DS04-27502-3E

ASSP For Power Supply Applications

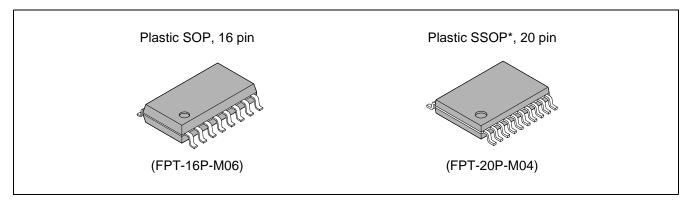
Bi-CMOS

Battery Backup IC

MB3790

■ DESCRIPTION

The MB3790 is designed to control power supplies to SRAM, logic IC, or other circuit devices and protects them against momentary power failures by using backup batteries. In addition to its function to supply the power to these devices, it has a function to switch the source of power to the primary or secondary backup battery when the power supply voltage drops below a predetermined level. Also, it outputs a reset signal when the power supply turns on or off or when a fault occurs in the power supply.

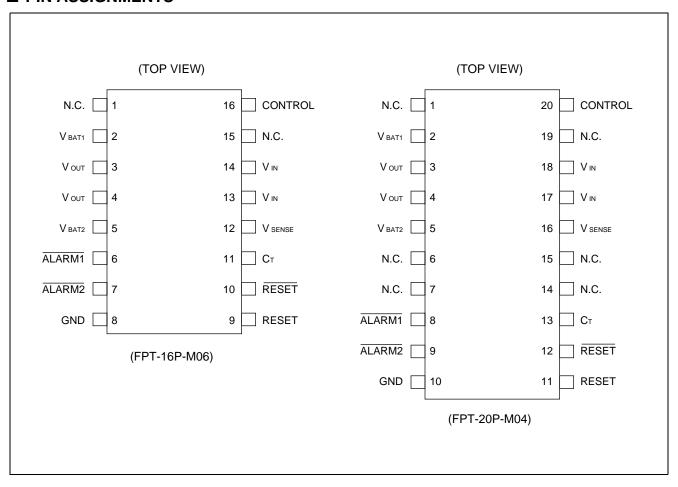

Ideally designed as a single-chip IC for power supply control, the MB3790 consumes only a minimal current and comes in a thin-type package. Therefore, it is best suited for power supply control in memory cards and similar other devices.

■ FEATURES

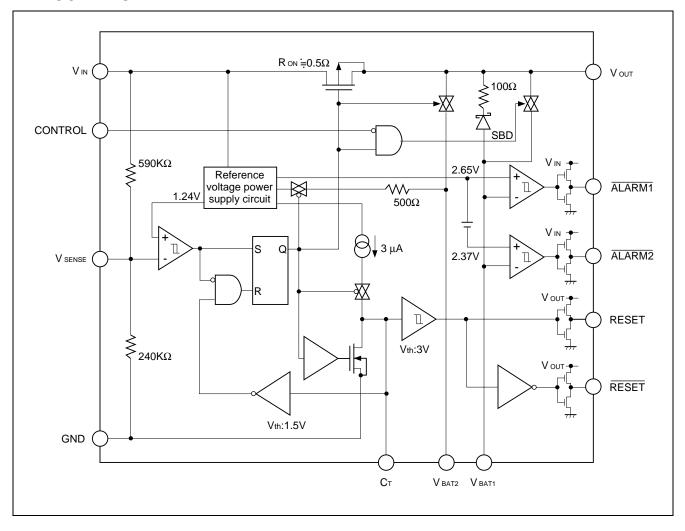
- Input circuit current consumption when non-loaded: 50 μA [typ]
- Output drive current: 200 mA [max]
- Resistance between input and output: 0.5 ohms [typ]
- Input power-down detection level: 4.2 V ± 2.5 %
- · On-chip power-on reset circuit
- Primary battery voltage-down detection levels: 2.65 V, 2.37 V

(Continued)

PACKAGES



^{*:} Since the SSOP is an extremely thin package, use a partial heating method when mounting the device.


