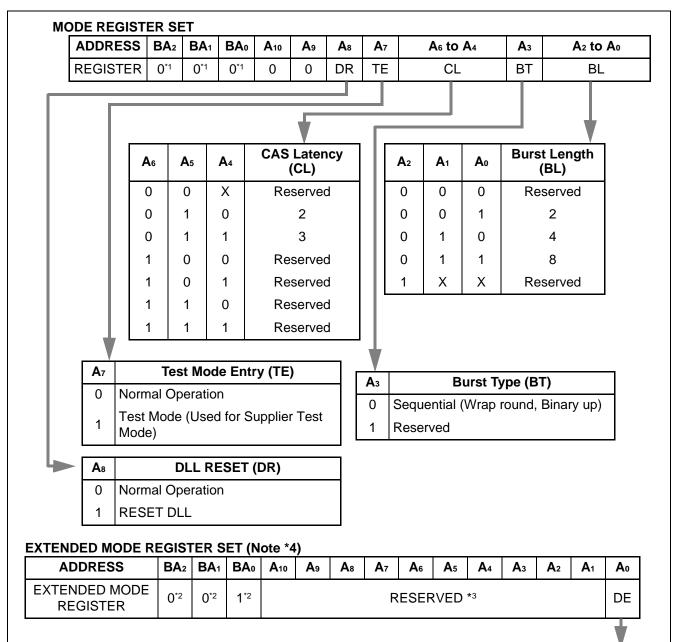
Refer to POWER-UP INITIALIZATION below.

Note: The Extended Mode Register Set command (EMRS) and its DLL Enable function of EMRS field is only used at power-on sequence.

#### **POWER-UP INITIALIZATION**


The MB81P643287 internal condition at and after power-up will be undefined. It is required to follow the following Power On Sequence to execute read or write operation.

- 1. Apply V<sub>DD</sub> voltage to all V<sub>DD</sub> pins before or at the same time as V<sub>DDQ</sub> pins and attempt to maintain all input signals to be Low state (or at least CKE to be Low state).
- 2. Apply  $V_{DD}$  voltage to all  $V_{DDQ}$  pins before or at the same time as  $V_{REF}$  and  $V_{TT}$ .
- 3. Apply  $V_{REF}$  and  $V_{TT}$ . ( $V_{TT}$  is applied to the system).
- 4. Start clock after all power supplies reached in a specified operating range and maintain stable condition for a minimum of 200 μs.
- 5. After the minimum of 200  $\mu$ s stable power and clock, apply NOP condition and take CKE to be High state.
- 6. Issue Precharge All Banks (PALL) command or Precharge Single Bank (PRE) command to every banks.
- 7. Issue EMRS to enable DLL, DE = Low.
- 8. Issue Mode Register Set command (MRS) to reset DLL, DR = High. An additional clock input for IPCD\*1 period is required to lock the DLL.
- 9. Apply minimum of two Auto-refresh command (REF).\*2
- Program the mode register by Mode Register Set command (MRS) with DR = Low.\*2
- \*1: The IPCD depends on operating clock period. The IPCD is counted from "DLL Reset" at step-8 to any command input at step-10.
- \*2: The Mode Register Set command (MRS) can be issued before two Auto-refresh cycle.


#### **POWER-DOWN**

The MB81P643287 uses multiple power supply voltage. It is required to follow the reversed sequence of above Power On Sequence.

- 1. Take all input signals to be Vss or High-Z.
- 2. Deapply V<sub>DDQ</sub>.
- 3. Deapply VDD at the same time as VDDQ.



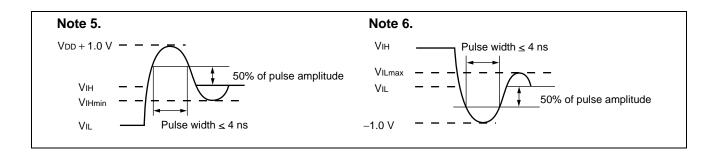
#### **■ MODE REGISTER TABLE**



| Ao | DLL Enable (DE) |
|----|-----------------|
| 0  | DLL Enable      |
| 1  | DLL Disable     |

- \*1: A combination of  $BA_2 = BA_1 = BA_0 = 0$  (Low) selects standard Mode Register.
- \*2: A combination of  $BA_1 = BA_2 = 0$  and  $BA_0 = 1$  (High) selects Extended Mode Register.
- \*3: These RESERVED field in EMRS must be set as 0.

### ■ ABSOLUTE MAXIMUM RATINGS (See WARNING)


| Parameter                             | Symbol    | Value        | Unit |
|---------------------------------------|-----------|--------------|------|
| Voltage of VDD Supply Relative to Vss | Vdd, Vddq | -0.5 to +3.6 | V    |
| Voltage at Any Pin Relative to Vss    | VIN, VOUT | -0.5 to +3.6 | V    |
| Short Circuit Output Current          | Іоит      | ±50          | mA   |
| Power Dissipation                     | Po        | 2.0          | W    |
| Storage Temperature                   | Тѕтс      | -55 to +125  | °C   |

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

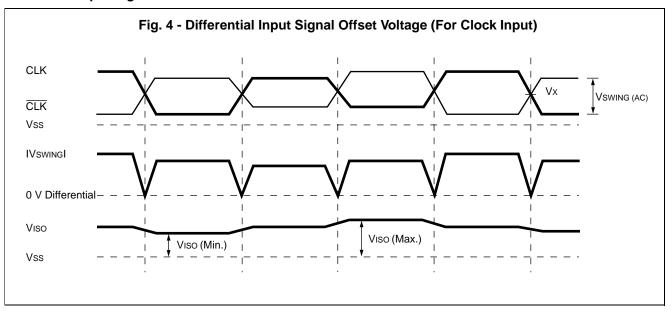
#### ■ RECOMMENDED OPERATING CONDITIONS

#### (Referenced to Vss)

| Parameter N                                      | otes   | Symbol              | Min.                      | Тур.                        | Max.                      | Unit |
|--------------------------------------------------|--------|---------------------|---------------------------|-----------------------------|---------------------------|------|
|                                                  |        | V <sub>DD</sub>     | 2.3                       | 2.5                         | 2.7                       | V    |
| Supply Voltage                                   |        | V <sub>DDQ</sub>    | V <sub>DD</sub>           | V <sub>DD</sub>             | V <sub>DD</sub>           | V    |
|                                                  |        | Vss, Vssq           | 0                         | 0                           | 0                         | V    |
| Input Reference Voltage                          | *1     | V <sub>REF</sub>    | $V_{DDQ} \times 0.49$     | $V_{\text{DDQ}} \times 0.5$ | $V_{DDQ} \times 0.51$     | V    |
| Termination Voltage                              | *2     | Vтт                 | V <sub>REF</sub> - 0.04   | V <sub>REF</sub>            | VREF + 0.04               | V    |
| Single Ended SSTL DC Level Input High Voltage    | *3     | VIH (DC)            | VREF + 0.25               | _                           | V <sub>DDQ</sub> + 0.1    | V    |
| Single Ended SSTL DC Level Input Low Voltage     | *3     | VIL (DC)            | - 0.1                     | _                           | VREF - 0.25               | V    |
| Single Ended SSTL AC Level Input High Voltage    | *3, *5 | VIH (AC)            | VREF + 0.35               | _                           | _                         | V    |
| Single Ended SSTL AC Level Input Low Voltage     | *3, *5 | VIL (AC)            | _                         | _                           | Vref - 0.35               | V    |
| Differential DC Level Input Voltage Range        | *3     | VIN (DC)            | - 0.1                     | _                           | V <sub>DDQ</sub> + 0.1    | V    |
| Differential DC Level Differential Input Voltage | *3     | Vswing (DC)         | 0.5                       | _                           | V <sub>DDQ</sub> + 0.2    | V    |
| Differential AC Level Differential Input Voltage | *3     | Vswing (AC)         | 0.7                       | _                           | _                         | V    |
| Differential AC Level Input Crosspoint Voltage   | *3     | V <sub>X</sub> (AC) | V <sub>DDQ</sub> /2 - 0.2 | V <sub>DDQ</sub> /2         | V <sub>DDQ</sub> /2 + 0.2 | V    |
| Differential Input Signal Offset Voltage         | *4     | VISO (AC)           | V <sub>DDQ</sub> /2 - 0.2 | V <sub>DDQ</sub> /2         | $V_{DDQ}/2 + 0.2$         | V    |
| Termination Resistor (SSTL I/Os)                 | *2     | R⊤                  | _                         | 50                          | _                         | Ω    |
| Ambient Temperature                              |        | Та                  | 0                         | _                           | 70                        | °C   |



- Notes: \*1. VREF is expected to track variations in the DC level of VDDQ of the transmitting device. Peak-to-Peak noise level on  $V_{REF}$  may not exceed  $\pm$  2% of the supplied DC value.
  - \*2.  $V_{TT}$  is used for SSTL 2 bus and is not applied to the device.  $V_{TT}$  is expected to be set equal to  $V_{REF}$ and must be track variations in the DC level of VREF.
  - \*3. Applicable when signal(s) is terminated to the  $V_{TT}$  of SSTL\_2 bus.
  - \*4. VISO means {VIN(CLK) + VIN(CLK)} / 2. Refer to Differential Input Signal Definition.
  - \*5. Overshoot limit: V<sub>IH</sub> (Max.) = V<sub>DD</sub> + 1.0V for pulse width ≤ 4 ns acceptable, pulse width measured at 50% of pulse amplitude.
  - \*6. Undershoot limit:  $V_{\parallel}$  (Min.) =  $V_{SS}$  -1.0V for pulse width  $\leq 4$  ns acceptable, pulse width measured at 50% of pulse amplitude.


WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

#### **Differential Input Signal Definition**



#### ■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$ 

| Parameter                            | Symbol           | Min. | Тур. | Max. | Unit |
|--------------------------------------|------------------|------|------|------|------|
| Input Capacitance, Address & Control | C <sub>IN1</sub> | 2.5  | _    | 3.5  | pF   |
| Input Capacitance, CLK & CLK         | C <sub>IN2</sub> | 2.5  | _    | 3.5  | pF   |
| Input Capacitance, DM₀ to DM₃        | Сімз             | 4.0  | _    | 5.5  | pF   |
| I/O Capacitance                      | C <sub>I/O</sub> | 4.0  | _    | 5.5  | pF   |

#### **■ DC CHARACTERISTICS**

(At recommended operating conditions unless otherwise noted.) Note \*1,\*2,\*3

| Parameter                        |                | Council of        | Condition                                                                                                                                                                                                 | Val   | Unit |      |
|----------------------------------|----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Parame                           | eter           | Symbol            | Condition                                                                                                                                                                                                 | Min.  | Max. | Unit |
| Output Minimum Source            | DC Current     | IOH(DC)           | V <sub>DDQ</sub> = 2.3V,<br>Vон = V <sub>DDQ</sub> -0.43V                                                                                                                                                 | -15.2 | _    | mA   |
| Output Minimum Sink D            | C Current      | IOL(DC)           | V <sub>DDQ</sub> = 2.3V,<br>V <sub>OL</sub> = +0.35V                                                                                                                                                      | 15.2  | _    | mA   |
| Input Leakage Current (          | any input)     | lu                | $0 \text{ V} \le V_{IN} \le V_{DD}$ ;<br>All other pins not under test = $0 \text{ V}$                                                                                                                    | -10   | 10   | μА   |
| Output Leakage Curren            | t              | Іго               | $0 \text{ V} \le V_{IN} \le V_{DD};$ Data out disabled                                                                                                                                                    | -10   | 10   | μА   |
| VREF Current                     |                | IREF              |                                                                                                                                                                                                           | -10   | 10   | μΑ   |
| Operating Current (Average Power | MB81P643287-50 | DD1s              | Burst Length = 2<br>tck = Min.,<br>One bank active,<br>Address change up to 3 times dur-                                                                                                                  |       | 460  | - mA |
| Supply Current)                  | MB81P643287-60 | רוטטוז            | ing IRC (Min.) $0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}$ (Max.), $\text{V}_{\text{IH}}$ (Min.) $\leq \text{V}_{\text{IN}} \leq \text{V}_{\text{DD}}$                              |       | 405  | 1117 |
| Standby Current                  | MB81P643287-50 | I <sub>DD2N</sub> | CKE = V <sub>IH</sub> , tc <sub>K</sub> = Min.<br>All banks idle,<br>NOP commands only,<br>Input signals (except to CMD) are                                                                              |       | 85   |      |
| Standby Current                  | MB81P643287-60 | IDD2N             | changed one time during 20 ns $0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}} \text{ (Max.)},$ $\text{V}_{\text{IH}} \text{ (Min.)} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{DD}}$ | _     | 75   | mA   |
| Power Down Current               |                | IDD2P             | CKE = $V_{IL}$ , $t_{CK}$ = Min.<br>All banks idle,<br>$0 \ V \le V_{IN} \le V_{DD}$                                                                                                                      |       | 35   | mA   |
| Active Standby Current           | MB81P643287-50 |                   | CKE = V <sub>IH</sub> , tc <sub>K</sub> = Min. All banks Active, NOP commands only,                                                                                                                       |       | 260  | ^    |
| (Power Supply Current)           |                | DD3N              | Input signals (except to CMD) are changed one time during 20 ns 0 V $\leq$ V <sub>IN</sub> $\leq$ V <sub>IL</sub> (Max.), V <sub>IH</sub> (Min.) $\leq$ V <sub>IN</sub> $\leq$ V <sub>DD</sub>            | _     | 225  | mA   |

(Continued)

### (Continued)

| Parameter                                                |                | Symbol           | Condition                                                                                                           | Va   | Unit |       |
|----------------------------------------------------------|----------------|------------------|---------------------------------------------------------------------------------------------------------------------|------|------|-------|
| Faran                                                    | neter          | Symbol           | Condition                                                                                                           | Min. | Max. | Offic |
| Burst Read Current<br>(Average Power<br>Supply Current)  | MB81P643287-50 |                  | Burst Length = 4,<br>CAS Latency = 3,<br>All bank active,                                                           |      | 535  |       |
|                                                          | MB81P643287-60 | DD4R             | Gapless data, $t_{CK} = Min.$ , $0 \ V \le V_{IN} \le V_{IL}$ (Max.), $V_{IH}$ (Min.) $\le V_{IN} \le V_{DD}$       | _    | 460  | mA    |
| Burst Write Current<br>(Average Power<br>Supply Current) | MB81P643287-50 |                  | Burst Length = 4,<br>CAS Latency = 3,<br>All bank active,                                                           |      | 595  |       |
|                                                          | MB81P643287-60 | IDD4W            | Gapless data, $t_{CK} = Min.$ , $0 \ V \le V_{IN} \le V_{IL} (Max.)$ , $V_{IH} (Min.) \le V_{IN} \le V_{DD}$        | _    | 505  | mA    |
| Auto-refresh Current                                     | MB81P643287-50 | IDD5             | Auto-refresh;<br>tcκ = Min.,                                                                                        |      | 320  | m 1   |
| (Average Power<br>Supply Current)                        | MB81P643287-60 | IDD5             | $ \begin{array}{l} 0 \ V \leq V_{IN} \leq V_{IL} \ (Max.), \\ V_{IH} \ (Min.) \leq V_{IN} \leq V_{DD} \end{array} $ | _    | 270  | mA    |
| Self-refresh Current<br>(Average Power Supply Current)   |                | I <sub>DD6</sub> | Self-refresh;<br>$CKE = V_{IL}$ ,<br>$0 \ V \le V_{IN} \le V_{DD}$                                                  | _    | 5    | mA    |

Notes: \*1. All voltages referenced to Vss.

\*2. DC characteristics are measured after following the POWER-UP INITIALIZATION procedure.

<sup>\*3.</sup> lpd depends on the output termination or load conditions, clock cycle rate, and number of address and command change within certain period. The specified values are obtained with the output open.

#### **■** AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Note \*1,\*2,\*3

### AC PARAMETERS (CAS LATENCY DEPENDENT)

| Parameter    |             | mbol   | MB81P6 | 43287-50 | MB81P6 | Unit |      |
|--------------|-------------|--------|--------|----------|--------|------|------|
| raiametei    | Зу          | IIIDOI | Min.   | Max.     | Min.   | Max. | Uill |
| Clock Period | <b>t</b> cĸ | CL = 3 | 5.0    | 9.0      | 6.0    | 10.5 | ns   |
| Clock Fellod | ick         | CL = 2 | 7.5    | 10.5     | 9.0    | 10.5 | 115  |

| Parameter                                                 | Notes | Symbol         | MB81P6 | 43287-50 | MB81P6 | 43287-60 | l lmi4 |
|-----------------------------------------------------------|-------|----------------|--------|----------|--------|----------|--------|
| Parameter                                                 | Notes | Symbol         | Min.   | Max.     | Min.   | Max.     | Unit   |
| Input Setup Time<br>(Except for DQS, DM and DQs)          | *4    | <b>t</b> ıs    | 1.0    | _        | 1.2    | _        | ns     |
| Input Hold Time<br>(Except for DQS, DM and DQs)           | *4    | tıн            | 1.0    | _        | 1.2    | _        | ns     |
| DM and Data Input Setup Time                              | *5    | <b>t</b> DS    | 0.6    | _        | 0.7    | _        | ns     |
| DM and Data Input Hold Time                               | *5    | tон            | 0.6    | _        | 0.7    | _        | ns     |
| DQS First Input Setup Time<br>(Input Preamble Setup Time) | *6    | tospres        | 0      | _        | 0      | _        | ns     |
| Last Data Output to CKE High Level<br>Hold Time           |       | tqскен         | 0      | _        | 0      | _        | ns     |
| Input Transition Time                                     | *7    | t⊤             | 0.1    | 0.8      | 0.1    | 0.9      | ns     |
| Precharge Power Down Exit and Self-refresh Exit Time      | *4    | <b>t</b> PDEX  | 3.0    | _        | 3.6    | _        | ns     |
| Time between Refresh                                      | *8    | tref           | _      | 32       | _      | 32       | ms     |
| Time between Auto-refresh Command                         | *8    | <b>t</b> aref  | _      | 8.0      | _      | 8.0      | μs     |
| Pause Time after Power-on                                 |       | <b>t</b> PAUSE | 200    | _        | 200    | _        | μs     |

### AC PARAMETERS (FREQUENCY DEPENDANT) Note \*9

| Parameter                                                    | Notes   | Symbol          | Min.                       | Max.            | Unit |
|--------------------------------------------------------------|---------|-----------------|----------------------------|-----------------|------|
| Clock High Time                                              | *4      | <b>t</b> сн     | 0.45 × tск                 | _               | ns   |
| Clock Low Time                                               | *4      | <b>t</b> cL     | 0.45 × tск                 | _               | ns   |
| DQS Low to High Input Transition<br>Setup Time from CLK      | *4, *10 | toass           | 0.75 × tск                 | 1.25 × tск      | ns   |
| DQS Low Input Pulse Width                                    |         | <b>t</b> dsl    | 0.4 × tск                  | _               | ns   |
| DQS High Input Pulse Width                                   |         | <b>t</b> DSH    | 0.4 × tск                  | _               | ns   |
| DQS First Low Input Hold Time (Input Preamble Hold Time)     | *4      | <b>t</b> DSPREH | 0.25 × tск                 | _               | ns   |
| DQS First Low Input Pulse Width (Input Preamble Pulse Width) |         | <b>t</b> dspre  | 0.4 × tск                  | _               | ns   |
| DQS Last Low Input Hold Time (Input Postamble Hold Time)     |         | <b>t</b> DSPST  | 0.4 × tск                  | _               | ns   |
| DQS Access Time from Clock                                   | *4      | <b>t</b> qsck   | - 0.1 × tcк - 0.2          | 0.1 × tcк + 0.2 | ns   |
| DQS Output Valid Time                                        |         | <b>t</b> qsv    | 0.3 × tск                  | _               | ns   |
| DQS Output in Low-Z<br>(Output Preamble Setup Time)          | *4, *11 | <b>t</b> qsLz   | - 0.1 × tcк - 0.2          | _               | ns   |
| DQS First Low Output Hold Time (Output Preamble Hold Time)   | *4      | <b>t</b> QSPRE  | 0.9 × tcк - 0.2            | 1.1 × tcк + 0.2 | ns   |
| DQS Last Low Output Hold Time (Output Postamble Hold Time)   | *4, *12 | <b>t</b> qspst  | 0.4 × tcк - 0.2            | 0.6 × tcк + 0.2 | ns   |
| DQS Last Low Output in High-Z from CLK or CLK                | *12     | <b>t</b> qshz   | _                          | 0.1 × tcк + 0.2 | ns   |
| DQ Access Time from CLK & CLK                                | *4      | tacc            | - 0.1 × tcк - 0.2          | 0.1 × tcк + 0.2 | ns   |
| DQ Access Time from DQS                                      | *5      | <b>t</b> qsq    | - 0.1 × tск                | 0.1 × tск       | ns   |
| DQ Output Data Valid Time from DQS                           |         | <b>t</b> DV     | 0.3 × tск                  | _               | ns   |
| DQ Output in Low-Z                                           | *4, *11 | <b>t</b> LZ     | - 0.1 × tcк - 0.2          | _               | ns   |
| DQ Output in High-Z                                          | *4, *12 | <b>t</b> HZ     | - 0.1 × tcк - 0.2          | 0.1 × tcк + 0.2 | ns   |
| DQ & DM Input Pulse Width                                    |         | <b>t</b> DIPW   | 0.4 × tск                  | _               | ns   |
| DQS Falling Edge to Clock Hold Time                          |         | <b>t</b> DSCH   | 0.2 × tcκ<br>(1.5 ns Min.) | _               | ns   |
| DQS Falling Edge to Clock Setup Time                         |         | toscs           | 0.2 × tcκ<br>(1.5 ns Min.) | _               | ns   |