(Continued)

- On-chip secondary battery recharging function
- Output current during battery backup: V_{BAT1}: 500 μA [max], V_{BAT2}: 50 μA [max]
- Leakage current: 0.5 μA [max]

■ PIN ASSIGNMENTS

■ BLOCK DIAGRAM

■ PIN DESCRIPTION

Pin number		Symbol	I/O	Name and function	
16P	20P	Symbol	1/0	Name and function	
1	1	N.C.	_	Non connection	
2	2	VBATI	I	This pin connects to the primary battery.	
3, 4	3, 4	Vouт	0	These pins supply the output voltage. (Range of output current value $I_{\text{OUT}} \leq 200 \text{ mA})$	
5	5	V _{BAT2}	I/O	This pin connects to the secondary battery. When the power supply voltage is greater than or equal to the detection level (i.e., VINH), the secondary battery is recharged using the constant-voltage method of charging.	
_	6, 7	N.C.	_	Non connection	
6	8	ALARM1	0	This is an open-collector output pin for a primary battery alarm signal. When the power supply voltage is greater than or equal to V_{INH} , it monitors the primary battery voltage. If the power supply voltage is less than V_{INL} , it does not monitor the primary battery voltage. If V_{BAT1} is less than or equal to 2.65 V, its output voltage is forced to a Low level.	
7	9	ALARM2	0	This is an open-collector output pin for a primary battery alarm signal. When the power supply voltage is greater than or equal to V_{INH} , it monitors the primary battery voltage. If the power supply voltage is less than V_{INL} , it does not monitor the primary battery voltage. If V_{BAT1} is less than or equal to 2.37 V, its output voltage is forced to a Low level.	
8	10	GND	_	This pin connects to the ground (0 V).	
9	11	RESET	0	This pin connects to the ground (0 v). This pin outputs a reset signal. When the power supply voltage is less than or equal to V _{INL} , it outputs a High level. If the power supply voltage of SRAM is less than the designated range, it directly controls the CE or CS of SRAM to disable writes and thereby protect the data in memory.	
10	12	RESET	0	This pin outputs an inverted signal of RESET.	
11	13	Ст	_	This pin is used to set the reset pulse width. Insert a capacitor between this pin and GND to set the pulse width.	
_	14, 15	N.C.	_	Non connection	
12	16	Vsense	I	This pin accepts comparator input for detecting the power supply voltage level. For details, refer to APPLICATION in this data sheet.	
13, 14	17, 18	Vin	I	These pins accept the input voltage for the device.	
15	19	N.C.	_	Non connection	
16	20	CONTROL	I	This pin is used for output control. For details, refer to APPLICATION in this data sheet.	

■ FUNCTIONAL DESCRIPTION

1. Battery Backup Function

- When the power supply voltage exceeds the voltage detection level (i.e., V_{INH}), the device outputs a current of up to 200 mA from the V_{IN} power supply to the load circuit via the V_{OUT} pin.
- When the power supply voltage is less than or equal to V_{INL}, the device switches the source of power for V_{OUT} from V_{IN} to the primary or secondary battery for backup purposes.

2. Power Supply Voltage Level Detect Function

When the power supply voltage drops below V_{INL} , the voltage level detection comparator is actuated to perform the following (note that the detection voltage level has the hysteresis characteristics listed in ELECTRICAL CHARACTERISTICS in this data sheet):

- The comparator first outputs the RESET signal (High level).
- It switches the source of power for the load circuit to the primary or secondary battery.

The power supply voltage detection level can be adjusted by fitting an external resistor to the V_{SENSE} pin. When adjusting the detection level, be sure to set it to 4.0 V or higher by considering the power supply voltage for the internal circuit operation.

In addition, the detection set time can be extended by connecting a capacitator. For this method of adjustment, refer to APPLICATION in this data sheet.

3. Reference Voltage Circuit

This is a temperature-compensated reference voltage circuit of a band gap type so that it outputs a trimming-adjusted exact reference voltage.

The reference voltage power supply is used to set the reference voltage/constant current values of the detection circuit, as well as the secondary battery recharging voltage.

4. Power-on Reset Function

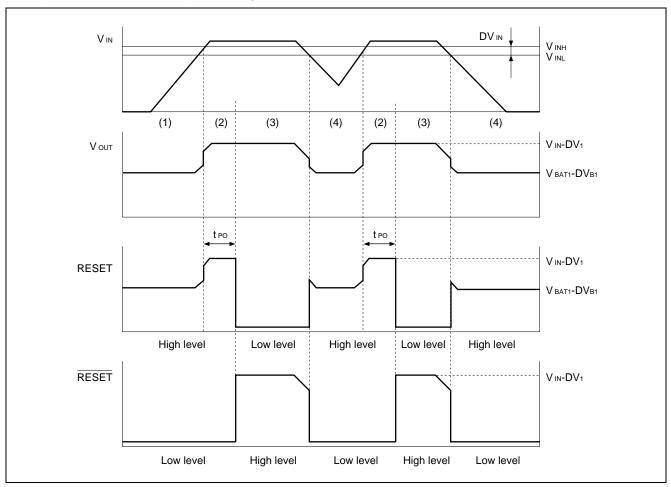
By charging the capacitator connected to the C_T pin with constant current (approx. 3 μ A), this function determines the reset pulse width. The calculation formula for this is given below:

```
Reset pulse width tpo (sec) \cong CT (F) \times 10<sup>6</sup> (When CT = 1000 pF, tpo \cong 1 ms [typ])
```

5. Primary Battery Voltage Detection Function

If the primary battery voltage drops below the detection level when the power supply voltage is greater than or equal to V_{INL}, the device outputs an alarm signal (Low level) from the CMOS output pin, ALARM1 or ALARM2.

Note that the voltage level detection comparator has the hysteresis characteristics listed in ELECTRICAL CHARACTERISTICS in this data sheet.


- When the primary battery voltage is 2.65 V [typ] or less:
 The ALARM1 output pin is forced to a Low level to issue an alarm indicating that it's time to replace the primary battery.
- When the primary battery voltage is 2.37 V [typ] or less:
 The ALARM2 output pin is forced to a low level to issue an alarm indicating that the primary battery voltage is less than the voltage necessary to retain the SRAM data (approx. 2.0 V)

6. Secondary Battery Recharging Function

When the power supply voltage is greater than or equal to V_{INL}, the device recharges the secondary battery using the constant-voltage method of charging. Note that the typical value of the device's internal recharging resistor is 500 ohms.

■ DESCRIPTION OF OPERATION

1. Operation When the Input Voltage Goes On or Off

(1) Power-on

While the power supply voltage is less than V_{INH} (4.3 V typ), the protected devices such as SRAM or a microprocessor are in the standby mode with the power supplied by the battery.

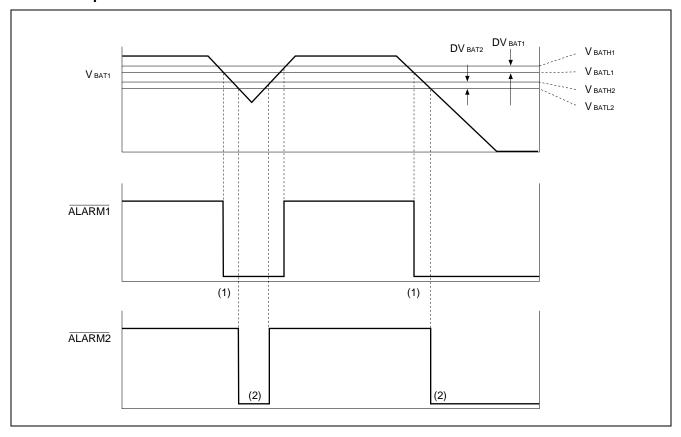
When the power supply voltage rises to a level greater than or equal to V_{INH}, the PMOS transistor between the input/output pins turns on and the power for such devices is supplied from the V_{IN} pin. At the same time, the primary battery voltage detection and the secondary battery recharging operations are actuated.

(2) Standby mode

When the power supply voltage rises to a level greater than or equal to V_{INH} , the RESET pin outputs a High level for the set duration of time and the devices such as SRAM or a microprocessor are held in the standby mode. Note that the set duration of time can be adjusted by changing the capacitance of the C_T pin.

The RESET pin outputs an inverted signal of the RESET pin.

(3) Active mode


The reset signal is cleared and the devices such as SRAM or a microprocessor are placed in the operating mode.

(4) Momentary power failure or voltage dip

When the power supply voltage drops less than or equal to V_{INL} . (4.2 V typ) as the power supply goes down or its voltage dips momentarily, the RESET pin outputs a High level and the RESET pin outputs a low level. The devices such as SRAM or a microprocessor are thereby placed in the standby mode and powered from the battery. When in this mode, the primary battery voltage detection and the secondary battery recharging operations are stopped.

Note: To guarantee backup operation in case of momentary power failure, make sure the 5 V-to-0 V fall time on V_{IN} is 50 μs or more by using, for example, a capacitator.

2. Alarm Operation

If the primary battery voltage decreases while the power supply voltage (V_{IN}) is greater than or equal to V_{INH} (4.3 V typ), alarm signals are output as described below. At this time, if the V_{BAT1} pin is released open, the output from the alarm pin becomes indeterminate.