EXAMPLE OF FREQUENCY DEPENDANT AC PARAMETERS (@ Minimum tck)

| Baranatar                                                    |                 |      | 5ns  |      | 6ns  | <b>t</b> ск = |      |      | 9ns  | tcк = 10.5ns |      | 1121 |
|--------------------------------------------------------------|-----------------|------|------|------|------|---------------|------|------|------|--------------|------|------|
| Parameter                                                    | Symbol          | Min. | Max. | Min. | Max. | Min.          | Max. | Min. | Max. | Min.         | Max. | Unit |
| Clock High Time                                              | tсн             | 2.3  | _    | 2.7  | _    | 3.4           | _    | 4.1  | _    | 4.8          | _    | ns   |
| Clock Low Time                                               | <b>t</b> cL     | 2.3  | _    | 2.7  | _    | 3.4           | _    | 4.1  | _    | 4.8          | _    | ns   |
| DQS Low to High Input<br>Transition Setup Time from CLK      | toass           | 3.8  | 6.3  | 4.5  | 7.5  | 5.7           | 9.4  | 6.8  | 11.3 | 7.9          | 13.2 | ns   |
| DQS Low Input Pulse Width                                    | <b>t</b> dsl    | 2.0  | _    | 2.4  | _    | 3.0           | _    | 3.6  | _    | 4.2          | _    | ns   |
| DQS High Input Pulse Width                                   | <b>t</b> DSH    | 2.0  | _    | 2.4  | _    | 3.0           | _    | 3.6  | _    | 4.2          | _    | ns   |
| DQS First Low Input Hold Time (Input Preamble Hold Time)     | <b>t</b> DSPREH | 1.3  | _    | 1.5  | _    | 1.9           | _    | 2.3  | _    | 2.7          | _    | ns   |
| DQS First Low Input Pulse Width (Input Preamble Pulse Width) | <b>t</b> DSPRE  | 2.0  | _    | 2.4  |      | 3.0           | _    | 3.6  | _    | 4.2          | _    | ns   |
| DQS Last Low Input Hold Time (Postamble Hold Time)           | <b>t</b> dspst  | 2.0  | _    | 2.4  |      | 3.0           | _    | 3.6  | _    | 4.2          | _    | ns   |
| DQS Access Time from Clock                                   | <b>t</b> qsck   | -0.7 | 0.7  | -0.8 | 0.8  | -1.0          | 1.0  | -1.1 | 1.1  | -1.3         | 1.3  | ns   |
| DQS Output Valid Time                                        | <b>t</b> qsv    | 1.5  | _    | 1.8  | _    | 2.3           | _    | 2.7  | _    | 3.2          | _    | ns   |
| DQS Output in Low-Z<br>(Output Preamble)                     | <b>t</b> qsLz   | -0.7 | _    | -0.8 |      | -1.0          | _    | -1.1 | _    | -1.3         | _    | ns   |
| DQS First Low Output Hold Time (Output Preamble)             | <b>t</b> QSPRE  | 4.3  | 5.7  | 5.2  | 6.8  | 6.6           | 8.5  | 7.9  | 10.1 | 9.3          | 11.8 | ns   |
| DQS Last Low Output Hold Time (Output Postamble)             | <b>t</b> QSPST  | 1.8  | 3.2  | 2.2  | 3.8  | 2.8           | 4.7  | 3.4  | 5.6  | 4.0          | 6.5  | ns   |
| DQS Last Low Output in High-Z from CLK or CLK                | <b>t</b> qshz   | _    | 0.7  | _    | 0.8  | _             | 1.0  | _    | 1.1  | _            | 1.3  | ns   |
| DQ Output Access Time from CLK & CLK                         | tacc            | -0.7 | 0.7  | -0.8 | 0.8  | -1.0          | 1.0  | -1.1 | 1.1  | -1.3         | 1.3  | ns   |
| DQ Output Access Time from DQS                               | <b>t</b> qsq    | -0.5 | 0.5  | -0.6 | 0.6  | -0.8          | 0.8  | -0.9 | 0.9  | -1.1         | 1.1  | ns   |
| DQ Output Data Valid Time from DQS                           | <b>t</b> DV     | 1.5  | _    | 1.8  | _    | 2.3           | _    | 2.7  | _    | 3.2          | _    | ns   |
| DQ Output in Low-Z                                           | <b>t</b> LZ     | -0.7 | _    | -0.8 | _    | -1.0          | _    | -1.1 | _    | -1.3         | _    | ns   |
| DQ Output in High-Z                                          | <b>t</b> HZ     | -0.7 | 0.7  | -0.8 | 0.8  | -1.0          | 1.0  | -1.1 | 1.1  | -1.3         | 1.3  | ns   |
| DQ & DM Input Pulse Width                                    | <b>t</b> DIPW   | 2.0  | _    | 2.4  | _    | 3.0           | _    | 3.6  | _    | 4.2          | _    | ns   |
| DQS Falling Edge to Clock Hold<br>Time                       | <b>t</b> DSCH   | 1.5  | _    | 1.5  | _    | 1.5           | _    | 1.8  | _    | 2.1          | _    | ns   |
| DQS Falling Edge to Clock<br>Setup Time                      | toscs           | 1.5  | _    | 1.5  | _    | 1.5           | _    | 1.8  | _    | 2.1          | _    | ns   |

**LATENCY** 

(The latency values on these parameters are fixed regardless of clock period.)

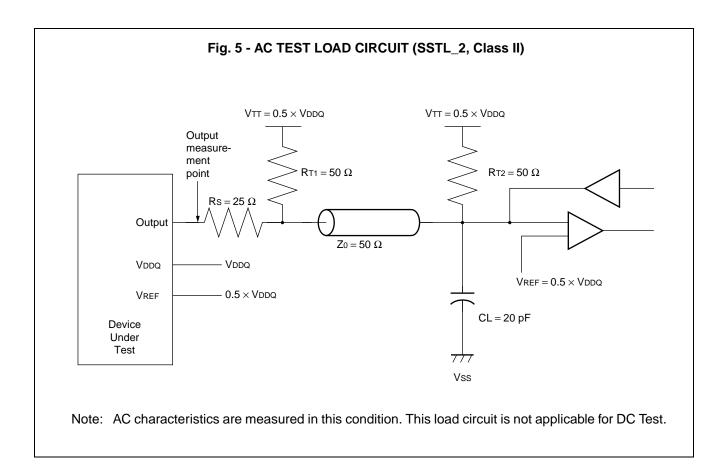
| Parameter                                                                               | Notes          | Symbol           | MB81P64    | 43287-50 | MB81P64                | 111:0:4     |             |  |
|-----------------------------------------------------------------------------------------|----------------|------------------|------------|----------|------------------------|-------------|-------------|--|
| Parameter                                                                               | Notes          | Symbol           | Min.       | Max.     | Min.                   | Max.        | Unit        |  |
| RAS Cycle Time *13                                                                      | CL = 3         | I                | 6          | _        | 6                      | _           | <b>t</b> cĸ |  |
| RAS Cycle Time *13                                                                      | CL = 2         | Irc              | 5          | _        | 5                      | _           | <b>t</b> cĸ |  |
| RAS Active Time                                                                         | CL = 3         | Iras             | 4          | 11000    | 4                      | 11000       | <b>t</b> cĸ |  |
| NAS Active Time                                                                         | CL = 2         | IRAS             | 3          | 7333     | 3                      | 7333        | <b>t</b> cĸ |  |
| RAS Precharge Time                                                                      |                | IRP              | 2          | _        | 2                      | _           | <b>t</b> cĸ |  |
| RAS to CAS Delay Time                                                                   | CL = 3         | IRCD             | 3          | _        | 3                      | _           | <b>t</b> cĸ |  |
| TAG to CAG Delay Time                                                                   | CL = 2         | IRCD             | 2          | _        | 2                      | _           | <b>t</b> cĸ |  |
| RAS to RAS Bank Active Delay                                                            | Time           | Irrd             | 1          | _        | 1                      | _           | <b>t</b> cĸ |  |
| Precharge All Bank to Active                                                            | CL = 3         | IRPA             | 4          | _        | 4                      | _           | <b>t</b> cĸ |  |
| Trecharge All Bank to Active                                                            | CL = 2         | IRPA             | 3          | _        | 3                      | _           | <b>t</b> cĸ |  |
| Read Command to Write                                                                   | CL = 3         | I <sub>RWD</sub> | BL/2+3     | _        | BL/2+3                 | _           | <b>t</b> cĸ |  |
| Command Delay                                                                           | CL = 2         | IRWD             | BL/2+2     | _        | BL/2+2                 | _           | <b>t</b> cĸ |  |
| Last Input Data to Read Comma<br>Delay                                                  | Iwrd           | 2.5              | _          | 2.5      | _                      | <b>t</b> cĸ |             |  |
| Last Input Data to Precharge Command<br>Lead Time *14                                   |                | <b>I</b> DPL     | 2.5        | _        | 2.5                    | _           | tск         |  |
| Write with Auto Precharge Compactive command Delay                                      | mand to<br>*14 | Iwal             | BL/2+3+IRP | _        | BL/2+3+I <sub>RP</sub> | _           | tск         |  |
| Mode Register Access to Next C<br>Input Delay                                           | Command        | Imrd             | 2          | _        | 2                      | _           | tск         |  |
| CAS to CAS Delay                                                                        |                | Іссь             | 1          | _        | 1                      | _           | <b>t</b> cĸ |  |
| CAS Bank Delay                                                                          |                | Ісво             | 1          | _        | 1                      | _           | <b>t</b> cĸ |  |
| Precharge Power Down Exit to Normand Input Delay                                        | Next           | IPDEXP           | 2          | _        | 2                      | _           | tск         |  |
| Minimum Stable Clock Input After refresh Exit Before READ Comm                          | Isco           | 400              | _          | 400      | _                      | tск         |             |  |
| Minimum Stable Clock Input After Self-<br>refresh Exit Before non-READ Command<br>Input |                | Ixsnr            | 12         | _        | 12                     | _           | <b>t</b> cĸ |  |
| Minimum Stable Clock Input for                                                          | tcк ≤ 7.5ns    |                  | 400        | _        | 400                    |             | tск         |  |
| DLL Lock-on in Power-up<br>Initialization sequence. *16                                 | tcк ≤ 10.5ns   | IPCD             | 630        | _        | 630                    | _           | <b>t</b> cĸ |  |
| Auto-refresh Cycle Time                                                                 |                | IRFC             | 12         | _        | 12                     | _           | <b>t</b> cĸ |  |