(1) Primary battery replacement alarm (alarm-1 output)

If the primary battery voltage drops to V_{BAT1} (2.65 V typ), the $\overline{ALARM1}$ pin is forced to a Low level to issue an alarm indicating that it's time to replace the primary battery.

(2) Primary battery minimum voltage alarm (alarm-2 output)

If the primary battery voltage further drops to V_{BAT2} (2.37 V typ), the $\overline{ALARM2}$ pin is forced to a Low level to issue an alarm indicating that the primary battery power has dropped below the voltage necessary to retain the SRAM data (approx. 2.0 V).

■ ABSOLUTE MAXIMUM RATINGS

 $(Ta = +25^{\circ}C)$

Parameter	Symbol	Conditions		Rating	Unit				
Input voltage	Vin							-0.3 to 6	V
Battery voltage	VBAT			-0.3 to 6	V				
Reset output Voltage	VRESET		0.3 to Vouт + 0.3 (≤ 6)		V				
Alarm output Voltage	Valarm		- 0.3 to V _{IN} +		V				
Output current	Іоит			250	mA				
Output high current	Іон	Source current		6	mA				
Output low current	loL	Sink current		6	mA				
Dower dissination	D-	Ta ≤ +25°C	SSOP	450*	mW				
Power dissipation	PD	ia ≥ +25°C	SOP	540*	mW				
Storage temperature	Tstg	_		-55 to +125	°C				

^{*:} When mounted on a 4 cm-square double-side epoxy board.

WARNING: Permanent device damage may occur if the above ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions		Unit		
rarameter	Syllibol	Symbol Conditions		Тур.	Max.	Oilit
Input voltage	VIN		_	5.0	5.5	V
Battery voltage	VBAT	_	_	3.0	3.3	V
Output current	louт		0	_	200	mA
Output current during	O(BAT1)	Supply from the primary battery	_	_	500	μΑ
battery backup	lo(BAT2)	Supply from the secondary battery	_	_	50	μΛ
Operating temperature	Тор	_	-30	_	+70	°C

■ ELECTRICAL CHARACTERISTICS

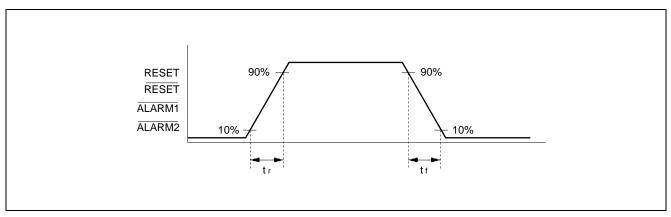
• DC characteristics

(Recommended operating conditions unless otherwise noted.)

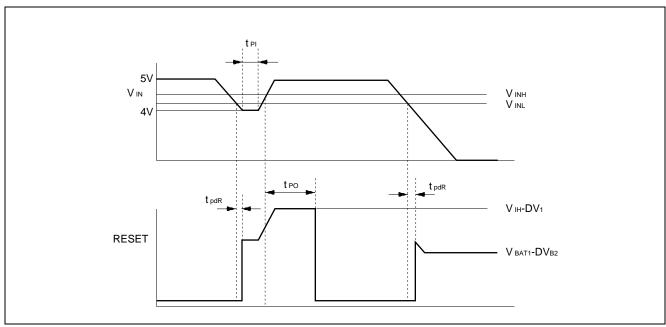
 $(V_{IN} = +5 \text{ V}, \text{ Ta} = +25^{\circ}\text{C})$

Parameter		Symbol Conditions		Value			Unit
		Symbol	Conditions	Min.	Тур.	Max.	Ullit
All sections	Input current	I _{IN1}	Іоит = 0 mA	_	50	100	μΑ
Backup	Input/output voltage	DV ₁	Іоит = 1 mA		0.5	10	mV
Power Supply	difference	DV ₂	Iоит = 200 mA		100	300	mV
Section	Output delay time	tro	$C_0 = 0.01 \mu F, C_T = 0$		2.0	10	μs
		VINL	Vin	4.10	4.20	4.30	>
	Input low voltage detection		$Ta = -30^{\circ}C \text{ to } + 70^{\circ}C$	4.05	4.20	4.35	V
	input low voltage detection	VINH	Vin	4.20	4.30	4.40	V
			$Ta = -30^{\circ}C \text{ to } + 70^{\circ}C$	4.15	4.30	4.45	V
	Input low voltage hysteresis width	DVIN	VINH - VINL	50	100	150	mV
Power Supply	Reset output voltage	Vohr	IOHR = 1 mA	4.5	4.8	_	V
Monitoring		Volr	lor = 5 mA	-	0.2	0.4	V
Section	Reset output voltage during backup V IN = 0 V VBAT1 = 3 V	Vohr	Iонг = 0.2 mA	2.2	2.6	_	V
		Volr	Iolr = 3 mA		0.2	0.4	V
	Reset pulse width	tpo	0 4000 = 5	0.5	1.0	2.0	ms
	Input pulse width	t_{Pl} $C_T = 1000 pF$		5.0	_	_	μs
	Reset output rise time	t rR	Ст = 1000 pF	_	2.0	3.0	μs
	Reset output fall time	t fR	C _L = 100 pF	_	0.2	1.0	μs
	Reset output delay time	t pdR	V _{IN} slew rate < 0.1 V/μs	_	2.0	10	μs

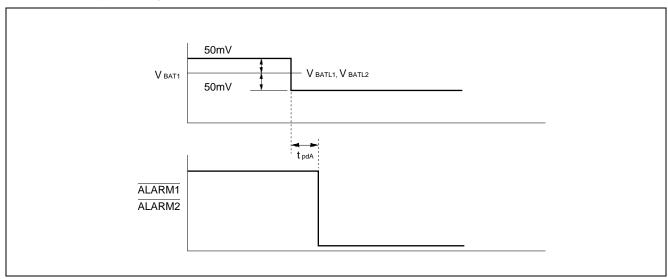
(Continued)

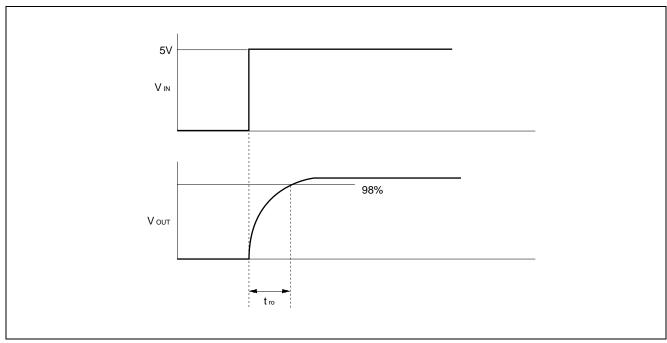

(Continued)

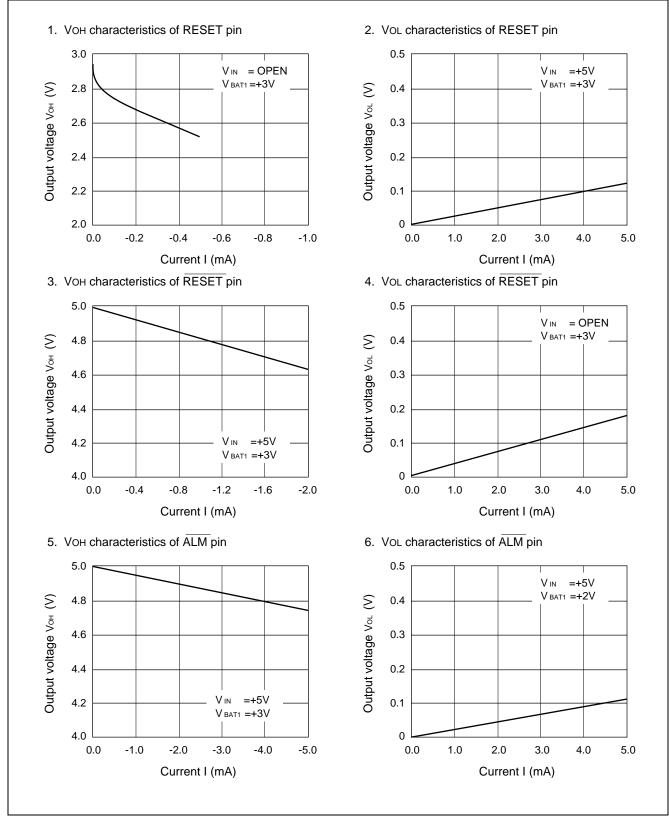
 $(V_{IN} = +5 \text{ V}, \text{ Ta} = +25^{\circ}\text{C})$