#### **LATENCY - FIXED VALUES**

(The latency values on these parameters are fixed regardless of clock period.)

| Parameter No.                             |        | Symbol | MB81P643287-50 | MB81P643287-60 | Unit |
|-------------------------------------------|--------|--------|----------------|----------------|------|
| BST Command to Output in High-Z           | CL = 3 | Івѕн   | 3              | 3              | tск  |
|                                           | CL = 2 | IBSH   | 2              | 2              | tск  |
| PCT Command to New Command Input *17      | CL = 3 | l- aa  | 3              | 3              | tск  |
| BST Command to New Command Input *17      | CL = 2 | IBSNC  | 2              | 2              | tск  |
| DM to Input Data Delay                    |        | IDQD   | 0              | 0              | tск  |
| Prophergo to Output in High 7             | CL = 3 | l= a   | 3              | 3              | tск  |
| Precharge to Output in High-Z             | CL = 2 | lкон   | 2              | 2              | tск  |
| CKE Low to Command/Address Input Inactive |        | Іске   | 1              | 1              | tск  |

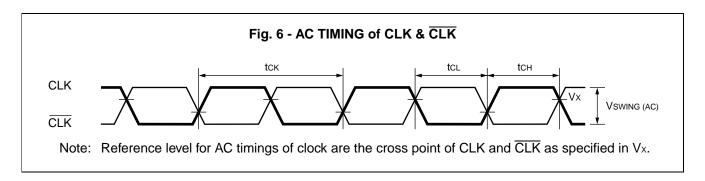
- Notes: \*1. AC characteristics are measured after following the POWER-UP INITIALIZATION procedure and stable clock input with constant clock period and with 50% duty cycle.
  - \*2. Access Times assume input slew rate of 1ns/volt between VREF+0.35V to VREF-0.35V, where VREF is VDDQ/2, with SSTL\_2 output load conditions. Refer to AC TEST LOAD CIRCUIT.
  - \*3. V<sub>REF</sub> = 1.25V is a typical reference level for measuring timing of input signals.

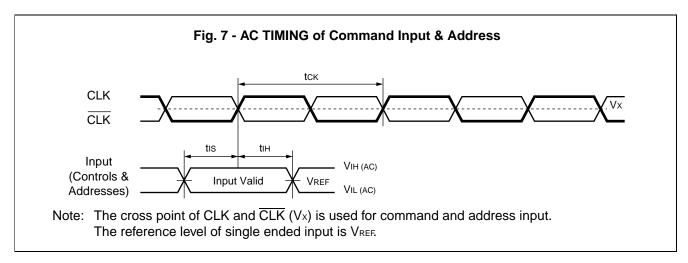

    Transition times are measured between V<sub>IH</sub>(Min.) and V<sub>IL</sub>(Max.) unless otherwise noted.

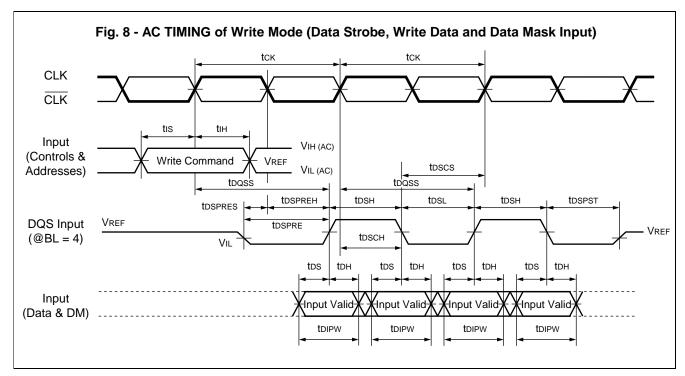
    Refer to AC TEST CONDITIONS.
  - \*4. This parameter is measured from the cross point of CLK and CLK input.
  - \*5. This parameter is measured from signal transition point of DQS<sub>0</sub> to DQS<sub>3</sub> input crossing V<sub>REF</sub> level.
  - \*6. The specific requirement is that DQS be valid (HIGH or LOW) on or before this CLK edge. The case shown (DQS going from High-Z to logic LOW) applies when no writes were previously in progress on the bus. If a previous write was in progress, DQS could be HIGH at this time, depending on toss.
  - \*7. tr is defined as the transition time between Vih (AC)(Min.) and Vil (AC)(Max.).
  - \*8. Total of 4096 REF command must be issued within tref (Max.). taref is a reference value for distributed refresh and specifies the time between one REF command to next REF command except for a condition where CKE = Low during Self-refresh mode.
  - \*9. This parameter is scalable by actual clock period (tck) and affected by an abrupt change of duty cycle, jitters on clock input, T<sub>A</sub> and level of V<sub>DD</sub> and V<sub>DDQ</sub>. The internal DLL circuit can adjust delay time against the change of following condition:

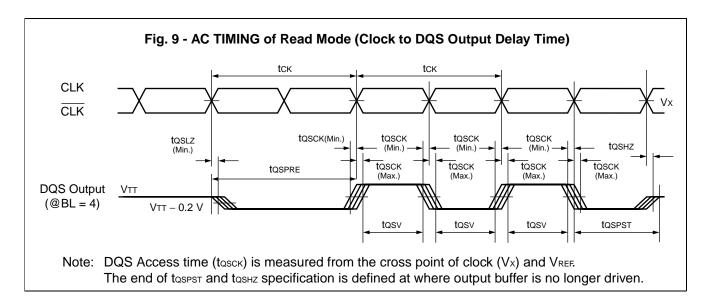
 $T_A \le 0.1 \,^{\circ}\text{C} / 20 \,\text{ns},$   $V_{DD} \le 1 \,\text{mV} / 10 \,\text{ns},$  $V_{DDQ} \le 1 \,\text{mV} / 10 \,\text{ns},$ 

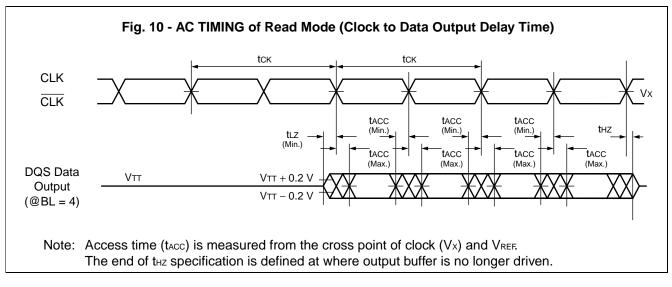
if change rate is bigger than these values, frequency dependent AC parameters affected by DLL jitters.

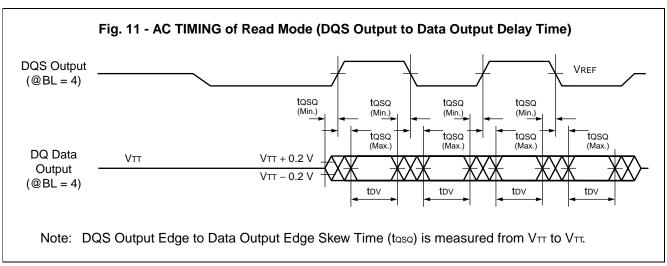

- \*10. More than 2 signal edge of DQS₀ to DQS₃ should not be input within 1 clock (tcк) cycle.
- \*11. Low-Z (Low Impedance State) is specified and measured at  $V_{TT} \pm 200 mV$ .
- \*12. tqspst, tqshz and thz are specified where output buffer is no longer driven.
- \*13. Actual clock count of IRC will be sum of clock count of IRAS and IRP.
- \*14. Assume togss =  $1 \times \text{tck}$ . If actual togss is within specified minimum and maximum range, those parameters can be assumed togss =  $1 \times \text{tck}$ .
- \*15. Applicable also if device operating conditions such as supply voltages, case temperature, and/or clock frequency (tck difference must be 0.2 ns or less) is changed during any operation.
- \*16. Clock period must satisfy specified tck and it must be stable.
- \*17. Assume BST is effective to read operation (issued prior to the end of burst read).

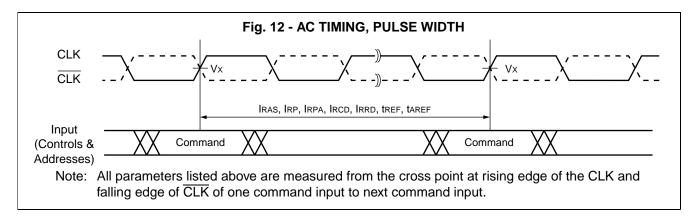


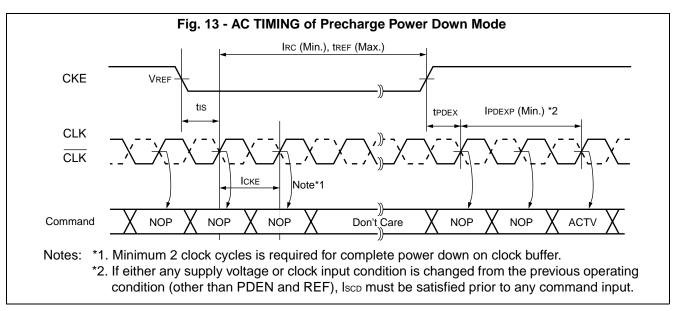


### **AC TEST CONDITIONS**

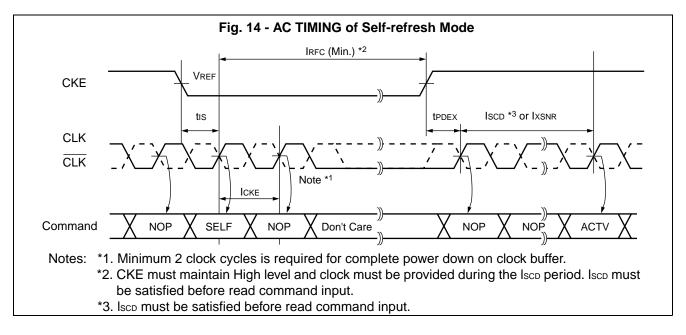

| Parameters                       | Symbol | Value                   | Unit |  |
|----------------------------------|--------|-------------------------|------|--|
| Single-end Input                 |        |                         | •    |  |
| Input High Level                 | ViH    | V <sub>REF</sub> + 0.35 | V    |  |
| Input Low Level                  | VıL    | V <sub>REF</sub> – 0.35 | V    |  |
| Input Reference Level            | Vref   | V <sub>DDQ</sub> / 2    | V    |  |
| Input Slew Rate                  | SLEW   | 1.0                     | V/ns |  |
| Differential Input (CLK and CLK) |        |                         | 1    |  |
| Input Reference Level            | Vr     | Vx (AC)*                | V    |  |
| Input Level                      | Vswing | 0.7                     | V    |  |
| Input Slew Rate                  | SLEW   | 1.0                     | V/ns |  |


<sup>\* :</sup>  $V_X$  means the actual cross point between CLK and  $\overline{\text{CLK}}$  input.