Devemates		Cumbal	0 1111		Value		l lmit
	Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		VBATL1	Vват	2.55	2.65	2.75	٧
	Low voltage detection 1		Ta = -30 °C to +70°C	2.52	2.65	2.78	V
	Low voltage detection i	V _{BATH1}	Vват	2.59	2.69	2.79	V
			Ta = -30 °C to +70°C	2.56	2.69	2.82	V
	Low voltage detection-1 hysteresis width	DV _{BAT1}	VBATH1 — VBATL1	20	40	60	mV
		V _{BATL2}	Vват	2.27	2.37	2.47	V
	Low voltage detection 2		$Ta = -30^{\circ}C \text{ to } +70^{\circ}C$	2.24	2.37	2.50	V
	Low voltage detection 2	V _{BATH2}	Vват	2.31	2.41	2.51	٧
Battery-1 Monitoring			$Ta = -30^{\circ}C \text{ to } +70^{\circ}C$	2.28	2.41	2.54	V
Section	Low voltage detection-2 hysteresis width	DV _{BAT2}	VBATH2 - VBATL2	20	40	60	mV
	Low voltage detection difference	DVBAT	VBATL1 — VBATL2	0.26	0.28	0.30	V
	Battery-1 input current	Івата	VBAT = 3 V, VIN = 0 V	-100	_	500	nA
	battery-1 input current	Іватв	VBAT = 3 V, VIN = 5 V	-100	_	500	nA
	Battery-1 output voltage	D) (I _{BAT1} = 100 μA	_	0.30	0.35	V
	difference during backup, CTL = GND	DV _{B1}	I _{BAT1} = 10 μA	_	0.10	0.15	V
	Alasa da da altara	Vона	Iона = 4 mA	4.5	4.8	_	V
	Alarm output voltage	Vola	IOLA = 5 mA	_	0.2	0.4	V
	Alarm output rise time	trA	0 400 - 5	_	2.0	3.0	μs
	Alarm output fall time	t_{fA} $C_L = 100 pF$			0.2	1.0	μs
	Alarm output delay time	t _{pdA} 50 mV overdrive		_	2.0	10	μs
	Battery-2 recharging voltage	VснG	Існց = −10 μА	2.80	3.00	3.20	V
Battery-2 Monitoring	Battery-2 recharging current	Існв	VcHG = 2.0 V	1.0	2.0	_	mA
Section	Battery-2 output voltage difference during backup	DV _{B2}	I _{BAT2} = 10 μA	_	0.10	0.15	V