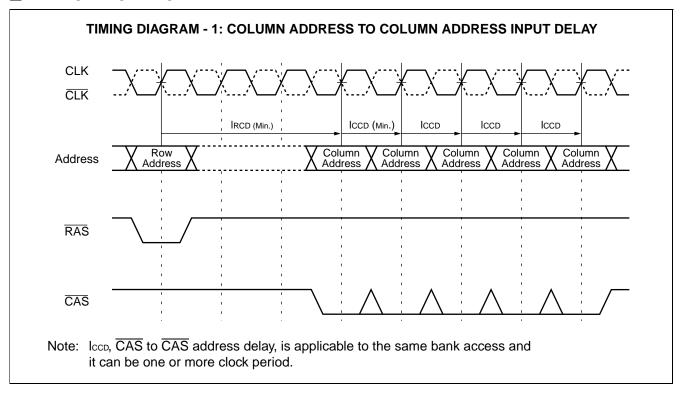


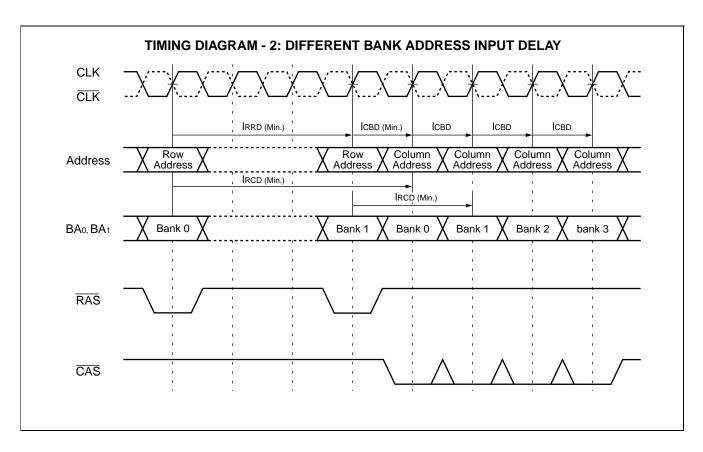



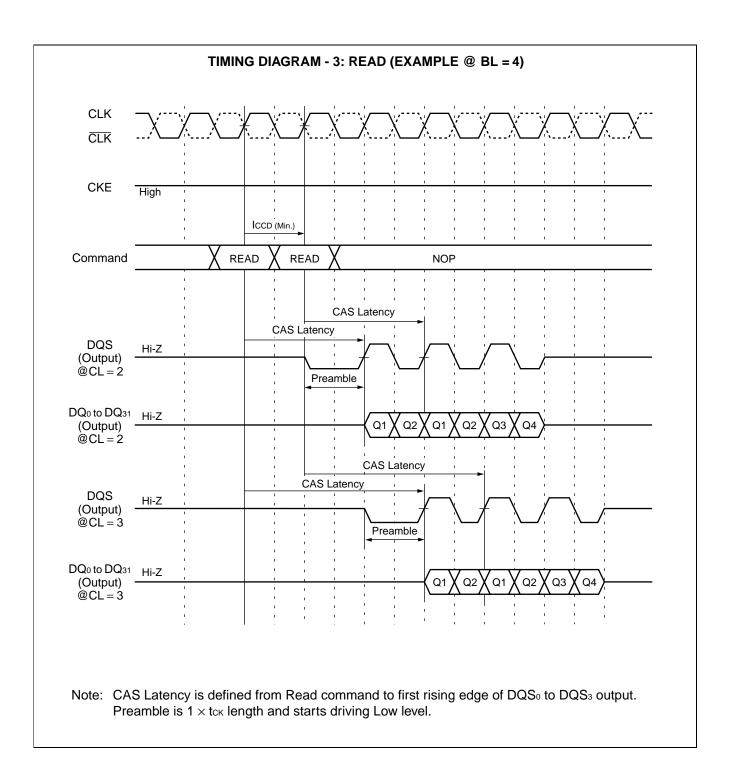



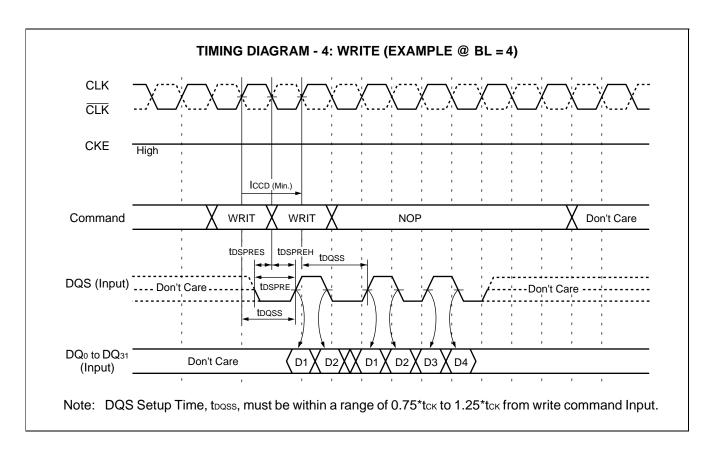



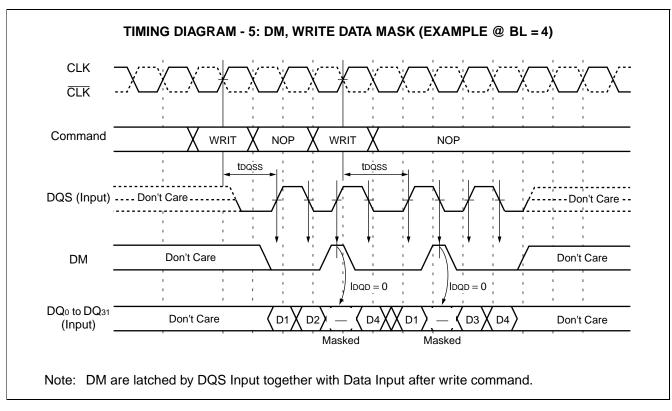


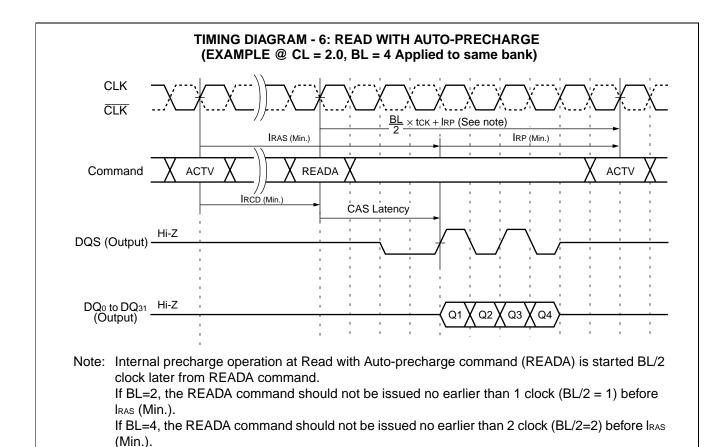



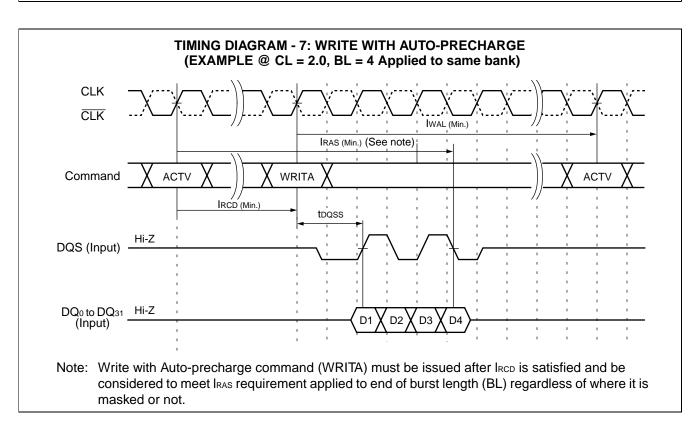



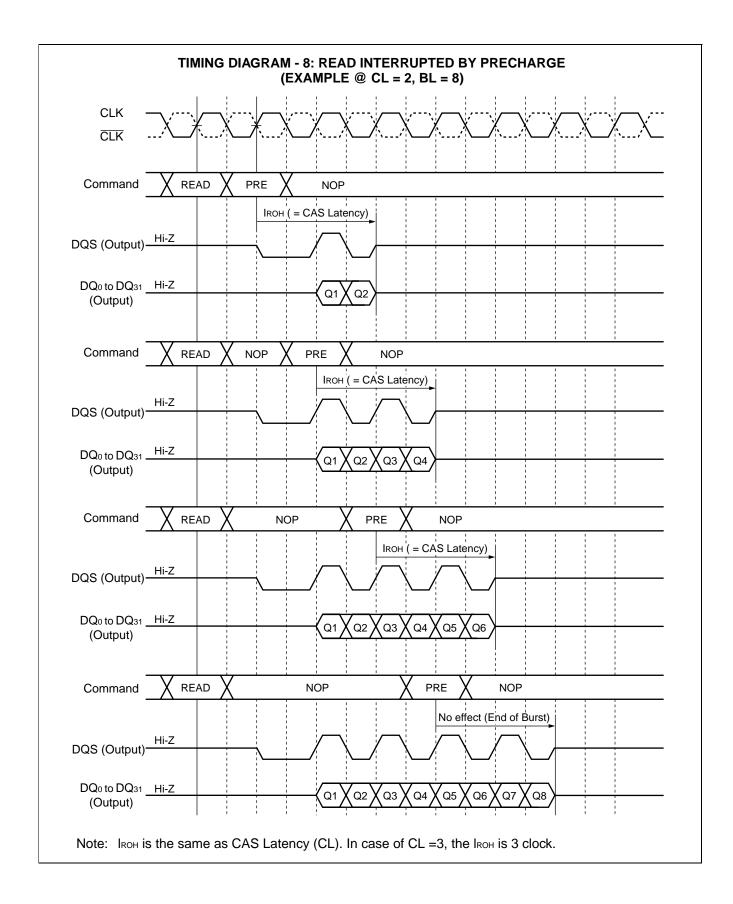



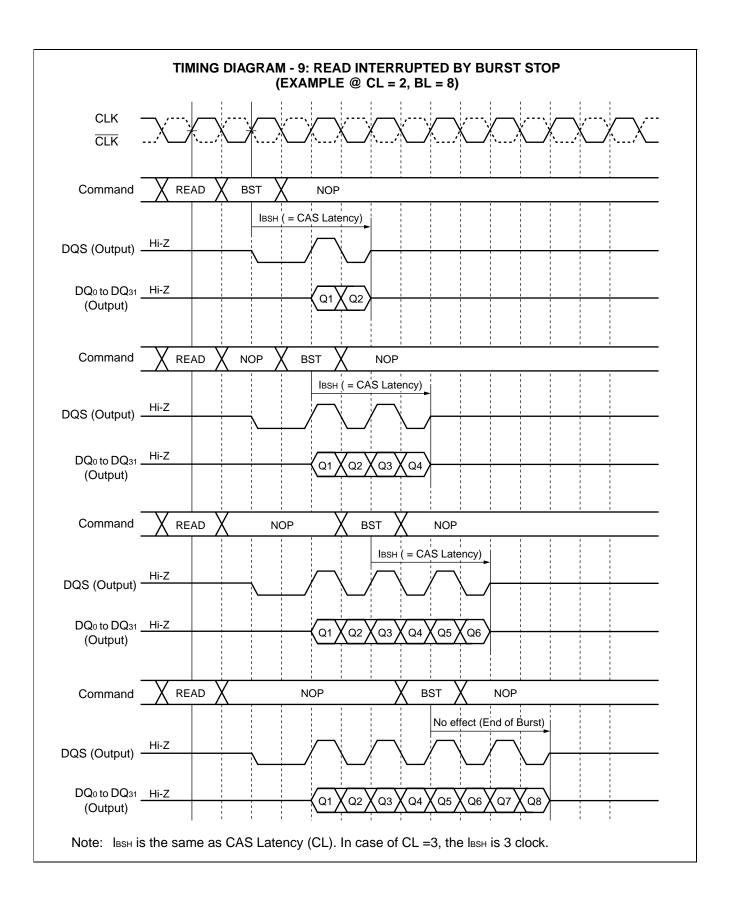



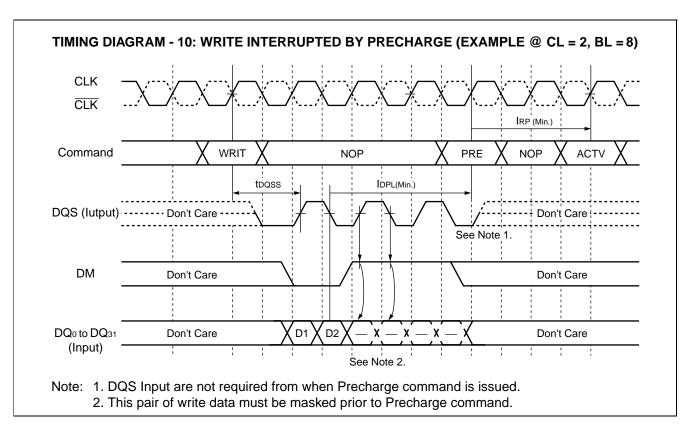


### **■ TIMING DIAGRAMS**

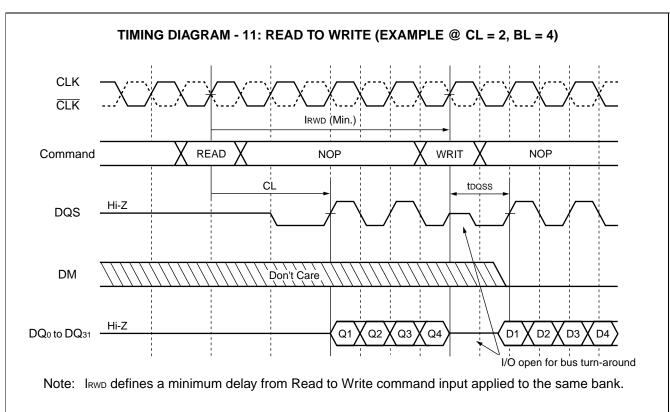


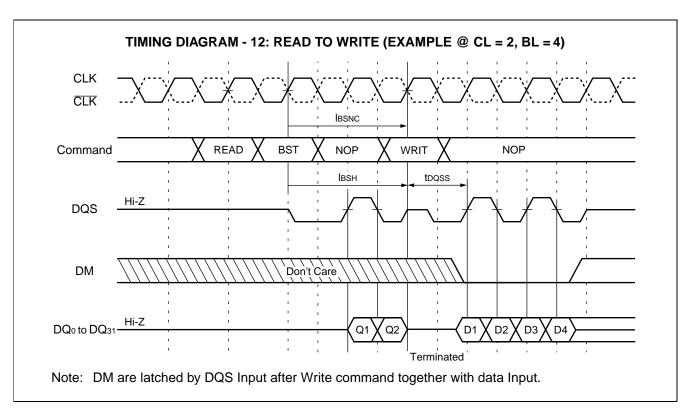



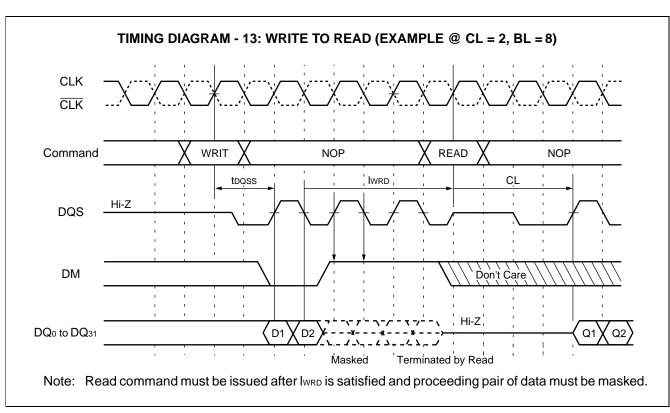



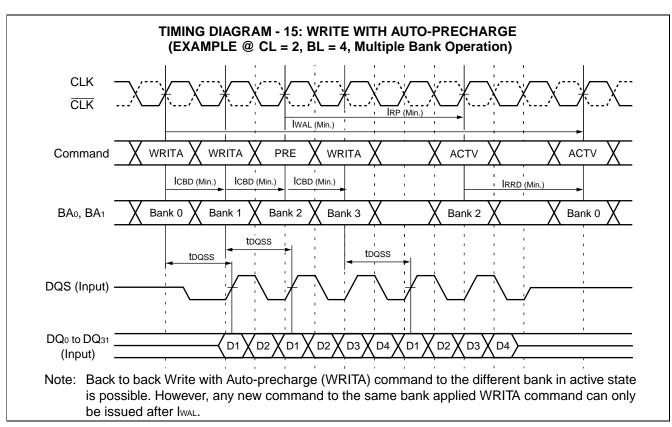



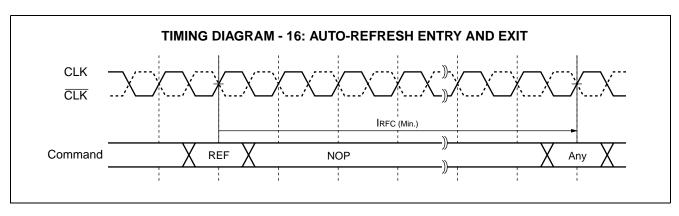



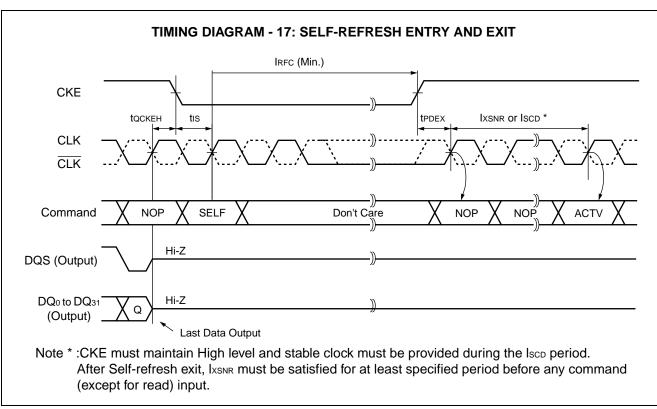



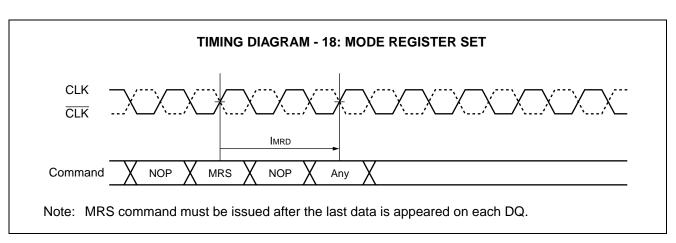






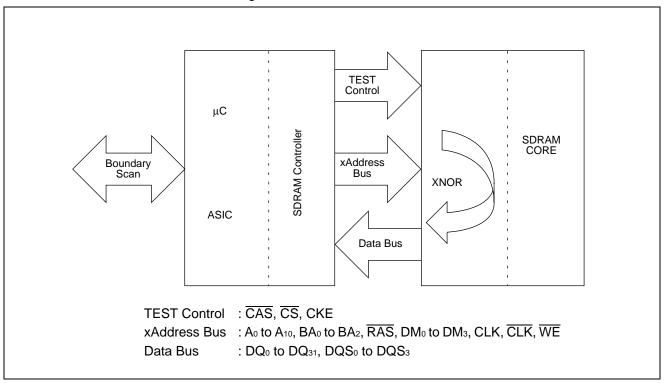












### **■ SCITT TEST MODE**

#### **ABOUT SCITT**

SCITT (Static Component Interconnection Test Technology) is an XNOR circuit based test technology that is used for testing interconnection between SDRAM and SDRAM controller on the printed circuit boards. SCITT provides inexpensive board level test mode in combination with boundary-scan. The basic idea is simple, consider all output of SDRAM as output of XNOR circuit and each output pin has a unique mapping on the input of SDRAM. The ideal schematic block diagram is as shown below.