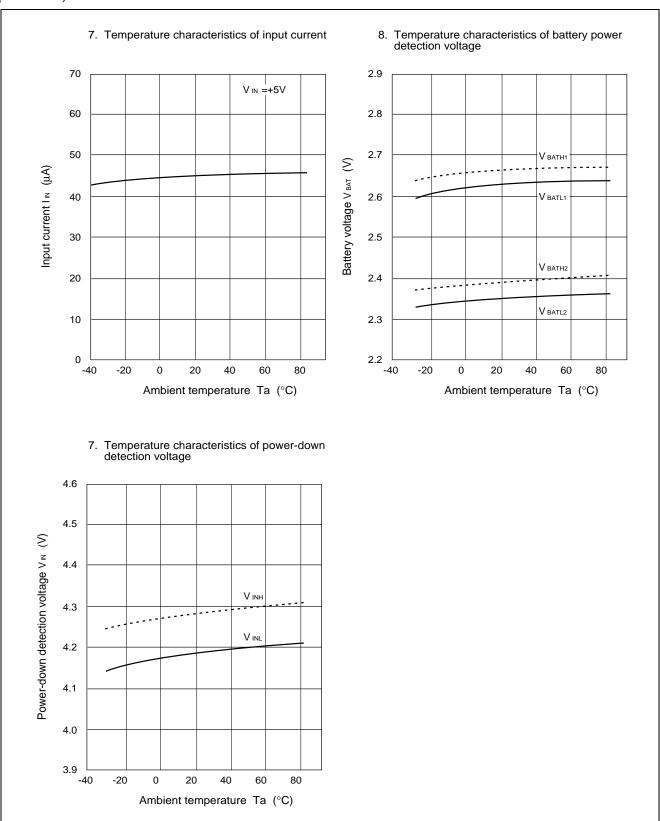
■ TIMING CHART


1. Rise/Fall Times on Reset and Alarm Pins: t_r/t_f


2. Reset Pulse Width: tpo; Input Pulse Width: tpi; Reset Output Delay Time: tpdR


3. Alarm Output delay time: tpdA

4. VOUT Output Delay Time: tro



■ TYPICAL CHARACTERISTIC CURVES

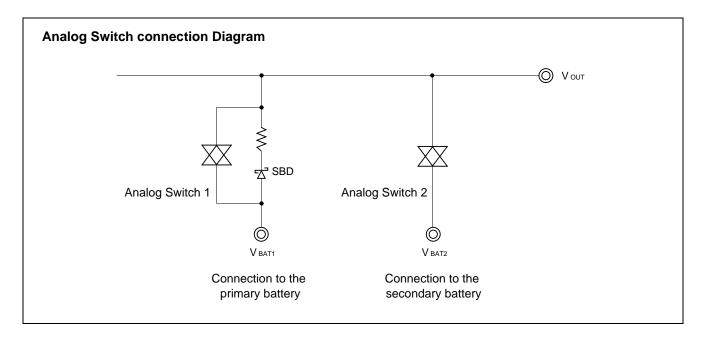
(Continued)

(Continued)

■ APPLICATION

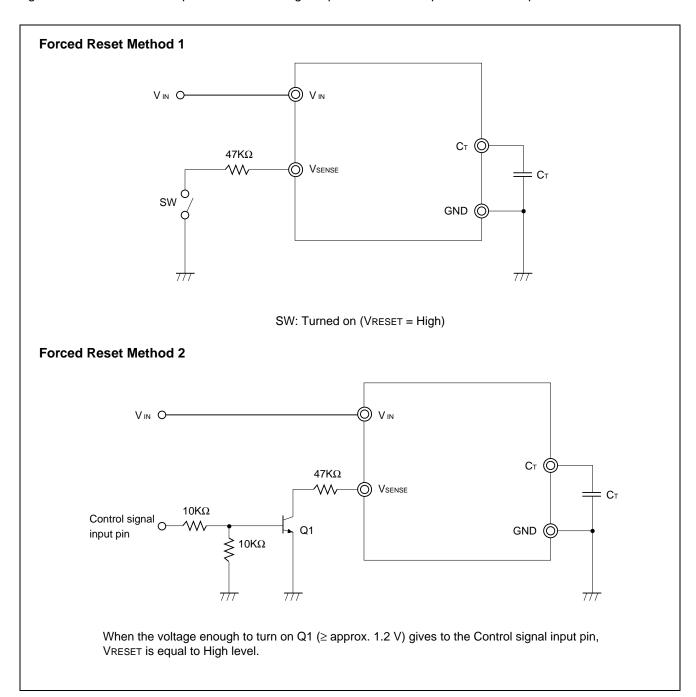
1. Method of Using the CONTROL Pin

It is possible to control the operation of analog switch 1 by entering a High or Low level to the CONTROL pin while being powered by the battery. The Table below shows how the analog switch operates when its operation is controlled from the CONTROL pin.


When using the primary and the secondary batteries in combination as in the case of memory cards, be sure to set the CONTROL pin High to prevent the primary battery from being recharged by the secondary battery current flowing from analog switch 1.

• Control Conditions of CONTROL Pin

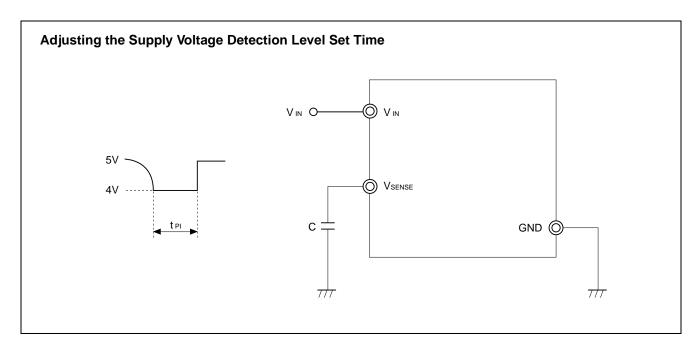
Operating state	Control c	onditions	ON/OFF State of analog switch*2			
Operating state	Input voltage (V _{IN})	CONTROL pin*1	Analog switch 1	Analog switch 2		
Standby/active state	VIN > VINL	High/Low	OFF	OFF		
Backup state	VINL > VIN	High (= Vouт)	OFF	ON		
Backup state	VINL > VIN	Low (= GND)	ON	ON		


^{*1:} If the CONTROL pin is released open, the logic state of the CMOS circuit may become instable letting current flow into the circuit. Therefore, the CONTROL pin must always have a High or Low level input.

^{*2:} The ON-resistance of the analog switch is approximately 10 K ohms.