It is static and provides easy test pattern that result in a high diagnostic resolution for detecting all open/short faults.

#### **SCITT TEST SEQUENCE**

The followings are the SCITT test sequence. SCITT Test can be executed after power-on and prior to Precharge command in FUNCTION DESCRIPTION POWER-UP INITIALIZATION. Once Precharge command is issued to SDRAM, it never get back to SCITT Test Mode during regular operation unless reset power supply for the purpose of a fail-safe way in get in and out of test mode.

- 1. Maintain all input signals (except CLK, CLK) to be Low state (or at least CKE to be Low) and maintain CLK and CLK to be complementary state.
- 2. Apply VDD voltage to all VDD pins before or at the same time as VDDQ pins.
- 3. Apply  $V_{DD}$  voltage to all  $V_{DDQ}$  pins before or at the same time as  $V_{REF}$  and  $V_{TT}$ .
- 4. Apply VREF and VTT (VTT is applied to the system).
- 5. Maintain stable power for a minimum of 100μs.
- 6. Enter SCITT test mode.
- 7. Execute SCITT test.
- 8. Exit from SCITT mode.

It is required to follow Power On Sequence to execute read or write operation.

- 9. Start clock after all power supplies reached in a specified operating range and maintain stable condition for a minimum of 200µs.
- After the minimum of 200μs stable power and clock, apply NOP condition and take CKE to be High state.
- Issue Precharge All Banks (PALL) command or Precharge Single Bank (PRE) command to every banks.
- 12. Issue EMRS to enable DLL, DE = Low.
- 13. Issue Mode Register Set command (MRS) to reset DLL, DR = High. An additional clock input for IPCD\*1 period is required to lock the DLL.
- 14. Apply minimum of two Auto-refresh command (REF).\*2
- 15. Program the mode register by Mode Register Set command (MRS) with DR = Low.\*2

The 6,7,8 steps define the SCITT mode available. It is possible to skip these steps if necessary (Refer to "■ FUNCTION DESCRIPTION POWER-UP INITIALIZATION").

Notes: \*1. The lpcb depends on operating clock period. The lpcb is counted from "DLL Reset" at step-13 to any command input at step-15.

\*2. The Mode Register Set command (MRS) can be issued before two Auto-refresh cycle.

#### **COMMAND TRUTH TABLE Note \*1**

|                             | Control        |       |      | Input |     |                                                                           |                                          | Output |     |                                           |                                            |
|-----------------------------|----------------|-------|------|-------|-----|---------------------------------------------------------------------------|------------------------------------------|--------|-----|-------------------------------------------|--------------------------------------------|
|                             | CAS            | CS    | CKE  | WE    | RAS | A <sub>0</sub> to A <sub>10</sub> ,<br>BA <sub>0</sub> to BA <sub>2</sub> | DM <sub>0</sub><br>to<br>DM <sub>3</sub> | CLK    | CLK | DQ <sub>0</sub><br>to<br>DQ <sub>31</sub> | DQS <sub>0</sub><br>to<br>DQS <sub>3</sub> |
| SCITT mode entry H→L *      | <b>□</b> √1 *2 | 2 1 1 | ı    | L X   | Х   | Х                                                                         | Х                                        | Н      | L   | Х                                         | Х                                          |
| Scri i mode entry           | II→L           | L     | L    | ^     | ^   | ^                                                                         |                                          | L      | Н   |                                           |                                            |
| SCITT mode exit             | L→H *3         | H *5  | L *5 | Х     | Х   | Х                                                                         | Х                                        | Х      | Х   | Х                                         | Х                                          |
| SCITT mode output enable *4 | L              | L     | Н    | V     | V   | V                                                                         | V                                        | V      | V   | V                                         | V                                          |

Notes: \*1. L = Logic Low, H = Logic High, V = Valid, X = either L or H

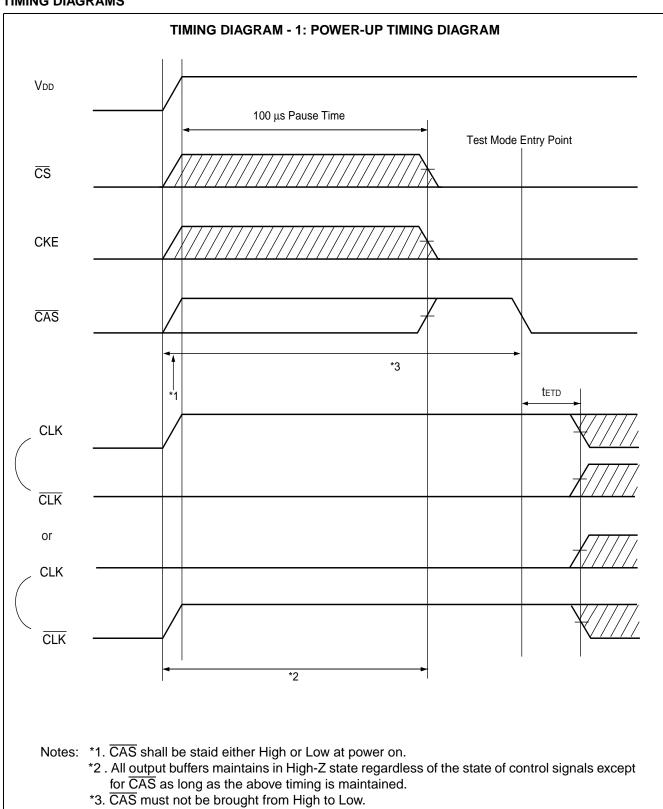
- \*2. The SCITT mode entry command assumes the first CAS falling edge with CS = CKE = L and CLK, CLK signals are complementary after power on.
- \*3. The SCITT mode exit command assumes the first CAS rising edge after the test mode entry.
- \*4. Refer the test code table.
- \*5.  $\overline{CS}$  = H or CKE = L is necessary to disable outputs in SCITT mode exit.

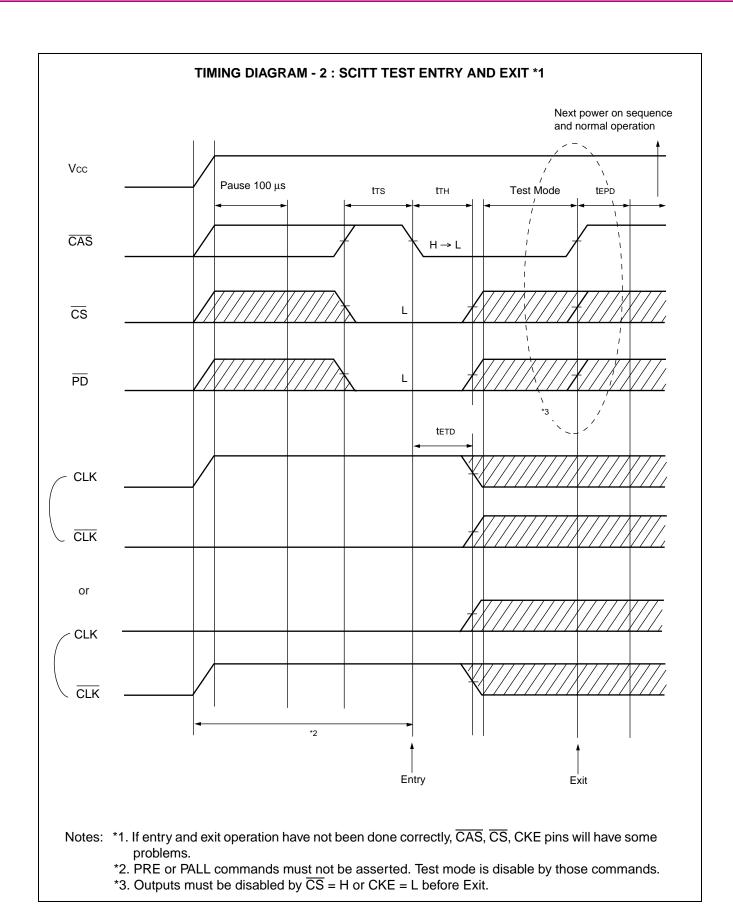
#### **TEST CODE TABLE**

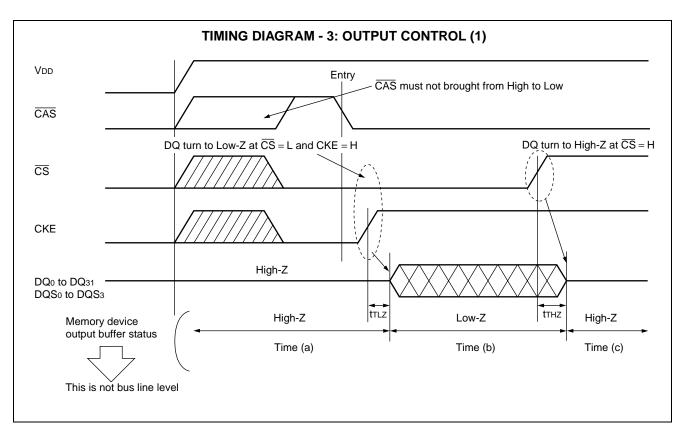
 $DQ_0$  to  $DQ_{31}$  and  $DQS_0$  to  $DQS_3$  output data is static and is determined by following logic during the SCITT mode operation.

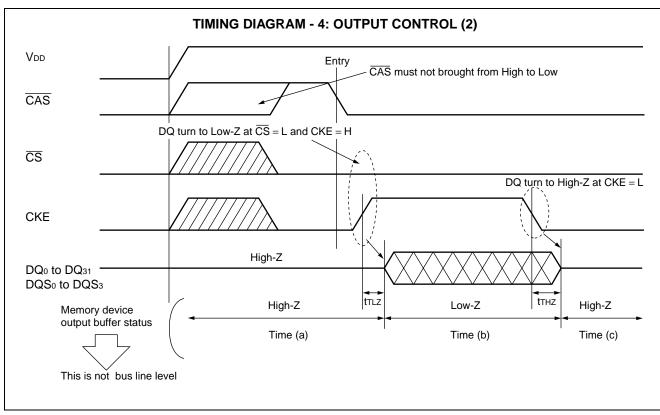
```
DQ_0 = \overline{RAS}  xnor  A_0
                                                                   DQ_{12} = \overline{RAS}  xnor BA_0
                                                                                                                                      DQ_{24} = A_0 \text{ xnor } A_4
DQ_1 = \overline{RAS} \times A_1
                                                                   DQ_{13} = \overline{RAS} \times SA_2
                                                                                                                                      DQ_{25} = A_0 \text{ xnor } A_5
DQ_2 = \overline{RAS}  xnor  A_2
                                                                   DQ_{14} = \overline{RAS} \times DM_0
                                                                                                                                      DQ_{26} = A_0 \text{ xnor } A_6
DQ_3 = \overline{RAS} \times A_3
                                                                   DQ_{15} = \overline{RAS} \times DM_1
                                                                                                                                      DQ_{27} = A_0 \text{ xnor } A_7
DQ_4 = \overline{RAS} \times A_4
                                                                   DQ_{16} = \overline{RAS} \times DM_2
                                                                                                                                      DQ_{28} = A_0 \text{ xnor } A_8
DQ_5 = \overline{RAS} \times A_5
                                                                   DQ_{17} = \overline{RAS}  xnor  DM_3
                                                                                                                                      DQ_{29} = A_0 \text{ xnor } A_9
DQ_6 = \overline{RAS} \times A_6
                                                                   DQ_{18} = \overline{RAS} \times CLK
                                                                                                                                      DQ_{30} = A_0 \text{ xnor } A_{10}
DQ_7 = \overline{RAS} \times A_7
                                                                   DQ_{19} = \overline{RAS} \times \overline{CLK}
                                                                                                                                      DQ_{31} = A_0 \text{ xnor } BA_0
DQ_8 = \overline{RAS} \times A_8
                                                                   DQ_{20} = \overline{RAS} \times \overline{WE}
                                                                                                                                      DQS_0 = A_0 \text{ xnor } BA_1
DQ_9 = \overline{RAS} \times A_9
                                                                   DQ_{21} = A_0 \text{ xnor } A_1
                                                                                                                                      DQS_1 = A_0 \times BA_2
DQ_{10} = \overline{RAS}  xnor  A_{10}
                                                                   DQ_{22} = A_0 \text{ xnor } A_2
                                                                                                                                      DQS_2 = A_0 \text{ xnor } DM_0
DQ_{11} = \overline{RAS} \times SA_1
                                                                   DQ_{23} = A_0 \text{ xnor } A_3
                                                                                                                                      DQS_3 = A_0 \text{ xnor } DM_1
```

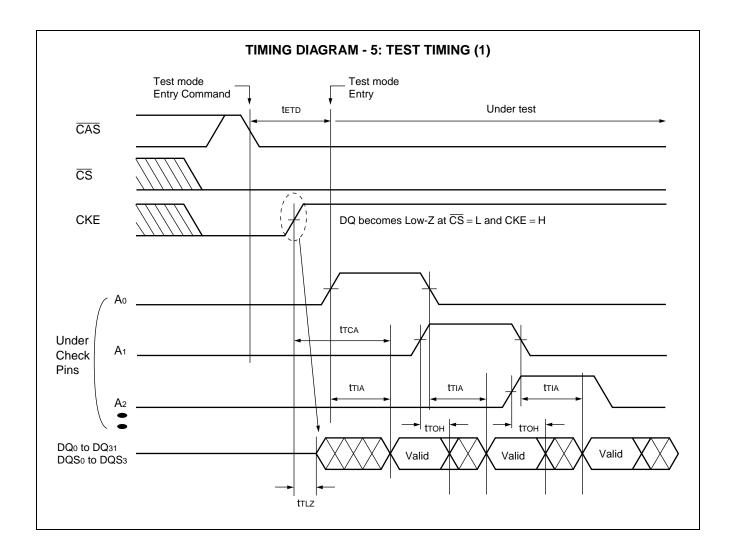
#### • EXAMPLE OF TEST CODE TABLE

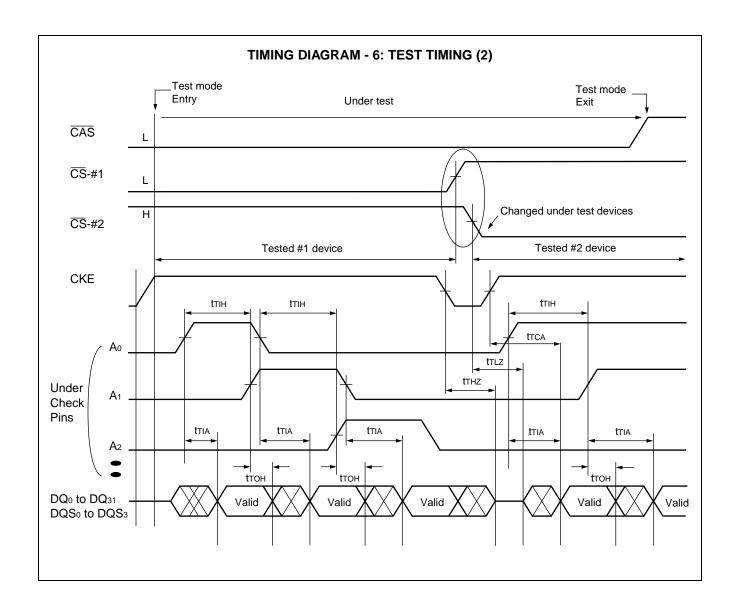

| Input bus                                                               | Output bus                                                                             |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| RAS<br>A44<br>A44<br>A44<br>A44<br>A44<br>A44<br>A44<br>A44<br>A44<br>A | 00023<br>00022<br>00022<br>00023<br>00023<br>00023<br>00023<br>00023<br>00023<br>00023 |
| 10000000000000000000000000000000000000                                  |                                                                                        |

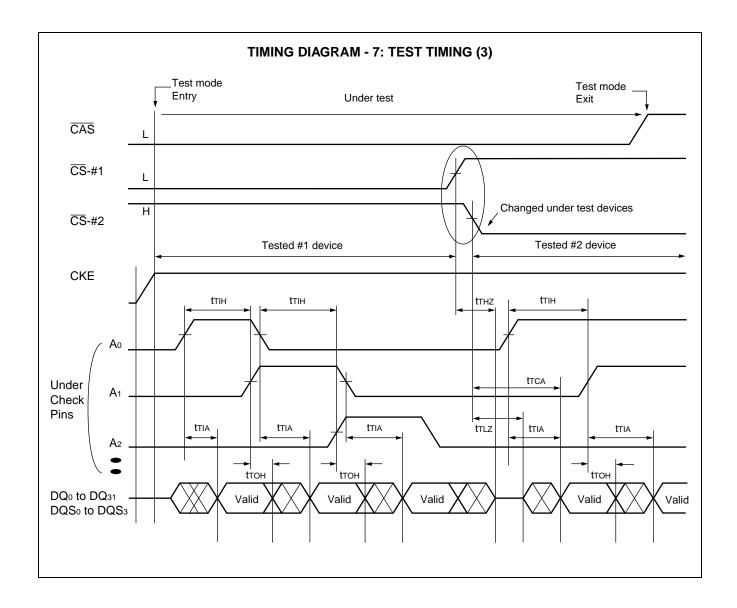

0 = input Low, 1 = input High, L = output Low, H = output High


### **AC SPECIFICATION**


| Parameter    | Description                                                             | Min. | Max. | Units |
|--------------|-------------------------------------------------------------------------|------|------|-------|
| t⊤s          | Test mode entry set up time                                             | 10   | _    | ns    |
| tтн          | Test mode entry hold time                                               | 10   | _    | ns    |
| <b>t</b> epd | Test mode exit to power on sequence delay time                          | 10   | _    | ns    |
| tπιz         | CS, CKE to output in Low-Z time                                         | 0    | _    | ns    |
| tтнz         | CS, CKE to output in High-Z time                                        | 0    | 20   | ns    |
| <b>t</b> TCA | Test mode access time from control signals (clock enable & chip select) | _    | 40   | ns    |
| <b>t</b> tia | Test mode Input access time                                             | _    | 20   | ns    |
| <b>t</b> тон | Test mode Output Hold time                                              | 0    | _    | ns    |
| <b>t</b> etd | Test mode entry to test delay time                                      | 10   |      | ns    |
| tтıн         | Test mode input hold time                                               | 30   | _    | ns    |


### **TIMING DIAGRAMS**

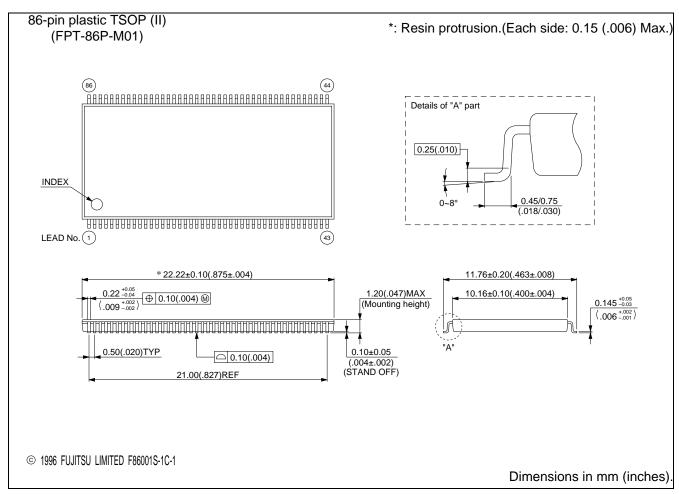











## **■** ORDERING INFORMATION

| Part number      | Package                 | Remarks |  |  |
|------------------|-------------------------|---------|--|--|
| MB81P643287-50FN | 86-pin plastic TSOP(II) |         |  |  |
| MB81P643287-60FN | (FPT-86P-M01)           |         |  |  |

### **■ PACKAGE DIMENSIONS**



# **FUJITSU LIMITED**

For further information please contact:

#### **Japan**

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

Shinjuku Dai-Ichi Seimei Bldg. 7-1,

Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347

Fax: +81-3-5322-3386 http://www.fujitsu.co.jp/

#### North and South America

FUJITSU MICROELECTRONICS, INC.

3545 North First Street,

San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center

Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608

Fax: +1-408-922-9179

http://www.fujitsumicro.com/

#### **Europe**

FUJITSU MICROELECTRONICS EUROPE GmbH

Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

#### **Asia Pacific**

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan

#05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

#### Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong,

Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0010

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

#### CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.