3. Outputting Reset Signal Forcibly

The reset signal can be output forcibly by bringing the V_{SENSE} pin of the MB3790 to a Low level (< 1.24). The reset signal is held on until the capacitator C_T is charged up after the V_{SENSE} pin is released open.


[Reset Pulse Width Calculation Formula]

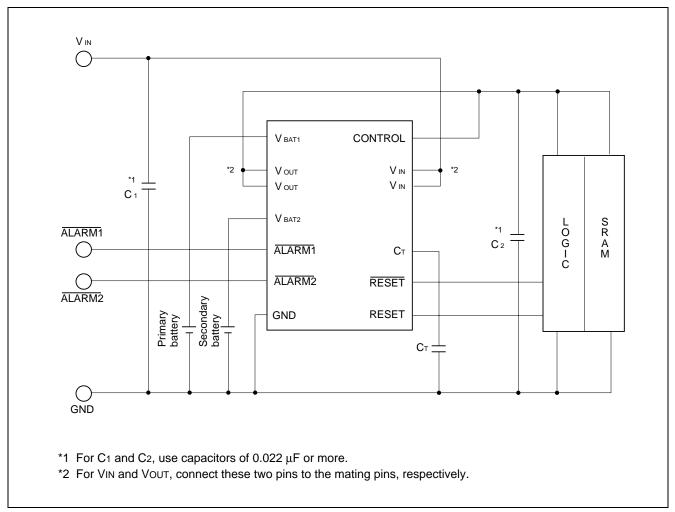
Reset Pulse Width t_{PO} (sec) = C_T (F) $\times 10^6$ (where C_T = capacitance)

Example: When $C_T = 1000 \text{ pF}$, $t_{PO} = 1 \text{ ms}$ (Typ)

4. Adjusting the Supply Voltage Detection Level Set time

The MB3790 outputs a reset signal when the power supply momentarily goes down or its voltage sags for 5 μ s or more. The set time before this reset signal is output can be extended by connecting a capacitor to the V_{SENSE} pin.

5. Compatibility with JEIDA Memory Card Guideline Ver. 4


The MB3790 has its $\overline{\text{ALM1}}$ and $\overline{\text{ALM2}}$ pin specifications matched to the BVD2 and BVD1 pin specifications of the JEIDA Memory Card Guideline Ver. 4. Therefore, the $\overline{\text{ALM1}}$ and $\overline{\text{ALM2}}$ pins can be connected directly to the BVD2 and BVD1 pins.

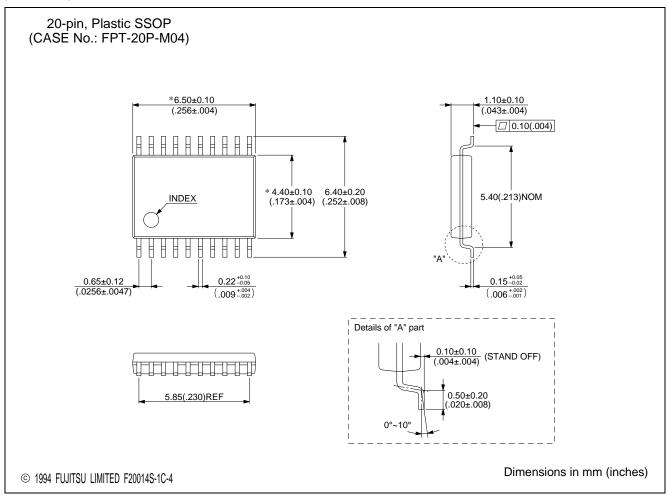
• Alarm Pin Detection Voltage Levels

Pin Name	$V_{\text{BAT1}} \leq 2.37 \text{ V}$	2.37 V < V _{BAT1} ≤ 2.65V	$\textbf{2.65 V} \leq \textbf{V}_{\text{BAT1}}$	Connected Pin
ALM1	Low level	Low level	High level	BVD2
ALM2	Low level	High level	High level	BVD1

VBAT1: Primary battery voltage

■ STANDARD DEVICE CONFIGURATION

■ ORDERING INFORMATION


Part number	Package	Remarks
MB3790PF	16 pin, Plastic SOP (FPT-16P-M06)	
MB3790PFT	20 pin, Plastic SSOP (FPT-20P-M04)	

■ PACKAGE DIMENSIONS

(Continued)

(Continued)

Since the SSOP (FPT-20P-M04) is built in an extremely thin structure, use a partial heating method when mounting the device.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan