DS07-13704-2E

16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90590 Series

MB90591/F591A/594/594G/F594A/F594G/ V590A/V590G

■ DESCRIPTION

The MB90590-series with two FULL-CAN interfaces and FLASH ROM is especially designed for automotive and industrial applications. Its main feature are two on board CAN*1 Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.

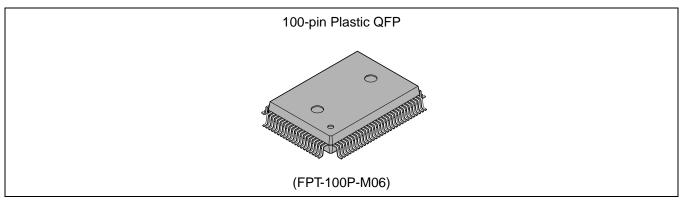
The instruction set of F²MC-16LX CPU core inherits AT architecture of F²MC^{*2} family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data. The MB90590 series has peripheral resources of 8/10-bit A/D converter,

UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)), stepping motor controller, and sound generator.

- *1: Controller Area Network (CAN) License of Robert Bosch GmbH
- *2: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

Clock


Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).

Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, four times the oscillation clock, operation at Vcc of 5.0 V)

(Continued)

■ PACKAGE

(Continued)

• Instruction set optimized for controller applications

Rich data types (bit, byte, word, long word)

Rich addressing mode (23 types)

Enhanced signed multiplication/division instruction and RETI instruction functions

Enhanced precision calculation realized by the 32-bit accumulator

• Instruction set designed for high level language (C) and multi-task operations

Adoption of system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed
 - 4-byte instruction queue
- · Enhanced interrupt function

8 levels, 34 factors

Automatic data transmission function independent of CPU operation

Extended intelligent I/O service function (EI2OS): Up to 10 channels

• Embedded ROM size and types

Mask ROM: 256 kbytes/384 kbytes

Flash ROM: 256 kbytes/384 kbytes

Embedded RAM size: 6 kbytes/8 kbytes

Flash ROM

Supports automatic programming, Embedded Algorithm TM *

Write/Erase/Erase-Suspend/Resume commands

A flag indicating completion of the algorithm

Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory

Erase can be performed on each block

Block protection with external programming voltage

· Low-power consumption (stand-by) mode

Sleep mode (mode in which CPU operating clock is stopped)

Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode

Clock mode

Hardware stand-by mode

• Process

0.5μm CMOS technology

• I/O port

General-purpose I/O ports: 78 ports

• Timer

Watchdog timer: 1 channel

8/16-bit PPG timer: 8/16-bit \times 6 channels

16-bit re-load timer: 2 channels

• 16-bit I/O timer

16-bit free-run timer: 1 channel Input capture: 6 channels Output compare: 6 channels

• Extended I/O serial interface: 1 channel

• UART (3 channels)

With full-duplex double buffer (8-bit length)

Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.

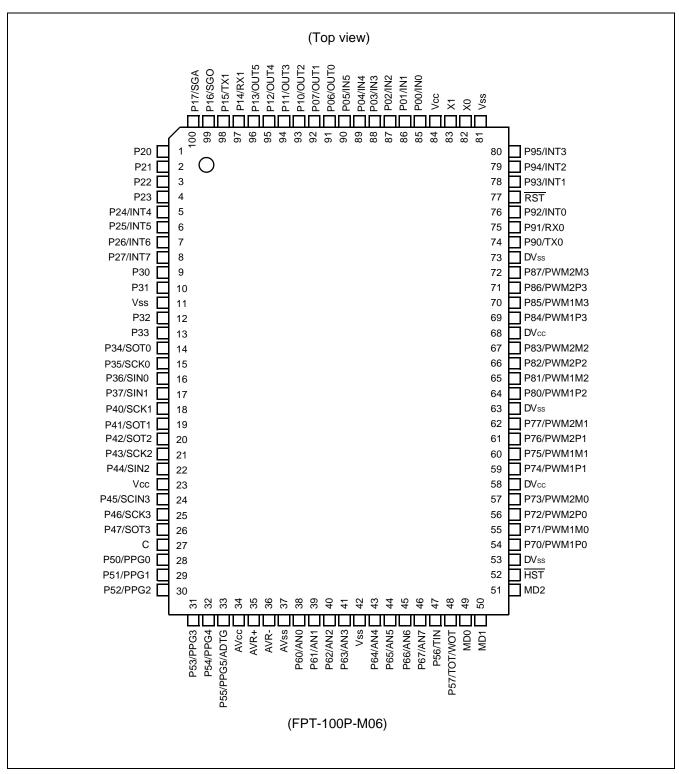
- Stepping motor controller (4 channels)
- External interrupt circuit (8 channels)

A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered by an external input.

- Delayed interrupt generation module
 Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels)
 8/10-bit resolution can be selectively used.
 Starting by an external trigger input.
- FULL-CAN interfaces: 2
 Conforming to Version 2.0 Part A and Part B
 Flexible message buffering (mailbox and FIFO buffering can be mixed)
- Sound generator
- 18-bit Time-base counter
- Clock timer: 1 channel
- External bus interface: Maximum address space 16 Mbytes
- *: Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

■ PRODUCT LINEUP

	Features	MB90591/594/594G*1	MB90F591A/F594A/F594G*1	MB90V590A/V590G*1		
Classif	ication	Mask ROM product	Flash ROM product	Evaluation product		
ROM size		384/256 kbytes	384/256 kbytes Boot block Hard-wired reset vector	None		
RAM s	ize	8/6 kbytes	8/6 kbytes	6 kbytes		
CPU fu	unctions	Interrupt processing time: 1.	16 bits 7 bytes 16 bits .5 ns (at machine clock frequen			
UART	(3 channels)	Clock synchronized transmission (500 kbps / 1 Mbps / 2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/ slave connection.				
8/10-bi	it A/D converter	Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)				
8/16-bit PPG timers (6 channels)		Number of channels: $6 (8/16\text{-bit} \times 6 \text{ channels})$ PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2¹, fsys/2², fsys/2³, fsys/2⁴, 128µs (at oscillation of 4 MHz, machine clock frequency of 16 MHz, fosc = oscillation clock frequency)				
16-bit Reload timer		Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = System clock frequency) Supports External Event Count function				
16-bit I/O	16-bit Output compares	Number of channels: 6 (8/16 Pin input factor: A match sig				
timer	Input captures	Number of channels: 6 Rewriting a register value up	upon a pin input (rising, falling, or both edges)			


^{*1:} Under development

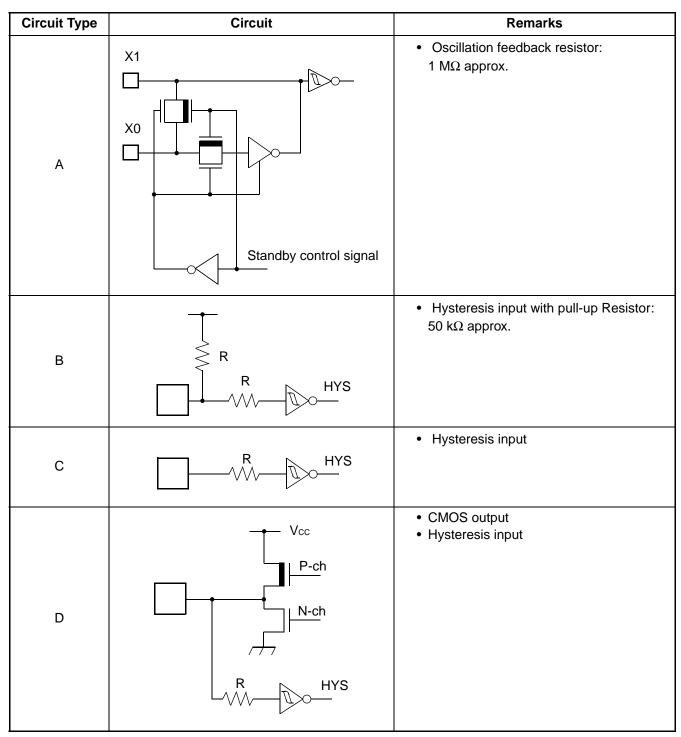
CAN Interface P	Automatic re-transmission in Automatic transmission respo Prioritized 16 message buffer Supports multiple messages	case of error							
F		rs for data and ID's eptance filtering:	Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks						
	Four high current outputs for Synchronized two 8-bit PWM								
External interritor circuit	Number of inputs: 8 Started by a rising edge, a fa	lling edge, an "H" level input, or	an "L" level input.						
Sound generator P	8-bit PWM signal is mixed with tone frequency from 8-bit reload counter PWM frequency: 62.5K, 31.2K, 15.6K, 7.8KHz at System clock = 16MHz Tone frequency: PWM frequency / 2 / (reload value + 1)								
interface	Clock synchronized transmission (31.25K/62.5K/125K/500K/1Mbps at machine clock frequency of 16 MHz) LSB first/MSB first								
	Directly operates with the sys Read/Write accessible Secor								
Watchdod timer	Reset generation interval: 3.5 at oscillation of 4 MHz, minir	58 ms, 14.33 ms, 57.23 ms, 458 mum value)	3.75 ms						
Flash Memory B	Supports automatic programming, Embedded Algorithm TM Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics Inc.								
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/clock timer/hardware stand-by								
Process		CMOS							
Power supply voltage for operation*2	5 V±10 % (MB90V590A, MB90F594A, MB90594, MB90V590G*1, MB90F594G*1, MB90594G*1) 5 V±5 % (MB90F591A, MB90591)								
Package		P-100	PGA-256						

^{*1:} Under development

^{*2:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PIN ASSIGNMENT

■ PIN DESCRIPTION


No.	Pin name	Circuit type	Function
82	X0	۸	Oscillation input
83	X1	А	Oscillation output
77	RST	В	Reset input
52	HST	С	Hardware standby input
85 to 90	P00 to P05	D	General purpose IO
65 10 90	IN0 to IN5	U	Inputs for the Input Captures
	P06 to P07 P10 to P13		General purpose IO
91 to 96	OUT0 to OUT5	D	Outputs for the Output Compares. To enable the signal outputs, the corresponding bits of the Port Direction registers should be set to "1".
97	P14	D	General purpose IO
31	RX1	Б	RX input for CAN Interface 1
	P15		General purpose IO
98	TX1	D	TX output for CAN Interface 1. To enable the signal output, the corresponding bit of the Port Direction register should be set to "1".
	P16		General purpose IO
99	SGO	D	SGO output for the Sound Generator. To enable the signal output, the corresponding bit of the Port Direction register should be set to "1".
	P17		General purpose IO
100	SGA	D	SGA output for the Sound Generator. To enable the signal output, the corresponding bit of the Port Direction register should be set to "1".
1 to 4	P20 to P23	D	General purpose IO
E to 9	P24 to P27	<u> </u>	General purpose IO
5 to 8	INT4 to INT7	D	External interrupt input for INT4 to INT7
9 to 10	P30 to P31	D	General purpose IO
12 to 13	P32 to P33	D	General purpose IO
	P34		General purpose IO
14	14 SOT0		SOT output for UART 0. To enable the signal output, the corresponding bit of the Port Direction register should be set to "1".
	P35		General purpose IO
15 SCK0		D	SCK input/output for UART 0. To enable the signal output, the corresponding bit of the Port Direction register should be set to "1".

No.	Pin name	Circuit type	Function
16	P36	_	General purpose IO
10	SIN0	D	SIN input for UART 0
17	P37	D	General purpose IO
17	SIN1	D	SIN input for UART 1
18	P40	D	General purpose IO
10	SCK1	U	SCK input/output for UART 1
19	P41	D	General purpose IO
19	SOT1	D	SOT output for UART 1
20	P42	D	General purpose IO
20	SOT2	D	SOT output for UART 2
21	P43	D	General purpose IO
21	SCK2	D	SCK input/output for UART 2
22	P44	D	General purpose IO
22	SIN2	U	SIN input for UART 2
24	P45	D	General purpose IO
24	SIN3	U	SIN input for the Serial IO
25	P46	D	General purpose IO
25	SCK3	D	SCK input/output for the Serial IO
26	P47	D	General purpose IO
20	SOT3	D	SOT output for the Serial IO
	P50 to P55		General purpose IO
28 to 33	PPG0 to PPG5, ADTG	D	Outputs for the Programmable Pulse Generators. Pin number 33 is also shared with ADTG input for the external trigger of the A/D Converter.
38 to 41	P60 to P63	Е	General purpose IO
30 10 41	AN0 to AN3	□ □	Inputs for the A/D Converter
43 to 46	P64 to P67	E	General purpose IO
43 10 40	AN4 to AN7		Inputs for the A/D Converter
47	P56	D	General purpose IO
47	TIN	D	TIN input for the 16-bit Reload Timers
	P57		General purpose IO
48	TOT/WOT	D	TOT output for the 16-bit Reload Timers and WOT output for the Watch Timer. Only one of three output enable flags in these pheripheral blocks can be set at a time. Otherwise the output signal has no meaning.

No.	Pin name	Circuit type	Function		
	P70 to P73		General purpose IO		
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepping Motor Controller channel 0.		
	P74 to P77		General purpose IO		
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepping Motor Controller channel 1.		
	P80 to P83		General purpose IO		
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepping Motor Controller channel 2.		
	P84 to P87		General purpose IO		
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepping Motor Controller channel 3.		
7.4	P90	D	General purpose IO		
/4	74 TX0		TX output for CAN Interface 0		
75	P91		General purpose IO		
7.5	RX0	D	RX input for CAN Interface 0		
76	P92	. D	General purpose IO		
70	INT0		External interrupt input for INT0		
78	P93	. D	General purpose IO		
70	INT1		External interrupt input for INT1		
79	P94	D	General purpose IO		
7.5	INT2		External interrupt input for INT2		
80	P95	D	General purpose IO		
	INT3		External interrupt input for INT3		
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)		
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)		
34	AVcc	Power supply	Power supply for analog circuit pin When turning this power supply on or off, always be sure to first apply electric potential equal to or greater than AVcc to Vcc.		
37	AVss	Power supply	Ground level for analog circuit		

No.	Pin name	Circuit type	Function	
35	AVR+	Power supply	Reference voltage input pin for analog circuit When turning this power supply on or off, always be sure to first apply electric potential equal to or greater than AVR+ to AVcc.	
36	AVR-	Power supply	Reference voltage input pin for analog circuit	
49, 50	MD0, MD1	С	Operating mode selection input pins Connect directly to Vcc or Vss.	
51	MD2	F	Operating mode selection input pin Connect directly to Vcc or Vss.	
27	С	_	This is the power supply stabilization capacitor pin. It should be connected externally to an 0.1 μF ceramic capacitor.	
23, 84	Vcc	Power supply	Power supply input pin (5.0 V) for digital circuit	
11,42,81	Vss	Power supply	Power supply input pin (GND) for digital circuit	

■ I/O CIRCUIT TYPE

Circuit Type	Circuit	Remarks
E	Vcc P-ch N-ch Analog input HYS	CMOS output Hysteresis input Analog input
F	P-ch High current N-ch HYS	CMOS high current output Hysteresis input
G	Vcc P-ch High current N-ch N-ch HYS	CMOS high current output Hysteresis input Analog input (Continued)

Circuit Type	Circuit	Remarks		
Н	R HYS	 Hysteresis input with pull-down Resistor: 50 kΩ approx. Flash version does not have pull-down resistor. 		

HANDLING DEVICES

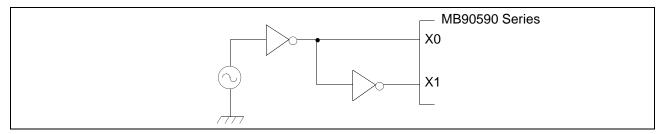
(1)Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

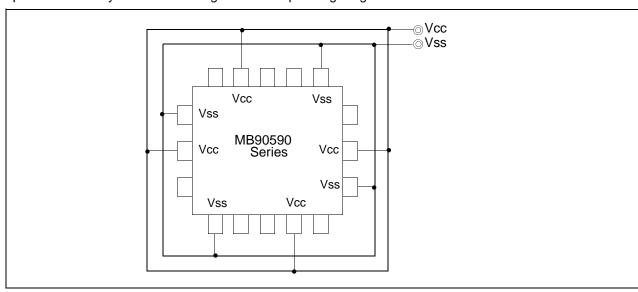
(2)Handling unused input pins


Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be tied to Vcc or Ground through resistors. In this case those resistors should be more than $2 \text{ k}\Omega$.

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

(3)Using external clock

To use external clock, drive the X0 and X1 pins in reverse phase.


Below is a diagram of how to use external clock.

Using external clock

(4)Power supply pins (Vcc/Vss)

Ensure that all Vcc-level power supply pins are at the same potential. In addition, ensure the same for all Vss-level power supply pins. (See the figure below.) If there are more than one Vcc or Vss system, the device may operate incorrectly even within the guaranteed operating range.

(5) Pull-up/down resistors

The MB90590 Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVR + , AVR -) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVR + or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVR + = Vss.

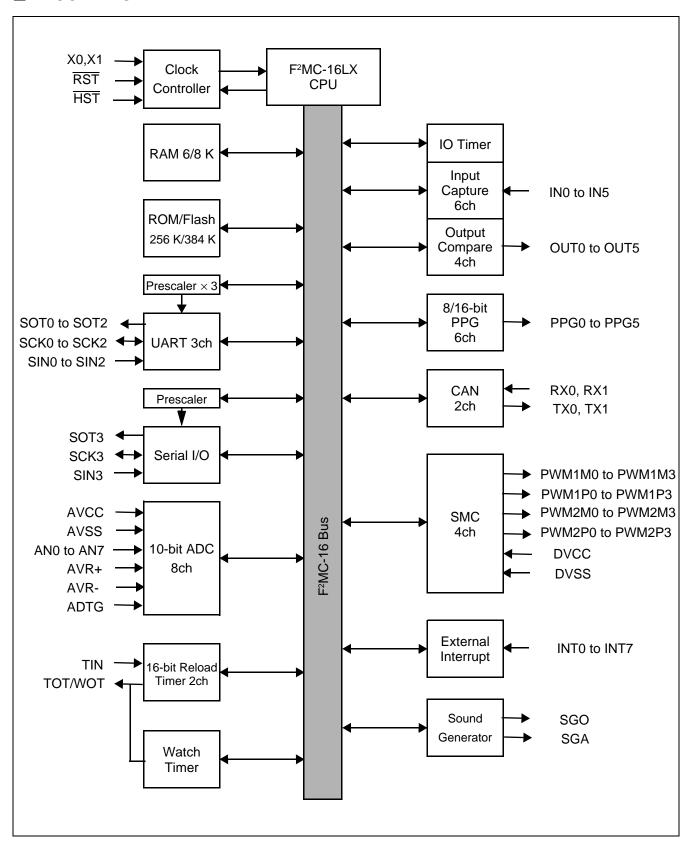
(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more ms (0.2 V to 2.7 V).

(11) Initialization


In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.

(12) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00h".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are setting other than "00h", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

■ BLOCK DIAGRAM

■ MEMORY SPACE

The memory space of the MB90590 Series is shown below

	MB90V590A/ V590G*		MB90594/F594A/ 594G*/F594G*		MB90591/F591
FFFFFFн FF0000н	ROM (FF bank)	FFFFFFн FF0000н	ROM (FF bank)	FFFFFFн FF0000н	ROM (FF bank)
FEFFFFH FE0000H	ROM (FE bank)	FEFFFFH FE0000H	ROM (FE bank)	FEFFFFн FE0000н	ROM (FE bank)
FDFFFFH FD0000H	ROM (FD bank)	FDFFFFH FD0000H	ROM (FD bank)	FDFFFFн FD0000н	ROM (FD bank)
FCFFFH FC0000H	ROM (FC bank)	FCFFFH FC0000H	ROM (FC bank)	FCFFFFH FC0000H	
FBFFFFн FB0000н	ROM (FB bank)			FBFFFFн FB0000н	ROM (FB bank)
FAFFFFн FA0000н	ROM (FA bank)			FAFFFFн FA0000н	ROM (FA bank)
F9FFFFн F90000н	ROM (F9 bank)			F9FFFFн F90000н	ROM (F9 bank)
00FFFFн 004000н	ROM (Image of FF bank)	00FFFFн 004000н	ROM (Image of FF bank)	00FFFFн 004000н	ROM (Image of FF bank
0028FFн 002100н 0020FFн	RAM 2K			0028FFн 002100н 0020FFн	RAM 2K
001FFFн 001900н 0018FFн	Peripheral	001FFFн 001900н 0018FFн	Peripheral	001FFFн 001900н 0018FFн	Peripheral
	RAM 6K		RAM 6K		RAM 6K
000100н		000100н		000100н	
0000ВFн	Peripheral	0000BFн 000000н	Peripheral	0000BFн 000000н	Peripheral

Memory space map

The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.

The ROM area in bank FF exceeds 48 kbytes, and its entire image cannot be shown in bank 00.

The image between FF4000H and FFFFFH is visible in bank 00, while the image between FF0000H and FF3FFFH is visible only in bank FF.

■ I/O MAP

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reser	ved		- 1
10н	Port 0 direction register	DDR0	R/W	Port 0	0 0 0 0 0 0 0 0 0в
11н	Port 1 direction register	DDR1	R/W	Port 1	0 0 0 0 0 0 0 0 0в
12н	Port 2 direction register	DDR2	R/W	Port 2	0 0 0 0 0 0 0 0 0в
13н	Port 3 direction register	DDR3	R/W	Port 3	0 0 0 0 0 0 0 0 0в
14н	Port 4 direction register	DDR4	R/W	Port 4	0 0 0 0 0 0 0 0 0в
15н	Port 5 direction register	DDR5	R/W	Port 5	0 0 0 0 0 0 0 0 0в
16н	Port 6 direction register	DDR6	R/W	Port 6	0 0 0 0 0 0 0 0 0в
17н	Port 7 direction register	DDR7	R/W	Port 7	0 0 0 0 0 0 0 0в
18н	Port 8 direction register	DDR8	R/W	Port 8	0 0 0 0 0 0 0 0 0в
19н	Port 9 direction register	DDR9	R/W	Port 9	000000
1Ан		Reser	ved		
1Вн	Analog Input Enable	ADER	R/W	Port 6, A/D	11111111
1Сн to 1Fн		Reser	ved		1
20н	Serial Mode Control 0	UMC0	R/W		0 0 0 0 0 1 0 0в
21н	Status 0	USR0	R/W		0 0 0 1 0 0 0 0в
22н	Input/Output Data 0	UIDR0/ UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Datar 0	URD0	R/W		0 0 0 0 0 0 0 0Хв
24н	Serial Mode Control 1	UMC1	R/W		0 0 0 0 0 1 0 0в
25н	Status 1	USR1	R/W		0 0 0 1 0 0 0 0в
26н	Input/Output Data 1	UIDR1/ UODR1	R/W	UART1	XXXXXXXXB
27н	Rate and Datar 1	URD1	R/W		0 0 0 0 0 0 0X _B

Address	Register	Abbreviation	Access	Peripheral	Initial value
28н	Serial Mode Control 2	UMC2	R/W		0 0 0 0 0 1 0 Ов
29н	Status 2	USR2	R/W		0 0 0 1 0 0 0 0в
2Ан	Input/Output Data 2	UIDR2/ UODR2	R/W	UART2	XXXXXXXX
2Вн	Rate and Datar 2	URD2	R/W		0 0 0 0 0 0 0X _B
2Сн	Serial Mode Control	SMCS	R/W		0 0 0 0в
2Dн	Serial Mode Control	SMCS	R/W	Serial IO	0 0 0 0 0 0 1 Ов
2Ен	Serial Data	SDR	R/W	Seriario	XXXXXXXXB
2Fн	Edge Selector	SES	R/W		Ов
30н	External Interrupt Enable	ENIR	R/W		0 0 0 0 0 0 0 0в
31н	External Interrupt Request	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level	ELVR	R/W	External interrupt	0 0 0 0 0 0 0 0в
33н	External Interrupt Level	ELVR	R/W		0 0 0 0 0 0 0 0в
34н	A/D Control Status 0	ADCS0	R/W		0 0 0 0 0 0 0 0в
35н	A/D Control Status 1	ADCS1	R/W	A/D Converter	0 0 0 0 0 0 0 0в
36н	A/D Data 0	ADCR0	R		XXXXXXXXB
37н	A/D Data 1	ADCR1	R/W		0 0 0 0 1 0 XX _B
38н	PPG0 operation mode control register	PPGC0	R/W	16-bit Programmable	0_0001в
39н	PPG1 operation mode control register	PPGC1	R/W	Pulse	0_00001в
ЗАн	PPG0 and PPG1 clock select register	PPG01	R/W	Generator 0/1	0 0 0 0 0 0 0 0в
3Вн		Reser	ved		
3Сн	PPG2 operation mode control register	PPGC2	R/W	16-bit Programmable	0_0001в
3Dн	PPG3 operation mode control register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2 and PPG3 clock select register	PPG23	R/W	Generator 2/3	0 0 0 0 0 0 0 0в
3Fн		Reser	ved		
40н	PPG4 operation mode control register	PPGC4	R/W	16-bit Programmable	0_0001в
41н	PPG5 operation mode control register	PPGC5	R/W	Pulse	0_00001в
42н	PPG4 and PPG5 clock select register	PPG45	R/W	Generator 4/5	0 0 0 0 0 0 0 0в
43н		Reser	ved		
44н	PPG6 operation mode control register	PPGC6	R/W	16-bit Programmable	0_0001в
45н	PPG7 operation mode control register	PPGC7	R/W	Pulse	0_00001в
46н	PPG6 and PPG7 clock select register	PPG67	R/W	Generator 6/7	0 0 0 0 0 0 0 0в
47н		Reser	ved		

Address	Register	Abbreviation	Access	Peripheral	Initial value
48н	PPG8 operation mode control register	PPGC8	R/W	16-bit Programmable	0_0001в
49н	PPG9 operation mode control register	PPGC9	R/W	Pulse	0_00001в
4Ан	PPG8 and PPG9 clock select register	PPG89	R/W	Generator 8/9	0 0 0 0 0 0 0 0 В
4Вн					
4Сн	PPGA operation mode control register	PPGCA	R/W	16-bit Programmable	0_0001в
4D _H	PPGB operation mode control register	PPGCB	R/W	Pulse	0_00001в
4 Ен	PPGA and PPGB clock select register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0 0 0в
4F _H		Reser	ved		
50н	Timer Control Status 0	TMCSR0	R/W	16-bit Reload Timer 0	0 0 0 0 0 0 0 0 В
51н	Timer Control Status 0	TMCSR0	R/W	To-bit Reload Timer o	0000в
52н	Timer Control Status 1	TMCSR1	R/W	16 hit Doland Timer 1	0 0 0 0 0 0 0 0 В
53н	Timer Control Status 1	TMCSR1	R/W	16-bit Reload Timer 1	0000в
54н	Input Capture Control Status 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0 0в
55н	Input Capture Control Status 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0в
56н	Input Capture Control Status 4/5	ICS45	R/W	Input Capture 4/5	0 0 0 0 0 0 0 0в
57н		Reser	ved		
58н	Output Compare Control Status 0	OCS0	R/W	Output Compare 0/1	000000в
59н	Output Compare Control Status 1	OCS1	R/W	Output Compare 0/1	00000
5Ан	Output Compare Control Status 2	OCS2	R/W	Output Compare 2/2	000000в
5Вн	Output Compare Control Status 3	OCS3	R/W	Output Compare 2/3	00000
5С н	Output Compare Control Status 4	OCS4	R/W	Output Compare 4/F	000000в
5 Dн	Output Compare Control Status 5	OCS5	R/W	Output Compare 4/5	00000
5Ен	Sound Control	SGCR	R/W	Sound Generator	0 0 0 0 0 0 0 0 В
5 F н	Sound Control	SGCR	R/W	Sound Generalor	0 Ов
60н	Watch Timer Control	WTCR	R/W	Watch Timer	000000в
61н	Watch Timer Control	WTCR	R/W	vvaicii riinei	0 0 0 0 0 0 0 0 В
62н	PWM Control 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0в
63н		Reser	ved		
64н	PWM Control 1	PWC1	R/W	Stepping Motor Controller 1	0 0 0 0 0 0в
65н		Reser	ved	L	I
66н	PWM Control 2	PWC2	R/W	Stepping Motor Controller 2	0 0 0 0 0 0в
67н		Reser	ved		•
68н	PWM Control 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B

Address	Register	Abbreviation	Access	Peripheral	Initial value		
69н to 6Cн	Reserved						
6Dн	Serial IO Prescaler	CDCR	R/W	Prescaler (Serial IO)	0 ХХХ 1 1 1 1в		
6Ен	Timer Control	TCCS	R/W	I/O Timer	0 0 0 0 0 0 0 0в		
6Гн	ROM Mirror	ROMM	W	ROM Mirror	XXXXXXX1 _B		
70н to 8Fн	Reserved for CAN	Interface 0/1. R	efer to se	ction about CAN Controll	er		
90н to 9Dн		Res	served				
9Ен	ROM Correction Control Status	PACSR	R/W	ROM Correction	0 0 0 0 0 0 0 0 В		
9Гн	Delayed Interrupt/release	DIRR	R/W	Delayed Interrupt	0в		
А0н	Low-power Mode	LPMCR	R/W	Low Power Controller	00011000в		
А1н	Clock Selector	CKSCR	R/W	Low Power Controller	11111100в		
A2н to A7н		Res	served				
А8н	Watchdog Control	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B		
А9н	Time Base Timer Control	TBTC	R/W	Time Base Timer	1 0 0 1 0 Ов		
AAн to ADн		Res	served				
АЕн	Flash Control Status (Flash product only. Otherwise reserved)	FMCS	R/W	Flash Memory	000Х00в		
AFн		Res	served		'		
В0н	Interrupt control register 00	ICR00	R/W		00000111в		
В1н	Interrupt control register 01	ICR01	R/W		00000111в		
В2н	Interrupt control register 02	ICR02	R/W		00000111в		
ВЗн	Interrupt control register 03	ICR03	R/W		00000111в		
В4н	Interrupt control register 04	ICR04	R/W		00000111в		
В5н	Interrupt control register 05	ICR05	R/W		00000111в		
В6н	Interrupt control register 06	ICR06	R/W		00000111в		
В7н	Interrupt control register 07	ICR07	R/W	Intervient controller	00000111в		
В8н	Interrupt control register 08	ICR08	R/W	Interrupt controller	00000111в		
В9н	Interrupt control register 09	ICR09	R/W		00000111в		
ВАн	Interrupt control register 10	ICR10	R/W		00000111в		
ВВн	Interrupt control register 11	ICR11	R/W		00000111в		
ВСн	Interrupt control register 12	ICR12	R/W		00000111в		
ВОн	Interrupt control register 13	ICR13	R/W		00000111в		
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в		
ВГн	Interrupt control register 15	ICR15	R/W		00000111в		
C0н to FFн		Res	served				

Address	Register	Abbreviation	Access	Peripheral	Initial value
1900н	Reload L	PRLL0	R/W		XXXXXXXX
1901н	Reload H	PRLH0	R/W	16-bit Programmable Pulse	XXXXXXXXB
1902н	Reload L	PRLL1	R/W	Generator 0/1	XXXXXXXXB
1903н	Reload H	PRLH1	R/W	1	XXXXXXXX
1904н	Reload L	PRLL2	R/W		XXXXXXXX
1905н	Reload H	PRLH2	R/W	16-bit Programmable	XXXXXXXXB
1906н	Reload L	PRLL3	R/W	- Pulse Generator 2/3	XXXXXXXX
1907н	Reload H	PRLH3	R/W	1	XXXXXXXX
1908н	Reload L	PRLL4	R/W		XXXXXXXX
1909н	Reload H	PRLH4	R/W	16-bit Programmable	XXXXXXXX
190Ан	Reload L	PRLL5	R/W	- Pulse Generator 4/5	XXXXXXXX
190Вн	Reload H	PRLH5	R/W		XXXXXXXX
190Сн	Reload L	PRLL6	R/W		XXXXXXXX
190Он	Reload H	PRLH6	R/W	16-bit Programmable	XXXXXXXX
190Ен	Reload L	PRLL7	R/W	- Pulse Generator 6/7	XXXXXXXX
190Гн	Reload H	PRLH7	R/W		XXXXXXXX
1910н	Reload L	PRLL8	R/W		XXXXXXXX
1911н	Reload H	PRLH8	R/W	16-bit Programmable	XXXXXXXX
1912н	Reload L	PRLL9	R/W	- Pulse Generator 8/9	XXXXXXXX
1913н	Reload H	PRLH9	R/W		XXXXXXXXB
1914н	Reload L	PRLLA	R/W		XXXXXXXXB
1915н	Reload H	PRLHA	R/W	16-bit Programmable	XXXXXXXX
1916н	Reload L	PRLLB	R/W	- Pulse Generator A/B	XXXXXXXX
1917н	Reload H	PRLHB	R/W		XXXXXXXX
1918н to 191Fн		R	eserved	,	
1920н	Input Capture 0	IPCP0	R		XXXXXXXX
1921н	Input Capture 0	IPCP0	R		XXXXXXXX
1922н	Input Capture 1	IPCP1	R	- Input Capture 0/1	XXXXXXXXB
1923н	Input Capture 1	IPCP1	R]	XXXXXXXXB
1924н	Input Capture 2	IPCP2	R		XXXXXXXXB
1925н	Input Capture 2	IPCP2	R	Innut Continue 0/0	XXXXXXXXB
1926н	Input Capture 3	IPCP3	R	Input Capture 2/3	XXXXXXXXB
1927н	Input Capture 3	IPCP3	R	1	XXXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value
1928н	Input Capture 4	IPCP4	R		XXXXXXXXB
1929н	Input Capture 4	IPCP4	R	Innut Conturo 1/F	XXXXXXXXB
192Ан	Input Capture 5	IPCP5	R	Input Capture 4/5	XXXXXXXXB
192Вн	Input Capture 5	IPCP5	R		XXXXXXXXB
192Сн to 192Гн		R	eserved		
1930н	Output Compare 0	OCCP0	R/W		XXXXXXXXB
1931н	Output Compare 0	OCCP0	R/W	Output Compare 0/1	XXXXXXXXB
1932н	Output Compare 1	OCCP1	R/W	Output Compare 0/1	XXXXXXXXB
1933н	Output Compare 1	OCCP1	R/W		XXXXXXXXB
1934н	Output Compare 2	OCCP2	R/W		XXXXXXXXB
1935н	Output Compare 2	OCCP2	R/W	Output Compare 2/3	XXXXXXXXB
1936н	Output Compare 3	OCCP3	R/W	Output Compare 2/3	XXXXXXXXB
1937н	Output Compare 3	OCCP3	R/W		XXXXXXXX
1938н	Output Compare 4	OCCP4	R/W		XXXXXXXXB
1939н	Output Compare 4	OCCP4	R/W	Output Compare 4/5	XXXXXXXXB
193Ан	Output Compare 5	OCCP5	R/W	Output Compare 4/5	XXXXXXXX
193Вн	Output Compare 5	OCCP5	R/W		XXXXXXXXB
193Cн to 193Fн		R	eserved		
1940н	Timer 0/Reload 0	TMR0/ TMRLR0	R/W	16-bit Reload Timer 0	XXXXXXXXB
1941н	Timer 0/Reload 0	TMR0/ TMRLR0	R/W	To bit reload Timer o	XXXXXXXXB
1942н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W	16-bit Reload Timer 1	XXXXXXXXB
1943н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W	10-bit Neibad Tilliel T	XXXXXXXX
1944н	Timer Data	TCDT	R/W	IO Timer	00000000в
1945н	Timer Data	TCDT	R/W	io rimei	00000000в
1946н	Frequency Data	SGFR	R/W		XXXXXXXX
1947н	Amplitude Data	SGAR	R/W	Sound Generator	XXXXXXXXB
1948н	Decrement Grade	SGDR	R/W	Souria Generator	XXXXXXXX
1949н	Tone Count	SGTR	R/W		XXXXXXXX
194Ан	Sub-second Data	WTBR	R/W		XXXXXXXXB
194Вн	Sub-second Data	WTBR	R/W	Watch Timer	XXXXXXXX
194Сн	Sub-second Data	WTBR	R/W	vvaton miller	XXXXXB
194Dн	Second Data	WTSR	R/W		000000B

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value	
194Ен	Minute Data	WTMR	R/W	Watch Timer	000000в	
194Fн	Hour Data	WTHR	R/W	vvatori rimer	00000в	
1950н	PWM1 Compare 0	PWC10	R/W		XXXXXXXX	
1951н	PWM2 Compare 0	PWC20	R/W	Stepping Motor	XXXXXXXX	
1952н	PWM1 Select 0	PWS10	R/W	Controller 0	000000в	
1953н	PWM2 Select 0	PWS20	R/W		_0000000в	
1954н	PWM1 Compare 1	PWC11	R/W		XXXXXXXXB	
1955н	PWM2 Compare 1	PWC21	R/W	Stepping Motor	XXXXXXXXB	
1956н	PWM1 Select 1	PWS11	R/W	Controller 1	000000в	
1957н	PWM2 Select 1	PWS21	R/W		_0000000в	
1958н	PWM1 Compare 2	PWC12	R/W		XXXXXXXXB	
1959н	PWM2 Compare 2	PWC22	R/W	Stepping Motor	XXXXXXXXB	
195Ан	PWM1 Select 2	PWS12	R/W	Controller 2	000000в	
195Вн	PWM2 Select 2	PWS22	R/W		_0000000в	
195Сн	PWM1 Compare 3	PWC13	R/W		XXXXXXXXB	
195Dн	PWM2 Compare 3	PWC23	R/W	Stepping Motor	XXXXXXXXB	
195Ен	PWM1 Select 3	PWS13	R/W	Controller 3	000000в	
195F⊦	PWM2 Select 3	PWS23	R/W		_0 0 0 0 0 0 0 в	
1960н to 19FFн		Reserve	ed			
1A00н to 1AFFн	Reserved for CAN Ir	nterface 0. Refer	to section	about CAN Contro	oller	
1В00н to 1ВFFн	Reserved for CAN Ir	nterface 1. Refer	to section	about CAN Contro	oller	
1С00н to 1СFFн	Reserved for CAN Ir	nterface 0. Refer	to section	about CAN Contro	oller	
1D00н to 1DFFн	Reserved for CAN Ir	nterface 1. Refer	to section	about CAN Contro	oller	
1E00н to 1EFFн		Reserve	ed			
1FF0⊦	ROM Correction Address 0	PADR0	R/W		XXXXXXXX B	
1FF1⊦	ROM Correction Address 1	PADR0	R/W		XXXXXXXX B	
1FF2⊦	ROM Correction Address 2	PADR0	R/W	ROM Correction	XXXXXXXX B	
1FF3⊦	ROM Correction Address 3	PADR1	R/W	ROW Correction	XXXXXXXX B	
1FF4н	ROM Correction Address 4	PADR1	R/W		XXXXXXXX B	
1FF5⊦	ROM Correction Address 5	PADR1	R/W		XXXXXXXX B	
1FF6н to 1FFFн	Reserved					

Note: Initial value of "_" represents unused bit, "X" represents unknown value.

Addresses in the rage 0000H to 00FFH, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results reading "X" and any write access should not be performed.

■ CAN CONTROLLERS

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as 1D acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbits/s to 2 Mbits/s (when input clock is at 16 MHz)

List of Control Registers

Add	ress	Pagistor	Abbreviation	Access	Initial Value
CAN0	CAN1	Register	Appreviation	ACCESS	illitiai value
000070н	000080н	Message buffer valid register	BVALR	R/W	0000000 00000000
000071н	000081н	Wiessage buller vallu register	DVALK	17/ 77	00000000 0000000
000072н	000082н	Transmit request register	TREQR	R/W	0000000 00000000
000073н	000083н	Transmit request register	INLQN	1\(\frac{1}{2}\) \(\frac{1}{2}\)	0000000 0000000B
000074н	000084н	Transmit cancel register	TCANR	W	00000000 00000000
000075н	000085н	Transmit cancer register	TOANK	VV	0000000 0000000B
000076н	000086н	Transmit complete register	TCR	R/W	0000000 00000000
000077н	000087н	Transmit complete register	TOIX	17/ 77	00000000 00000000
000078н	000088н	Receive complete register	RCR	R/W	00000000 00000000
000079н	000089н	Treceive complete register	KOK	1\/ VV	0000000 0000000B
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	00000000 00000000
00007Вн	00008Вн	Tremote request receiving register	KIXTIXIX	1\(\frac{1}{2}\) \(\frac{1}{2}\)	0000000 0000000B
00007Сн	00008Сн	Receive overrun register	ROVRR	R/W	0000000 00000000
00007Dн	00008Dн	Treceive overruit legister	NOVER	17/77	0000000 0000000B
00007Ен	00008Ен	Receive interrupt enable register	RIER	R/W	0000000 00000000
00007Fн	00008Fн	Treceive interrupt eriable register	MEN	17/77	0000000 0000000B

List of Control Registers

Add	ress	LIST OF CONTROL RE		A	Initial Value	
CAN0	CAN1	Register	Abbreviation	Access	Initial Value	
001С00н	001D00н	Control status register	CSR	R/W, R	00000 00-1в	
001С01н	001D01н	Control status register	CSK	K/VV, K	00000 00-1В	
001С02н	001D02н	Last event indicator register	LEIR	R/W	000-0000в	
001С03н	001D03н	Last event indicator register	LLIIV	17,77	000-0000В	
001С04н	001D04н	Receive/transmit error counter	RTEC	R	00000000 00000000в	
001С05н	001D05н	receive/transmit error counter	KILO	IX.	00000000 00000000	
001С06н	001D06н	Bit timing register	BTR	R/W	-1111111 1111111в	
001С07н	001D07н	Dit tilling register	DIK	17,77	-11111111111111111111111111111111111111	
001С08н	001D08н	IDE register	IDER	R/W	XXXXXXX	
001С09н	001D09н	IDE register	IDLIX	10,00	XXXXXXX	
001С0Ан	001D0Ан	Transmit RTR register	TRTRR	R/W	00000000 00000000в	
001С0Вн	001D0Вн	Transmit it it register	TIVITAL	10,00	000000000000000000000000000000000000000	
001С0Сн	001D0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXX	
001С0Дн	001D0Dн	Tremote frame receive waiting register	1000		XXXXXXX	
001С0Ен	001D0Ен	Transmit interrupt enable register	TIER	R/W	00000000 00000000в	
001C0Fн	001D0Fн	Transmit interrupt enable register	III.	10,00	осососо осососов	
001С10н	001D10н				XXXXXXX	
001С11н	001D11н	Acceptance mask select register	AMSR	R/W	XXXXXXX	
001С12н	001D12н	7.000ptarioe mask select register	Auviora	10,00	XXXXXXX	
001С13н	001D13н				XXXXXXX	
001С14н	001D14н				XXXXXXX	
001С15н	001D15н	Acceptance mask register 0	AMR0	R/W	XXXXXXXB	
001С16н	001D16н	Acceptance mask register o	Alviito	10,00	XXXXX XXXXXXXX	
001С17н	001D17н				WWW WWWWW	
001С18н	001D18н				XXXXXXX	
001С19н	001D19н	Acceptance mask register 1	AMR1	R/W	XXXXXXX	
001С1Ан	001D1Ан	Thosoptanio mask register i	EXIVITY I		XXXXX XXXXXXXX	
001С1Вн	001D1Вн				^^^^^	

List of Message Buffers (ID Registers)

Add	ress		Buffers (ID Regis		1.22.177.1				
CAN0	CAN1	Register	Abbreviation	Access	Initial Value				
001А20н	001В20н				VVVVVVV VVVVVVVV				
001А21н	001В21н	ID register 0	IDR0	D 444	XXXXXXXX XXXXXXXXB				
001А22н	001В22н	ID register 0	IDRU	R/W	VVVVV VVVVVVV				
001А23н	001В23н				XXXXX XXXXXXXXB				
001А24н	001В24н				VVVVVVV VVVVVVV-				
001А25н	001В25н	ID register 4	IDR1	R/W	XXXXXXXX XXXXXXX				
001А26н	001В26н	ID register 1	IDKI	R/VV	XXXXX XXXXXXXX				
001А27н	001В27н				**************************************				
001А28н	001В28н				VVVVVVV VVVVVVV-				
001А29н	001В29н	ID register 2	IDR2	R/W	XXXXXXXX XXXXXXXXB				
001А2Ан	001В2Ан	ID register 2	IDNZ	IDRZ	IDRZ	IDK2	K/VV	IX/ V V	VVVVV VVVVVVV ₋
001А2Вн	001В2Вн				XXXXX XXXXXXXXB				
001А2Сн	001В2Сн				XXXXXXXX XXXXXXXX				
001А2Dн	001В2Он	ID register 2	IDDS	IDR3 R/W	AAAAAAA AAAAAAAB				
001А2Ен	001В2Ен	ID register 3	IDRS		XXXXX XXXXXXXX				
001А2Гн	001В2Гн				XXXXX XXXXXXXX				
001А30н	001В30н			R/W	XXXXXXXX XXXXXXXX				
001А31н	001В31н	ID register 4	IDR4		AAAAAAA AAAAAAAB				
001А32н	001В32н	TD register 4	IDIX4		IX/VV	XXXXX XXXXXXXXB			
001А33н	001В33н				VVVV VVVVVVV				
001А34н	001В34н				XXXXXXXX XXXXXXXX				
001А35н	001В35н	ID register 5	IDR5	R/W	AAAAAAA AAAAAAAB				
001А36н	001В36н	Tib register 5	IDKS	IN/VV	XXXXX XXXXXXXX				
001А37н	001В37н				XXXX XXXXXXX				
001А38н	001В38н				XXXXXXXX XXXXXXXX				
001А39н	001В39н	ID register 6	IDR6	R/W					
001А3Ан	001В3Ан	ID register o	IDKO	13/77	XXXXX XXXXXXXX				
001А3Вн	001В3Вн				VVVVV VVVVVVV				
001А3Сн	001В3Сн				XXXXXXXX XXXXXXXX				
001А3Dн	001В3Dн	ID register 7	IDP7	R/W					
001А3Ен	001В3Ен	To register /	gister 7 IDR7		XXXXX XXXXXXXX				
001А3Гн	001В3Гн								

Add	ress	Dogiotor	Abbreviation	A	Initial Value	
CAN0	CAN1	Register	Appreviation	Access	ilillai value	
001А40н	001В40н				XXXXXXXX XXXXXXXX	
001А41н	001В41н	ID register 8	IDR8	R/W	YVVVVVV VVVVVV	
001А42н	001В42н	TID register o	IDNO	I IN/VV	XXXXX XXXXXXXX	
001А43Гн	001В43н				XXXXX XXXXXXXX	
001А44н	001В44н				XXXXXXXX XXXXXXXX	
001А45н	001В45н	ID register 9	IDR9	R/W	XXXXXXX XXXXXXX	
001А46н	001В46н	Tib register 9	IDIN	17/77	XXXXX XXXXXXXX	
001А47н	001В47н				XXXXX XXXXXXXX	
001А48н	001В48н				XXXXXXXX XXXXXXXX	
001А49н	001В49н	ID register 10	IDR10	R/W	AAAAAAAAA AAAAAAAAA	
001А4Ан	001В4Ан	Tib register 10	IDICIO	IX/VV	XXXXX XXXXXXXX	
001А4Вн	001В4Вн				//////	
001А4Сн	001В4Сн			R/W	XXXXXXXX XXXXXXXX	
001А4Dн	001В4Он	ID register 11	IDR11		700000000000000000000000000000000000000	
001А4Ен	001В4Ен	To register 11	IDICIT	17/77	XXXXX XXXXXXXXB	
001А4Гн	001В4Гн				70000000	
001А50н	001В50н			R/W	XXXXXXXX XXXXXXXX	
001А51н	001В51н	ID register 12	IDR12		700000000000000000000000000000000000000	
001А52н	001В52н	Togistor 12	151(12		XXXXX XXXXXXXXB	
001А53н	001В53н				XXXXX XXXXXXXX	
001А54н	001В54н				XXXXXXXX XXXXXXXX	
001А55н	001В55н	ID register 13	IDR13	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001А56н	001В56н		.5.(10		XXXXX XXXXXXXXB	
001А57н	001В57н				^^^^^	
001А58н	001В58н				XXXXXXXX XXXXXXXX	
001А59н	001В59н	ID register 14	IDR14	R/W		
001А5Ан	001В5Ан				XXXXX XXXXXXXXB	
001А5Вн	001В5Вн					
001А5Сн	001В5Сн				XXXXXXXX XXXXXXXX	
001А5Дн	001В5Дн	ID register 15	IDR15	R/W		
001А5Ен	001В5Ен			1 X/ V V	XXXXX XXXXXXXXB	
001А5Гн	001В5Гн					

List of Message Buffers (DLC Registers and Data Registers)

Address		List of Message Bullers (DLC R	,	luitial Value		
CAN0	CAN1	Register	Abbreviation	Access	Initial Value	
001А60н	001В60н	DI O mariatan O	DI ODO	DAM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
001А61н	001В61н	DLC register 0	DLCR0	R/W	XXXX _B	
001А62н	001В62н	DI Consistent	DI CD4	DAM	VVVV	
001А63н	001В63н	DLC register 1	DLCR1	R/W	ХХХХв	
001А64н	001В64н	DI C na nistan C	DI ODO	DAM	VVVV	
001А65н	001В65н	DLC register 2	DLCR2	R/W	ХХХХв	
001А66н	001В66н	DI O continuo	DI ODO	D // /	VVVV	
001А67н	001В67н	DLC register 3	DLCR3	R/W	XXXX _B	
001А68н	001В68н	DI Commission 4	DI CD4	DAM	VVVV	
001А69н	001В69н	DLC register 4	DLCR4	R/W	ХХХХв	
001А6Ан	001В6Ан	DI C register 5	DLODE	DAM	VVVV	
001А6Вн	001В6Вн	DLC register 5	DLCR5	R/W	XXXX _B	
001А6Сн	001В6Сн	DI C na nistan C	DI ODG	DAM	VVVV	
001А6Dн	001В6Он	DLC register 6	DLCR6	R/W	XXXX _B	
001А6Ен	001В6Ен	DI C societor 7	DI CD7	DAM	VVVV	
001А6Гн	001В6Гн	DLC register 7	DLCR7	R/W	ХХХХв	
001А70н	001В70н	DI C register 9	DI CD0	DAM	XXXX	
001А71н	001В71н	DLC register 8	DLCR8 R/W			
001А72н	001В72н	DI C register 0	DI CDO	DAM	XXXX _B	
001А73н	001В73н	DLC register 9	DLCR9	R/W	AAAAB	
001А74н	001В74н	DLC register 10	DI CD40	R/W	XXXX _B	
001А75н	001В75н	DLC register 10	DLCR10	FX/VV	VVVB	
001А76н	001В76н	DLC register 11	DLCR11	R/W	XXXX _B	
001А77н	001В77н	DLC register 11	DLCKII	FX/VV	VVVB	
001А78н	001В78н	DLC register 12	DLCR12	R/W	XXXX _B	
001А79н	001В79н	DLC register 12	DLCR12	I IV/ V V	VVVR	
001А7Ан	001В7Ан	DLC register 13	DLCR13	R/W	XXXX _B	
001А7Вн	001В7Вн	DLO register 13	DLONIS	I \(\frac{1}{V}\)	VVV8	
001А7Сн	001В7Сн	DLC register 14	DLCR14	R/W	XXXX _B	
001А7Dн	001В7Он	DLO register 14	DLUN 14	17/1/1	VVVR	
001А7Ен	001В7Ен	DLC register 15	DLCR15	R/W	XXXX _B	
001А7Гн	001В7Гн	DLO register 13	DLONIO	17/77	VVVR	
001А80н	001В80н		5.7.		XXXXXXXXB	
to 001A87н	to 001В87н	Data register 0 (8 bytes)	DTR0	R/W	to XXXXXXXXB	

Add	ress	Register	Abbreviation	Access	Initial Value
CAN0	CAN1	ive diagram	Annicalation	A00639	miliai value
001А88н	001В88н				XXXXXXXX
to	to	Data register 1 (8 bytes)	DTR1	R/W	to
001A8Fн	001B8Fн				XXXXXXXXB
001А90н	001В90н				XXXXXXXX
to	to	Data register 2 (8 bytes)	DTR2	R/W	to
001А97н	001В97н				XXXXXXXXB
001А98н	001В98н				XXXXXXXX
to	to	Data register 3 (8 bytes)	DTR3	R/W	to
001А9Гн	001В9Гн				XXXXXXXXB
001ААОн	001ВА0н				XXXXXXXX
to	to	Data register 4 (8 bytes)	DTR4	R/W	to
001АА7н	001ВА7н				XXXXXXXXB
001AA8н	001ВА8н				XXXXXXXX
to	to	Data register 5 (8 bytes)	DTR5	R/W	to
001ААГн	001ВАГн				XXXXXXXX
001АВ0н	001ВВ0н				XXXXXXXX
to	to	Data register 6 (8 bytes)	DTR6	R/W	to
001AB7н	001ВВ7н	(0.0),000,			XXXXXXXX
001AB8н	001ВВ8н				XXXXXXXX
to	to	Data register 7 (8 bytes)	DTR7	R/W	to
001ABFн	001BBFн	Jaka regioter / (5 5) too)			XXXXXXXX
001АС0н	001ВС0н				XXXXXXXX
to	to	Data register 8 (8 bytes)	DTR8	R/W	to
001АС7н	001ВС7н				XXXXXXXX
001AC8н	001ВС8н				XXXXXXXX
to	to	Data register 9 (8 bytes)	DTR9	R/W	to
001ACFн	001BCFн				XXXXXXXX
001AD0н	001ВD0н				XXXXXXXX
to	to	Data register 10 (8 bytes)	DTR10	R/W	to
001AD7н	001ВD7н]			XXXXXXXX
001AD8н	001BD8н				XXXXXXXX
to	to	Data register 11 (8 bytes)	DTR11	R/W	to
001ADFн	001BDFн]			XXXXXXXX
001AE0н	001ВЕ0н				XXXXXXXX
to	to	Data register 12 (8 bytes)	DTR12	R/W	to
001АЕ7н	001ВЕ7н				XXXXXXXX
001AE8н	001ВЕ8н				XXXXXXXX
to	to	Data register 13 (8 bytes)	DTR13	R/W	to
001AEFн	001BEFн]			XXXXXXXX
001AF0н	001ВF0н				XXXXXXXX
to	to	Data register 14 (8 bytes)	DTR14	R/W	to
001AF7н	001BF7н	(0 2).00,			XXXXXXXX
001AF8н	001BF8н				XXXXXXXX
00 17 ti OH		Data register 15 (8 bytes)	DTR15	R/W	to
to	to	i Dala i Edistei Ta to oviesi			

■ INTERRUPT MAP

Intownint cours	I ² OS	Interru	pt vector	Interrupt control register		
Interrupt cause	clear	Number	Address	Number	Address	
Reset	N/A	# 08	FFFFDCH		_	
INT9 instruction	N/A	# 09	FFFFD8 _H	_	_	
Exception	N/A	# 10	FFFFD4 _H		_	
Time Base Timer	N/A	# 11	FFFFD0 _H	ICDOO	000000	
External Interrupt (INT0 to INT7)	*1	# 12	FFFFCCH	ICR00	0000В0н	
CAN 0 RX	N/A	# 13	FFFFC8 _H	ICD04	0000P4	
CAN 0 TX/NS	N/A	# 14	FFFFC4 _H	ICR01	0000В1н	
CAN 1 RX	N/A	# 15	FFFFC0 _H	ICDOS	000000	
CAN 1 TX/NS	N/A	# 16	FFFFBCH	ICR02	0000В2н	
PPG 0/1	N/A	# 17	FFFFB8 _H	IODOO	000000	
PPG 2/3	N/A	# 18	FFFFB4 _H	ICR03	0000ВЗн	
PPG 4/5	N/A	# 19	FFFFB0 _H	ICD04	0000004	
PPG 6/7	N/A	# 20	FFFFACH	ICR04	0000В4н	
PPG 8/9	N/A	# 21	FFFFA8 _H	IODOF	0000В5н	
PPG A/B	N/A	# 22	FFFFA4 _H	ICR05		
16-bit Reload Timer 0	*1	# 23	FFFFA0 _H	IODOG	0000В6н	
16-bit Reload Timer 1	*1	# 24	FFFF9C _H	ICR06		
Input Capture 0/1	*1	# 25	FFFF98 _H	10007	0000В7н	
Output compare 0/1	*1	# 26	FFFF94 _H	ICR07		
Input Capture 2/3	*1	# 27	FFFF90 _H	IODOO	000000	
Output Compare 2/3	*1	# 28	FFFF8C _H	ICR08	0000В8н	
Input Capture 4/5	*1	# 29	FFFF88 _H	IODOO	0000000	
Output Compare 4/5	*1	# 30	FFFF84 _H	ICR09	0000В9н	
A/D Converter	*1	# 31	FFFF80 _H	IOD40	000000	
I/O Timer/Watch Timer	N/A	# 32	FFFF7C _H	ICR10	0000ВАн	
Serial I/O	*1	# 33	FFFF78 _H	IOD44	000000	
Sound Generator	N/A	# 34	FFFF74 _H	ICR11	0000ВВн	
UART 0 RX	*2	# 35	FFFF70 _H	100.40	000000	
UART 0 TX	*1	# 36	FFFF6C _H	ICR12	0000ВСн	
UART 1 RX	*2	# 37	FFFF68 _H	IOD40	000000	
UART 1 TX	*1	# 38	FFFF64 _H	ICR13	0000ВDн	
UART 2 RX	*2	# 39	FFFF60 _H	1001		
UART 2 TX	*1	# 40	FFFF5C _H	ICR14	0000ВЕн	
Flash Memory	N/A	# 41	FFFF58 _H	10045	000005	
Delayed interrupt	N/A	# 42	FFFF54 _H	ICR15	0000ВFн	

- *1: The interrupt request flag is cleared by the I²OS interrupt clear signal.
- *2: The interrupt request flag is cleared by the I²OS interrupt clear signal. A stop request is available.
- N/A:The interrupt request flag is not cleared by the I²OS interrupt clear signal.
- Note: For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the I²OS interrupt clear signal.
- Note: At the end of I²OS, the I²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the I²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the I²OS clear signal caused by the first event. So it is recommended not to use the I²OS for this interrupt number.
- Note: If I²OS is enabled, I²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same I²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the I²OS, the other interrupt should be disabled.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0 V)

Parameter	Symbol	Value		Units	Remarks
Farameter	Syllibol	Min.	Max.	Ullits	Kelilaiks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1
Tower supply voltage	AVR±	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR±, AVR+ ≥ AVR -
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	*2
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*2
Clamp Current	I CLAMP	-2.0	2.0	mA	
"L" level max. output current	lol1	_	15	mΑ	Normal outputs
"L" level avg. output current	lolav1	_	4	mΑ	Normal outputs, average value
"L" level max. output current	lol2	_	40	mA	High current outputs
"L" level avg. output current	lolav2	_	30	mΑ	High current outputs, average value
"L" level max. overall output current	∑lol1	_	100	mΑ	Sum of all normal outputs
"L" level max. overall output current	∑lol2		330	mΑ	Sum of all high current outputs
"L" level avg. overall output current	∑IOLAV1	_	50	mΑ	Sum of all normal outputs, average value
"L" level avg. overall output current	∑IOLAV2		250	mΑ	Sum of all high current outputs, average value
"H" level max. output current	Іон1	_	-15	mΑ	Normal outputs
"H" level avg. output current	IOHAV1	_	-4	mΑ	Normal outputs, average value
"H" level max. output current	Іон2	_	-40	mΑ	High current outputs
"H" level avg. output current	IOHAV2	_	-30	mΑ	High current outputs, average value
"H" level max. overall output current	∑Іон1	_	-100	mΑ	Sum of all normal outputs
"H" level max. overall output current	∑Іон2	_	-330	mΑ	Sum of all high current outputs
"H" level avg. overall output current	∑IOHAV1	_	-50	mΑ	Sum of all normal outputs, average value
"H" level avg. overall output current	∑IOHAV2	_	-250	mΑ	Sum of all high current outputs, average value
Power consumption	Pp	_	500	mW	MB90F594A, MB90F591A, MB90F594G*3
1 ower consumption	Fυ		400	mW	MB90594, MB90591, MB90594G*3
Operating temperature	TA	-40	+85	°C	
Storage temperature	Тѕтс	- 55	+150	°C	

^{*1:} Set AVcc and Vcc to the same voltage. Make sure that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.

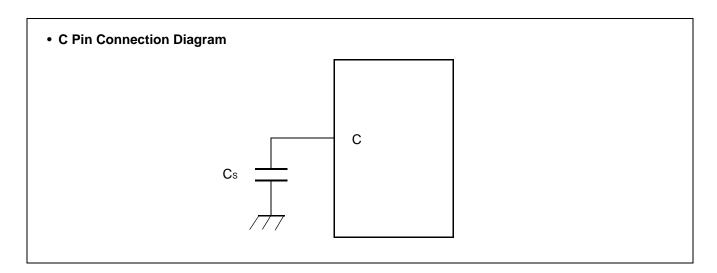
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

^{*3:} Under development

2. Recommended Conditions

(Vss = AVss = 0 V)


Parameter	Sym-	Rated Value			Units	Remarks		
Parameter	bol	Min.	Тур.	Max.	Ullits	Remarks		
Power supply voltage		4.5	5.0	5.5	٧	Under normal operation	MB90F594A MB90F594G*	
	Vcc AVcc	3.0	_	5.5	٧	Maintains RAM data in stop mode		
		4.75	5.0	5.25	V	Under normal operation	MB90F591A	
		3.0	_	5.25	V	Maintains RAM data in stop mode	MB90591	
lanut I I coltana	Vihs	0.8 Vcc	_	Vcc +0.3	V	CMOS hysteresis input pin		
Input H voltage	Vінм	Vcc - 0.3	_	Vcc +0.3	V	MD input pin		
lanut Lucitara	VILS	Vss - 0.3	_	0.6Vcc	V	CMOS hysteresis input pin		
Input L voltage	VILM	Vss - 0.3	_	Vss + 0.3	V	MD input pin		
Smooth capacitor	Cs	0.022	0.1	1.0	μF	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the VCC should be greater than this capacitor.		
Operating temperature	TA	-40	_	+85	°C			

^{*:}Under development

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(MB90V590A, MB90F594A, MB90594, MB90V590G*1, MB90F594G*1, MB90594G*1: $Vcc = 5.0 V\pm 10 \%$, Vss = AVss = 0V, $T_A = -40 °C$ to +85 °C) (MB90F591A, MB90591: $Vcc = 5.0 V\pm 5 \%$, Vss = AVss = 0V, $T_A = -40 °C$ to +85 °C)

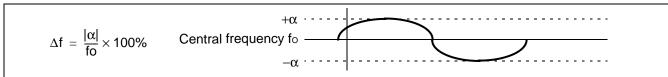
D	Sym- bol	Pin	T (0 1111		ted Value		Units	Remarks
Parameter			Test Condition	Min.	Тур.	Max.		
Output H voltage	V _{OH1}	Normal outputs	$V_{CC} = 4.5 \text{ V},$ $I_{OH1} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
Output H voltage	V _{OH2}	High cur- rent outputs	Vcc = 4.5 V, IoH2 = -30.0 mA	Vcc - 0.5	_	_	V	
Output L voltage	V _{OL1}	Normal outputs	Vcc = 4.5 V, I _{OL1} = 4.0 mA	_	_	0.4	V	
Output L voltage	V _{OL2}	High cur- rent outputs	Vcc = 4.5 V, $IoL2 = 30.0 mA$		_	0.5	V	
Input leak current	I⊫	_	Vcc = 5.5 V, Vss < V ₁ < Vcc	– 5	_	5	μΑ	
Analog in- put leak cur- rent	lial	AN0 to AN7	Vcc = 5.5 V, AVss < V _I < AVcc	-1	_	1	μΑ	
	Icc	· Vcc	Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At normal operation.	_	37	60	mA	MB90594/594G*1
				_	50	80	mA	MB90F594A/F594G*1
				_	50	80	mA	MB90F591A
				_	45	60	mA	MB90591
	Iccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At Sleep mode.	_	13	20	mA	MB90594/594G*1
				_	15	23	mA	MB90F594A/F594G*1
				_	15	23	mA	MB90F591A
Power				_	15	23	mA	MB90591
supply current *2	Істѕ		Vcc = 5.0 V±1%, Internal frequency: 2 MHz, At Timer mode	_	0.3	0.6	mA	MB90594/594G*1
				_	0.35	0.6	mA	MB90F594A/F594G*1
				_	0.35	0.6	mA	MB90F591A
				_	0.35	0.6	mA	MB90591
	Іссн		Vcc = 5.0 V±10%, At Stop mode, T _A = 25°C	_	5	20	μΑ	MB90594/594G*1
				_	5	20	μΑ	MB90F594A/F594G*1
				_	5	20	μΑ	MB90F591A
				_	5	20	μΑ	MB90591
Input capacity	Cin	Other than C, AVcc, AVss, AVR+, AVR-, Vcc, Vss, DVcc, DVss	_	_	10	80	pF	

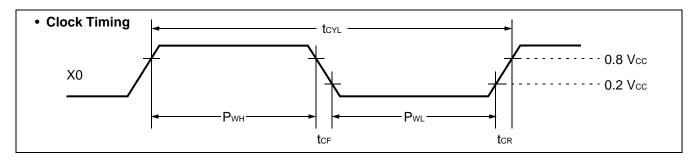
^{*1:} Under development

^{*2:} Current values are tentative. They are subject to change without notice according to improvements in the characteristics. The power supply current testing conditions are when using the external clock.

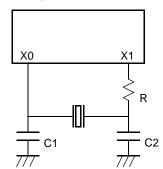
4. AC Characteristics

(1) Clock Timing

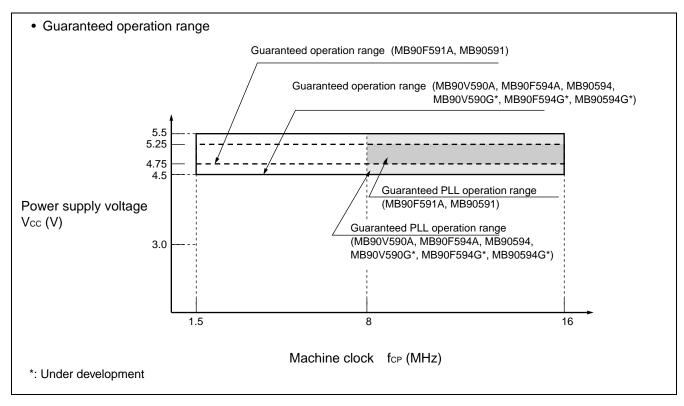

(MB90V590A, MB90F594A, MB90594, MB90V590G*1, MB90F594G*1, MB90594G*1: $Vcc = 5.0 \ V \pm 10 \ \%, \ Vss = AVss = 0V, \ T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C)$

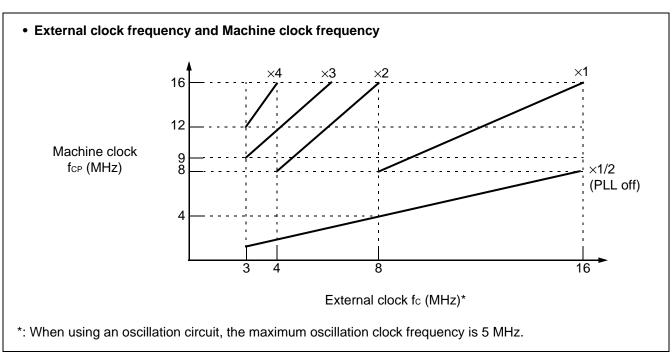

(MB90F591A, MB90591: $Vcc = 5.0 \text{ V} \pm 5 \text{ %}$, Vss = AVss = 0V, $T_A = -40 \text{ °C to } +85 \text{ °C}$)

Parameter	Symbol	Pin	Value			Units	Remarks	
raiailletei	Symbol		Min.	Тур.	Max.	Ullits	Venigi K2	
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using an oscillation circuit.	
Oscillation cycle time	t CYL	X0, X1	200	_	333	ns	When using an oscillation circuit.	
External clock frequency	fc	X0, X1	3	_	16	MHz	When using an external clock.	
External clock cycle time	t CYL	X0, X1	62.5	_	333	ns	When using an external clock.	
Frequency deviation with PLL*2	Δf	_	_	_	5	%		
Input clock pulse width	Pwh, PwL	X0	10	_	_	ns	Duty ratio is about 30 to 70%.	
Input clock rise and fall time	tcr, tcf	X0	_	_	5	ns	When using external clock	
Machine clock frequency	f cp	_	1.5	_	16	MHz		
Machine clock cycle time	t cp	_	62.5	_	666	ns		
Flash read cycle time	t cycfl	_	_	2 tcp	_	ns	When Flash is accessed by CPU	


^{*1:} Under development

^{*2:} Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.



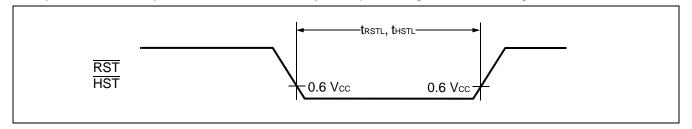


Example of Oscillation circuit

Make	Oscillator	Frequency (MHz)	C1 (pF)	C2 (pF)	R (Ω)
TBD	TBD	4MHz	TBD	TBD	TBD

(2) Reset and Hardware Standby Input

(MB90V590A, MB90F594A, MB90594, MB90V590 G^{*1} , MB90F594 G^{*1} , MB90594 G^{*1} : Vcc = 5.0 V±10 %, Vss = AVss = 0V, TA = -40 °C to +85 °C)

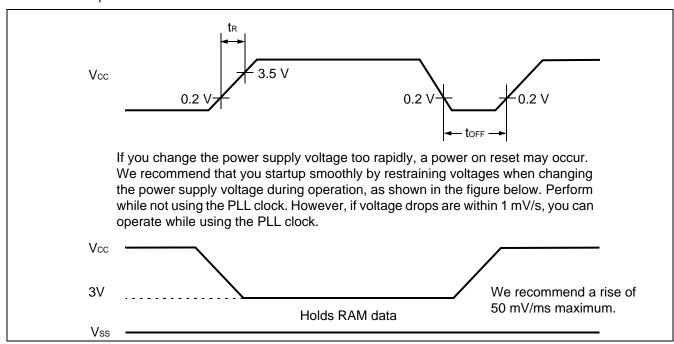

(MB90F591A, MB90591: $Vcc = 5.0 \text{ V} \pm 5 \text{ %}$, Vss = AVss = 0V, $T_A = -40 \text{ °C to } +85 \text{ °C}$)

Parameter	Symbol	Pin	Rated	Value	Units	Remarks
raiametei	Syllibol	F 1111	Min.	Max.	Units	Nemarks
Reset input time	trstl	RST	16 tcp*2	_	ns	
Hardware standby input time	t HSTL	HST	16 tcp*2	_	ns	

^{*1:} Under development

^{*2: &}quot;t_{cp}" represents one cycle time of the machine clock.

Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.


(3) Power On Reset

(MB90V590A, MB90F594A, MB90594, MB90V590G*, MB90F594G*, MB90594G*: $Vcc = 5.0 V \pm 10 \%$, Vss = AVss = 0V, $T_A = -40 °C$ to +85 °C)

(MB90F591A, MB90591: $Vcc = 5.0 \text{ V} \pm 5 \text{ %}$, Vss = AVss = 0V, $T_A = -40 \text{ °C to } +85 \text{ °C}$)

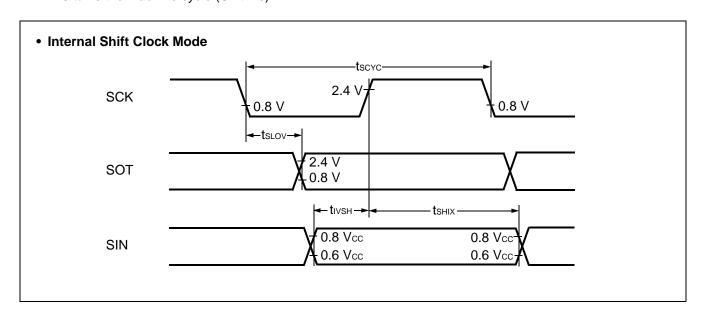
Parameter	Symbol	Pin	Test Condition	Rated	Value	Units	Remarks
Farameter	Syllibol	FIII	rest Condition	Min.	Max.	Ullits	Remarks
Power on rise time	t R	Vcc		0.05	30	ms	
Power off time	t off	Vcc	_	50		ms	Due to repetitive operation

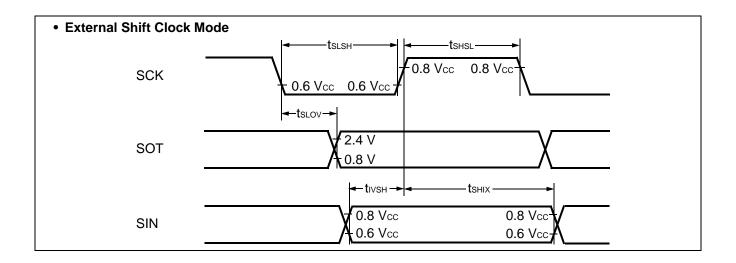
*: Under development

(4) UART0/1/2, Serial I/O Timing

(MB90V590A, MB90F594A, MB90594, MB90V590G*, MB90F594G*, MB90594G*: $V_{CC} = 5.0 \text{ V} \pm 10 \text{ %, Vss} = \text{AVss} = 0 \text{V, T}_{A} = -40 \text{ °C to } +85 \text{ °C)}$

(MB90F591A, MB90591: $Vcc = 5.0 \text{ V}\pm5 \text{ %}$, Vss = AVss = 0V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$)


Parameter	Symbol	Pin Symbol	Condition	Va	lue	Unite	Remarks
raiailletei	Syllibol	Fill Syllibol	Condition	Min.	Max.	Units	iveillai ks
Serial clock cycle time	t scyc	SCK0 to SCK3		8 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK3, SOT0 to SOT3	Internal clock opera-	-80	80	ns	
Valid SIN ⇒ SCK ↑	t ıvsh	SCK0 to SCK3, SIN0 to SIN3	tion output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	100	_	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	t sнıx	SCK0 to SCK3, SIN0 to SIN3		60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK3		4 tcp	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK3		4 tcp	_	ns	
$SCK\downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK3, SOT0 to SOT3	External clock operation output pins are	_	150	ns	
Valid SIN ⇒ SCK ↑	t ıvsh	SCK0 to SCK3, SIN0 to SIN3	C _L = 80 pF + 1 TTL.	60		ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	t sнıx	SCK0 to SCK3, SIN0 to SIN3		60	_	ns	

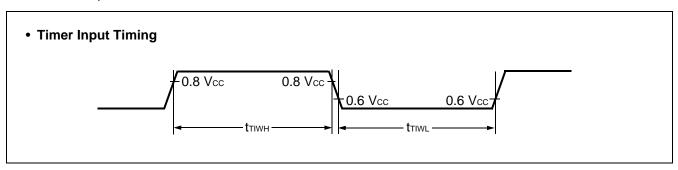

*: Under development

Notes: 1.AC characteristic in CLK synchronized mode.

 $2.C_{\text{\tiny L}}$ is load capacity value of pins when testing.

3.tcp is the machine cycle (Unit: ns).

(5) Timer Related Resource Input Timing


(MB90V590A, MB90F594A, MB90594, MB90V590G*, MB90F594G*, MB90594G*:

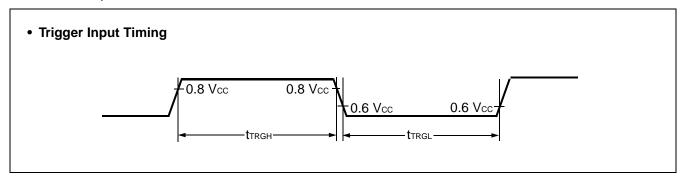
 $Vcc = 5.0 V\pm 10 \%$, Vss = AVss = 0V, $T_A = -40 °C$ to +85 °C)

(MB90F591A, MB90591: $Vcc = 5.0 \text{ V} \pm 5 \text{ %}$, Vss = AVss = 0V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$)

Parameter	Symbol	Pin	Condition	Va	lue	Units	Remarks
Farameter	Symbol	FIII	Condition	Min.	Max.	Ullits	INCIIIAI NS
Input pulse width	t тıwн	TIN0		4 t _{CP}	_	ne	
Imput puise width	t TIWL	IN0 to IN5	_	4 ICP	_	ns	

*: Under development

(6)Trigger Input Timing

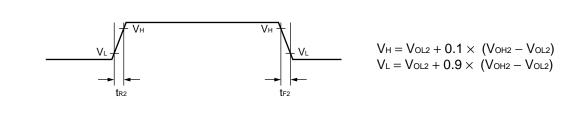

(MB90V590A, MB90F594A, MB90594, MB90V590G*, MB90F594G*, MB90594G*:

 $V_{CC} = 5.0 \text{ V} \pm 10 \text{ %}, V_{SS} = AV_{SS} = 0 \text{ V}, T_{A} = -40 \text{ °C to } +85 \text{ °C})$

(MB90F591A, MB90591: $Vcc = 5.0 \text{ V}\pm5 \text{ \%}$, Vss = AVss = 0V, $T_A = -40 \text{ °C to } +85 \text{ °C}$)

Parameter	Symbol	Pin	Condition	Va	lue	Units	Remarks	
Parameter	Syllibol	r III	Condition	Min.	Max.	Ullits	Nemarks	
Input pulse width	t trgh t trgl	INT0 to INT7, ADTG	_	5 tcp	_	ns		

*: Under development


(7) Slew Rate High Current Outputs (MB90F591A, MB90591, MB90594G* and MB90F594G* only)

(MB90F594G*, MB90594G*: $V_{CC} = 5.0 \text{ V} \pm 10 \text{ %}$, $V_{SS} = \text{AV}_{SS} = 0 \text{V}$, $T_{A} = -40 \text{ °C to } +85 \text{ °C}$) (MB90F591A, MB90591: $V_{CC} = 5.0 \text{ V} \pm 5 \text{ %}$, $V_{SS} = \text{AV}_{SS} = 0 \text{V}$, $T_{A} = -40 \text{ °C to } +85 \text{ °C}$)

Parameter	Symbol	Pin	Condition	Va	lue	Units	Remarks
Parameter	Syllibol	FIII	Condition	Min.	Max.	Ullits	Remarks
Output Rise/Fall time	t _{R2}	Port P70 to P77, Port P80 to P87	_	15	40	ns	

*: Under development

Slew Rate Output Timing

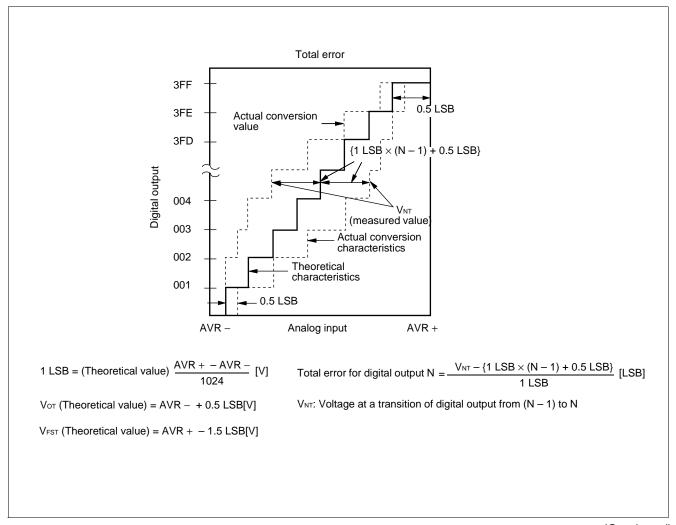
5. A/D Converter

 $\begin{tabular}{ll} (MB90V590A, MB90F594A, MB90594, MB90V590G^{*1}, MB90F594G^{*1}, MB90594G^{*1}: \\ Vcc = AVcc = 5.0 \ V\pm10 \ \%, \ Vss = AVss = 0V, \ 3.0 \ V \le AVR+-AVR-, \ T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C) \\ (MB90F591A, MB90591: \ Vcc = AVcc = 5.0 \ V\pm5 \ \%, \ Vss = AVss = 0V, \ 3.0 \ V \le AVR+-AVR-, \ T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C) \\ \end{tabular}$

Parameter	Symbol	Pin		Value		Units	Remarks
rarameter	Syllibol	FIII	Min.	Тур.	Max.	Ullits	Remarks
Resolution	_	_	_	_	10	bit	
Conversion error	_	_	_	_	±5.0	LSB	
Nonlinearity error	_	_	_	_	±2.5	LSB	
Differential nonlinearity error	_	_	_	_	±1.9	LSB	
Zero reading voltage	Vот	AN0 to AN7	AVR- – 3.5	AVR- +0.5	AVR- + 4.5	mV	
Full scale reading voltage	V _{FST}	AN0 to AN7	AVR+-6.5	AVR+ -1.5	AVR+ + 1.5	mV	
Conversion time	_	_	_	352tcp	_	ns	
Sampling time	_	_	_	64tcp	_	ns	
Analog port input current	Iain	AN0 to AN7	-1	_	+1	μΑ	
Analog input voltage range	Vain	AN0 to AN7	AVR-	_	AVR+	V	
Poforonoo voltago rongo	_	AVR+	AVR- + 2.7	_	AVcc	V	
Reference voltage range	_	AVR-	0	_	AVR+ - 2.7	V	
Dower supply surrent	lΑ	AVcc	_	5	_	mA	
Power supply current	Іан	AVcc	_	_	5	μΑ	*2
Poforonoo voltago gurront	IR	AVR+	200	400	600	μΑ	
Reference voltage current	IRH	AVR+	_	_	5	μΑ	*2
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

^{*1:} Under development

^{*2:} When not operating A/D converter, this is the current ($Vcc = AVcc = AVR_{+} = 5.0 \text{ V}$) when the CPU is stopped.


6. A/D Converter Glossary

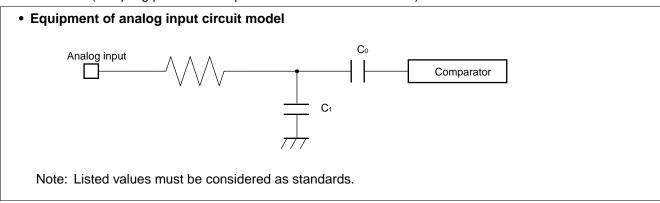
Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)



7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 15 k Ω or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \, \mu s$ @machine clock of 16 MHz).

• Error

The smaller the |AVR + AVR - |, the greater the error would become relatively.

■ INSTRUCTIONS (351 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
1	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S : Set by execution of instruction.
Z	R: Reset by execution of instruction.
V C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) *: Instruction is a read-modify-write instruction. -: Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16-bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.

For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

 Table 2
 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL and AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	ı	Notation	l	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@R\ @R\ @R\ @R\	N1 N2		Register indirect	0
OC OD OE OF	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	0
10 11 12 13 14 15 16 17	_		p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16		p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@R\	W0 + RW W1 + RW C + disp1 16	<i>1</i> 7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register accesses		
Code	Operand	Number of execution cycles for each type of addressing	Number of register accesses for each type of addressing		
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions		
08 to 0B	@RWj	2	1		
0C to 0F	@RWj +	4	2		
10 to 17	@RWi + disp8	2	1		
18 to 1B	@RWj + disp16	2	1		
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0		

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b)	byte	(c) v	vord	(d) long	
Operand	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

N	Inemonic	#	~	RG	В	Operation	LH	АН	ı	s	т	N	z	٧	С	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, Ri	1	2	1	O´	byte (A) \leftarrow (Ri)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	Ö	byte (A) \leftarrow (ear)	Z	*	_	_	_	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	Ö	(b)	byte (A) \leftarrow (eam)	Z	*	_	_	_	*	*	_	_	_
MOV	A, io	2	3	ő	(b)	byte (A) \leftarrow (io)	Z	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	0	byte (A) \leftarrow imm8	Z	*	_	_	_	*	*		_	_
MOV	A, #IIIIIIO A, @A	2	3	0	-		5		_		_	*	*	_	_	
				2	(b)	byte (A) \leftarrow ((A))	Z Z	*	_	_	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10		(b)	byte (A) \leftarrow ((RLi)+disp8)		*	_	_	_		*	_	_	_
MOVN	A, #imm4	1	1	0	0	byte (A) ← imm4	Z	^	_	_	_	R	^	_	_	_
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Х	*	_	_	_	*	*	_	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, Ri	2	2	1	`o´	byte (A) ← (Ri)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, ear	2	2	1	Ö	byte (A) ← (ear)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	X	*	_	_	_	*	*	_	_	_
MOVX	A, io	2	3	ő	(b)	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_	_	_
MOVX	A, #imm8	2	2	0	0	byte (A) \leftarrow (io) byte (A) \leftarrow imm8	X	*		_		*	*		_	_
MOVX							x				_	*	*			
	A, @A	2	3	0	(b)	byte (A) \leftarrow ((A))		*	_	_	_	*	*	_	_	_
MOVX	A,@RWi+disp8	2	5	1	(b)	byte (A) \leftarrow ((RWi)+disp8)	X	*	_	_	_	*	*	_	_	_
MOVX	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	X	^	_	_	_		^	_	_	_
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	0	(b)	byte (addr16) ← (A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, A	1	2	1	`o´	byte (Ri) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	ear, A	2	2	1	Ö	byte (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	eam, A	2+	3+ (a)	Ö	(b)	byte (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	io, A	2	3	0	(b)	byte (io) \leftarrow (A)	_		_	_	_	*	*	_	_	_
MOV	@RLi+disp8, A	3	10	2		byte ((RLi) +disp8) \leftarrow (A)			_	_		*	*	_	_	_
MOV		2	3	2	(b)		_	_			_	*	*	_		
	Ri, ear				0	byte (Ri) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) ← (eam)	_	_	_	_	_	*	*	_	-	_
MOV	ear, Ri	2	4	2	0	byte (ear) ← (Ri)	_	_	_	_	_	*	*	_	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) ← (Ri)	_	_	_	_	_			_	_	_
MOV	Ri, #imm8	2	2	1	0	byte (Ri) ← imm8	-	-	_	_	-	*	*	_	-	_
MOV	io, #imm8	3	5	0	(b)	byte (io) ← imm8	_	-	_	_	_	-	_	_	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (dir) ← imm8	_	-	_	_	-	_	_	_	_	_
MOV	ear, #imm8	3	2	1	O O	byte (ear) ← imm8	_	_	_	_	_	*	*	_	_	-
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (eam) ← imm8	_	_	_	_	l –	l –	_	_	_	_
MOV	@AL, AH		()		(-,											
/MOV	@A, T	2	3	0	(b)	byte $((A)) \leftarrow (AH)$	_	_	_	_	_	*	*	_	_	_
VOLL	A			_		hto (A) ()	_									
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z	-	_	_	-	-	_	_	_	_
XCH	A, eam	2+	5+_(a)	0	2× (b)	byte (A) \leftrightarrow (eam)	Z	-	_	_	-	-	_	_	-	_
XCH	Ri, ear	2	7	4	0,,	byte (Ri) \leftrightarrow (ear)	_	-	-	-	_	-	_	_	_	-
XCH	Ri, eam	2+	9+ (a)	2	2× (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	_	-	-	_	_	-	_

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	v	С	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	_	*	_	_	_	*	*	_	_	_
MOVW A, addr16	3	4	0	(c)	word (A) ← (addr16)	_	*	_	_	_	*	*	_	_	_
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	_	*	_	_	_	*	*	_	_	_
MOVW A, RWi	1	2	1	0	word (A) \leftarrow (RWi)	_	*	_	_	_	*	*	_	_	_
MOVW A, ear MOVW A, eam	2 2+	∠ 3+ (a)	1 0	(c)	word (A) ← (ear) word (A) ← (eam)	_	*	_	_	_	*	*	_	_	_
MOVW A, earn	2	3+ (a)	0	(c)	word (A) \leftarrow (earr) word (A) \leftarrow (io)	_	*	_	_		*	*	_		
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow (A)$ word $(A) \leftarrow (A)$	_	_	_	_	_	*	*	_	_	_
MOVW A, #imm16	3	2	Ö	0	word (A) \leftarrow imm16	_	*	_	_	_	*	*	_	_	_
MOVW A, @RWi+disp8	2	5	1	(c)	word $(A) \leftarrow ((RWi) + disp8)$	_	*	_	_	_	*	*	_	_	_
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	-	*	-	-	_	*	*	-	_	_
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	_	_	_	-	_	*	*	-	_	_
MOVW SP, A	1	1	0	0	word (SP) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, A MOVW ear, A	1 2	2 2	1	0	word (RWi) \leftarrow (A) word (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW ear, A	2+	3+ (a)	0	(c)	word (ear) \leftarrow (A) word (eam) \leftarrow (A)	_	_	_	_		*	*	_		
MOVW io, A	2	3	Ö	(c)	word (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, ear	2	3	2	(0)	word (RWi) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) ← (eam)	_	_	_	_	_	*	*	_	_	_
MOVW ear, RWi	2	4	2	0	word (ear) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) ← (RWi)	-	_	_	-	_	*	*	-	_	_
MOVW RWi, #imm16 MOVW io, #imm16	3 4	2 5	1 0	(c)	word (RWi) ← imm16 word (io) ← imm16	_	_	_	_	_			_		_
MOVW ear, #imm16	4	2	1	0	word (io) ← iiiii116 word (ear) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW ear, #illillillillillillillillillillillillill	4+	4+ (a)	0	(c)	word (ear) ← imm16	_	_	_	_		_	_	_		
MOVW @AL, AH	• •	π (α)	Ü	(0)	word (barry \ minre										
/MOVW@A, T	2	3	0	(c)	word $((A)) \leftarrow (AH)$	_	_	_	_	_	*	*	_	_	_
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0	2× (c)		_	_	_	_	_	_	_	_	_	_
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	, , , ,	-	_	-	-	_	-	-	-	-	_
MOVL A, ear	2	4	2	0	long (A) \leftarrow (ear)	_	_	_	_	_	*	*	_	_	_
MOVL A #imm22	2+	5+ (a)	0	(d)	$long(A) \leftarrow (eam)$	_	_	_	_	_	*	*	_	_	_
MOVL A, #imm32	5	3	0	0	long (A) ← imm32	_	-	-	_	_	.,	,	-	_	_
MOVL ear, A	2	4	2	0	long (ear) ← (A)	_	_	_	_	—	*	*	_	_	_
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) ← (A)	_	_	_	_		*	*	_	_	_

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
ADD	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Z	_	_	_	_	*	*	*	*	_
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) + (dir)$	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, ear	2	3	1	0	byte (A) \leftarrow (A) +(ear)	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) +(eam)	Ζ	_	_	_	_	*	*	*	*	_
ADD	ear, A	2	3	2	0	byte (ear) ← (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) + (A)	Ζ	_	_	_	_	*	*	*	*	*
ADDC	Α	1	2	0	0	byte (A) \leftarrow (AH) + (AL) + (C)	Ζ	_	_	_	_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte (A) ← (A) + (ear) + (C)	Ζ	_	_	_	_	*	*	*	*	_
ADDC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) + (eam) + (C)	Ζ	_	_	_	_	*	*	*	*	_
ADDDC	Α	1	3	0	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, #imm8	2	2	0	0	byte (A) \leftarrow (A) $-imm8$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) - (dir)$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, ear	2	3	1	Ô	byte (A) \leftarrow (A) $-$ (ear)	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow (A) - (eam)$	Ζ	_	_	_	_	*	*	*	*	_
SUB	ear, A	2	3 ′	2	`o´	byte (ear) ← (ear) – (A)	_	_	_	_	_	*	*	*	*	_
SUB	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	*
SUBC	A	1	2 ′	0	o`´	byte $(A) \leftarrow (AH) - (AL) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, ear	2	3	1	0	byte $(A) \leftarrow (A) - (ear) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow (A) - (eam) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBDC		1	3	0	O	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
ADDW	Α	1	2	0	0	word (A) \leftarrow (AH) + (AL)	_	_	_	_	_	*	*	*	*	_
ADDW	A, ear	2	3	1	0	word (A) \leftarrow (A) +(ear)	_	_	_	_	_	*	*	*	*	_
ADDW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) +(eam)	_	_	_	_	_	*	*	*	*	_
ADDW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) +imm16	_	_	_	_	_	*	*	*	*	_
ADDW	ear, A	2	3	2	0	word (ear) ← (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADDW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) + (A)	_	_	_	_	_	*	*	*	*	*
ADDCW	/ A, ear	2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	_	_	_	*	*	*	*	_
ADDCW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	_	_	_	_	_	*	*	*	*	_
SUBW	Α	1	2	0	Ô	word $(A) \leftarrow (AH) - (AL)$	_	_	_	_	_	*	*	*	*	_
SUBW	A, ear	2	3	1	0	word (A) \leftarrow (A) $-$ (ear)	_	_	_	_	_	*	*	*	*	_
SUBW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam)	_	_	_	_	_	*	*	*	*	_
SUBW	A, #imm16	3	2	0	Ô	word $(A) \leftarrow (A) - imm16$	_	_	_	_	_	*	*	*	*	_
SUBW	ear, A	2	3	2	0	word (ear) ← (ear) – (A)	_	_	_	_	_	*	*	*	*	_
SUBW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) ← (eam) – (A)	_	_	_	_	_	*	*	*	*	*
SUBCW	A, ear	2	3 ′	1	0 ′	word $(A) \leftarrow (A) - (ear) - (C)$	_	_	_	_	_	*	*	*	*	_
SUBCW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow (A) - (eam) - (C)$	_	_	_	_	_	*	*	*	*	-
ADDL	A, ear	2	6	2	0	$long (A) \leftarrow (A) + (ear)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, eam	2+	7+ (a)	0	(d)	long (A) \leftarrow (A) + (eam)	_	_	-	_	_	*	*	*	*	_
ADDL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) +imm32	_	_	-	_	_	*	*	*	*	_
SUBL	A, ear	2	6	2	0	$long(A) \leftarrow (A) - (ear)$	_	_	_	_	_	*	*	*	*	_
SUBL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) - (eam)$	_	_	_	_	_	*	*	*	*	_
SUBL	A, #imm32	5	4 ′	0	O´	long $(A) \leftarrow (A) - imm32$	-	_	-	_	-	*	*	*	*	_

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1		_	_		-	*	*	*	-	- *
DEC DEC	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow (ear) -1 byte (eam) \leftarrow (eam) -1	 - 	_ _	_ _	_ _	_ _	*	*	*	_ _	_ *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_ _	_	_		_	*	*	*		- *
DECW DECW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) -1 word (eam) \leftarrow (eam) -1	 -	_ _	_ _	<u>-</u>	_	*	*	*	_ _	- *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_	_	_	_	_	*	*	*	_ _	- *
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) -1 long (eam) ← (eam) -1	_ _	_ _	_ _	_ _	_ _	*	*	*	_ _	- *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
CMP	Α	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	-
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2 ′	0	Ò	byte (A) ← imm8	-	_	_	_	_	*	*	*	*	_
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	_	-	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2	0	0	word $(A) \leftarrow imm16$	-	_	_	_	_	*	*	*	*	_
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	_	-	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) ← imm32	-	_	_	-	_	*	*	*	*	_

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
DIVU	Α	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	_	-	J	-	_	-	-	*	*	_
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	_	-	-	-	_	_	-	*	*	_
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	_	-	_	-	_	_	ı	*	*	_
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	_	-	-	-	_	_	-	*	*	_
DIVUW	A, eam	2+	*5	0	*7	$\begin{array}{l} \text{long (A)/word (eam)} \\ \text{Quotient} \rightarrow \text{word (A) Remainder} \rightarrow \text{word (eam)} \end{array}$	_	-	-	-	_	-	ı	*	*	-
MULU	Α	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	-
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) → word (A)	_	-	_	_	_	_	-	_	_	_
MULUW		1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	_	_	_	_	-	_	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	_	-	-	-	_	-	-	-	-	_

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
DIV	Α	2	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	Z	-	-	1	1	-	-	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient → byte (A)	Z	-	-	1	ı	ı	_	*	*	-
DIV	A, eam	2+	*3	0	*6	Remainder → byte (ear) word (A)/byte (eam) Quotient → byte (A) Remainder → byte (eam)	Z	-	-	Ι	Ι	Ι	-	*	*	_
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	-	_	-	1	1	1	_	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient → word (A) Remainder → word (eam)	_	ı	_	ı	ı	ı	ı	*	*	-
MULU	Α	2	*8 *9	0	0	byte (AH) *byte (AL) → word (A)	_	_	_	-	-	-	_	_	_	_
MULU MULU	A, ear A, eam	∠ 2+	*10	1 0	0 (b)	byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A)	_			_	_	_	_			
MULUW		2	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2	*12	1	Ö	word (A) *word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word $(eam) \rightarrow long(A)$	-	-	-	-	-	1	-	-	-	_

- *1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
- *2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
- *3: Set to 4 + (a) when the division-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.
- *4: Positive dividend: Set to 4 when the division-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
- *5: Positive dividend: Set to 4 + (a) when the division-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation.

Negative dividend: Set to 4 + (a) when the division-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal operation.

- *6: When the division-by-0, (b) for an overflow, and $2 \times$ (b) for normal operation.
- *7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
- *8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10: Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13: Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
- Notes: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.
 - When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
 - For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+ 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2×(b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)						* * * *	* * * * *	R R R R R		- - - *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)		_ _ _ _	- - - -			* * * * *	* * * * *	R R R R R		_ _ _ _ *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+ 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2×(b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)		 - - -	- - - -		1 1 1 1	* * * * *	* * * * *	R R R R R		_ _ _ _ *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	_ _ _	_ _ _	_ _ _	-	_ _ _	* *	* *	R R R	_ _ _	_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	_ _ _ _ _	_ _ _ _	_ _ _ _ _		1 1 1 1 1 1	* * * * * *	* * * * * *	R R R R R R R	_ _ _ _ _	_ _ _ _ _ *
ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	_ _ _ _	_ _ _ _	- - - -		1 1 1 1 1	* * * * * *	* * * * * *	R R R R R	_ _ _ _	- - - - *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	_ _ _ _ _		_ _ _ _ _		111111	* * * * *	* * * * * *	R R R R R	_ _ _ _ _	_ _ _ _ *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	* *	* *	R R R	_ _ _	_ _ *

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mne	monic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	v	С	RMW
	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	-	-	_	_	*	*	R R		_
	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_ _	_ _	_ _	_ _	_ _	*	*	R R		_ _
	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	$\begin{array}{l} \text{long (A)} \leftarrow \text{(A) xor (ear)} \\ \text{long (A)} \leftarrow \text{(A) xor (eam)} \end{array}$	_ _	1 1	1 1	1 1	_ _	*	*	R R	1 1	_ _

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	-	_	ı	*	*	*	*	_
NEG NEG	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	- -	-	- -	-	*	*	*	*	<u>-</u>
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	_	_	_	-	_	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	1 1	1 1	1 1	1 1	*	*	*	*	<u>-</u> *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	_	S	Т	N	Z	٧	С	RMW
NRML A, R0	2	*1	1		$\begin{array}{l} \text{long (A)} \leftarrow \text{Shift until first digit is "1"} \\ \text{byte (R0)} \leftarrow \text{Current shift count} \end{array}$	-	1	1	1	1	1	*	1	-	-

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
RORC A ROLC A	2 2	2 2	0	0 0	byte (A) \leftarrow Right rotation with carry byte (A) \leftarrow Left rotation with carry		-	1 1	1 1		*	*	-	*	_
RORC ear RORC eam ROLC ear ROLC eam	2 2+ 2 2+	3 5+ (a) 3 5+ (a)	2 0 2 0	0 2× (b) 0 2× (b)	byte (ear) ← Right rotation with carry byte (eam) ← Right rotation with carry byte (ear) ← Left rotation with carry byte (eam) ← Left rotation with carry		_ _ _	1 1 1 1	1 1 1 1		* * *	* * *	_ _ _	* * * *	- * - *
ASR A, R0 LSR A, R0 LSL A, R0	2 2 2	*1 *1 *1	1 1 1	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)	_ _ _	_ _ _	1 1 1	1 1 1	* -	* *	* *	_ _ _	* *	_ _ _
ASRW A LSRW A/SHRW A LSLW A/SHLW A	1 1 1	2 2 2	0 0 0	0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit)	1 1 1		1 1 1	1 1 1	* *	* R *	* *		* *	- - -
ASRW A, R0 LSRW A, R0 LSLW A, R0	2 2 2	*1 *1 *1	1 1 1	0 0 0	word (A) \leftarrow Arithmetic right barrel shift (A, R0) word (A) \leftarrow Logical right barrel shift (A, R0) word (A) \leftarrow Logical left barrel shift (A, R0)	_ 	- - -	1 1 1	1 1 1	* -	* *	* *	_ _ _	* *	- - -
ASRL A, R0 LSRL A, R0 LSLL A, R0	2 2 2	*2 *2 *2	1 1 1	0 0 0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Arithmetic right shift (A, R0)} \\ \text{long (A)} \leftarrow \text{Logical right barrel shift (A, R0)} \\ \text{long (A)} \leftarrow \text{Logical left barrel shift (A, R0)} \end{array}$	1 1 1	_ _ _	1 1 1	1 1 1	*	* *	* *		* *	_ _ _

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 19 Branch 1 Instructions [31 Instructions]

Mne	monic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
BZ/BEQ) rel	2	*1	0	0	Branch when (Z) = 1	_	-	_	_	_	_	_	_	_	_
BNZ/BN	NE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLC) rel	2	*1	0	0	Branch when (C) = 1	_	_	_	_	_	_	_	_	_	_
BNC/BH	HS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	0	Branch when $((V) \text{ xor } (N)) \text{ or } (Z) = 1$	_	_	_	_	_	_	_	_	_	_
BGT	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	_	_	_	_	_
BLS	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI	rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BRA	rel	2	*1	0	0	Branch unconditionally	_	_	_	_	_	_	_	_	_	_
					_	, , , , , , , , , , , , , , , , , , , ,										
JMP	@A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
	addr16	3	3	0	0	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
JMP	@ear	2	3	1	0	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
JMP	@eam	2+	4+ (a)	0	(c)	word (PC) \leftarrow (eam)	_	_	_	_	_	_	_	_	_	_
JMPP	@ear *3	2	5	2	0	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
JMPP	@eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP	addr24	4	4	0	0	word (PC) ← ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
	_	_	•		, ,	(PCB) ← ad24 16 to 23										
	@ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
	@eam *4	2+	7+ (a)	0	2× (c)	word (PC) \leftarrow (eam)	_	_	_	_	_	_	_	_	_	_
	addr16 *5	3	6	0	(c)	word (PC) ← addr16	_	_	_	_	_	—	_	_	_	_
		1	7	0	2× (c)	Vector call instruction	_	_	_	_	_	_	_	_	_	_
CALLP	@ear *6	2	10	2	2× (c)	word (PC) \leftarrow (ear) 0 to 15,	_	_	_	_	_	-	_	_	_	_
CALLE	@ * .	2+	11+ (a)	0	*2	(PCB) ← (ear) 16 to 23 word (PC) ← (eam) 0 to 15,	_				_	_			_	_
CALLP	@eam *6	∠∓	11+ (a)	U	_	$(PCB) \leftarrow (eam) \ 16 \ to \ 23$	_		_	_	_	-	_	_	_	_
CALLE	addr24 *7	4	10	0	2× (c)	word (PC) \leftarrow addr0 to 15,	_	_	_	_	_	_	_	_	_	_
OALLE	auui 24	r			2/ (0)	(PCB) ← addr16 to 23										

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 20 Branch 2 Instructions [19 Instructions]

N	Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	z	٧	С	RMW
CBNE	A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠ imm8	_	_	_	-	_	*	*	*	*	_
CWBNE	A, #imm16, rel	4	*1	0	0	Branch when word (A) ≠ imm16	_	_	_	-	-	*	*	*	*	-
CBNE	ear, #imm8, rel	4	*2	1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE	eam, #imm8, rel*10	4+	*3	0	(b)	Branch when byte (eam) ≠ imm8	l —	 	_	_	_	*	*	*	*	_
CWBNE	ear, #imm16, rel	5	*4	1	0	Branch when word (ear) ≠ imm16	l —	 	_	_	_	*	*	*	*	_
CWBNE	eam, #imm16, rel*10	5+	*3	0	(c)	Branch when word (eam) ≠ imm16	_	_	_	-	_	*	*	*	*	-
DBNZ	ear, rel	3	*5	2	0	Branch when byte (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	_	_	*	*	*	_	_
DBNZ	eam, rel	3+	*6	2	2× (b)	Branch when byte (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	-	-	_	*	*	*	_	*
DWBNZ	ear, rel	3	*5	2	0	Branch when word (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	-	_	*	*	*	_	_
DWBNZ	eam, rel	3+	*6	2	2× (c)	Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	_	-	_	*	*	*	_	*
INT	#vct8	2	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT	addr16	3	16	0	6× (c)	Software interrupt	_	_	R	SSSS	_	_	_	_	_	_
INTP	addr24	4	17	0	6× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT9		1	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
RETI		1	15	0	*7	Return from interrupt	_	_	*	*	*	*	*	*	*	-
LINK	#imm8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	-	_	_	-	_	_	-	ı	_	-
UNLINK		1	5	0	(c)	allocate local pointer area At constant entry, retrieve old frame pointer from stack.	_	_	_	_	_	_	-	_	_	_
RET *8 RETP *9)	1 1	4 6	0	(c) (d)	Return from subroutine Return from subroutine	_ _	_ _	_ _	_	_ _	_ _	<u> </u>		<u>-</u>	_ _

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Set to $3 \times (b) + 2 \times (c)$ when an interrupt request occurs, and $6 \times (c)$ for return.

^{*8:} Retrieve (word) from stack

^{*9:} Retrieve (long word) from stack

^{*10:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 21 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	$\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ & (\text{SP}) \leftarrow (\text{SP}) - 2n, ((\text{SP})) \leftarrow (\text{rlst}) \end{aligned}$	_ _ _	1 1 1 1	1 1 1 1		1 1 1 1	_ _ _	1 1 1 1	 - 		- - -
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 4 *2	0 0 0 *5	(c) (c) (c) *4	$\begin{aligned} & \text{word (A)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (AH)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (PS)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{(rlst)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 n \end{aligned}$	_ _ _ _	*	- - * -	- * -	- - * -	- * -	*	- * -	- * -	- - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8	2 2	3	0	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	-	-	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	-	_		_ _	_	-	1 1			_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	- - -	_ * *	1 1 1 1	- - -	1 1 1 1	- - -	1 1 1 1			- - - -
ADDSP #imm8 ADDSP #imm16	2	3	0	0 0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16	_ _	_		_ _	-	_ _	1 1			_ _
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	1 1	_ _	1 1	*	*			_ _
NOP ADB DTB PCB	1 1 1	1 1 1	0 0 0	0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space	- - -	1 1 1		_ _ _	1 1 1	- - -	1 1 1 1			- - -
SPB NCC CMR	1 1 1	1 1 1	0 0 0	0 0 0	Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank	- - -	- -	- -	- - -	- -	_ _ _	I	- -	- -	_ _ _

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 +3} \times (push count) – 3 \times (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
MOVB A, dir:bp MOVB A, addr16:bp MOVB A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *	1 1 1	1 1 1	1 1 1	* *	* *	- - -		- - -
MOVB dir:bp, A MOVB addr16:bp, A MOVB io:bp, A	3 4 3	7 7 6	0 0 0	2× (b) 2× (b) 2× (b)	bit (addr16:bp) $b \leftarrow (A)$	_ _ _	1 1 1	1 1 1	1 1 1	1 1 1	* *	* *			* * *
SETB dir:bp SETB addr16:bp SETB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	<u> </u>	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	<u> </u>	<u> </u>		* *
CLRB dir:bp CLRB addr16:bp CLRB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ 	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	_ 	- -		* * *
BBC dir:bp, rel BBC addr16:bp, rel BBC io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	_ _ _	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	* *	- -		- - -
BBS dir:bp, rel BBS addr16:bp, rel BBS io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	- -	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	* *	_ _ _	1 1 1	- - -
SBBS addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	-	-	_	-	*	_	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	-	-	-	-	_	_	_	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	-	_	_	_	_	_	_	_	_	_

^{*1: 8} when branching, 7 when not branching

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	?	RG	В	Operation	LH	АН	-	s	Т	N	z	٧	C	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	-	-	_	-	-	-	-	1	_	_
SWAPW/XCHW A,T	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Х	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Χ	_	_	_	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	_	Z	-	_	_	R	*	_	-	_

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

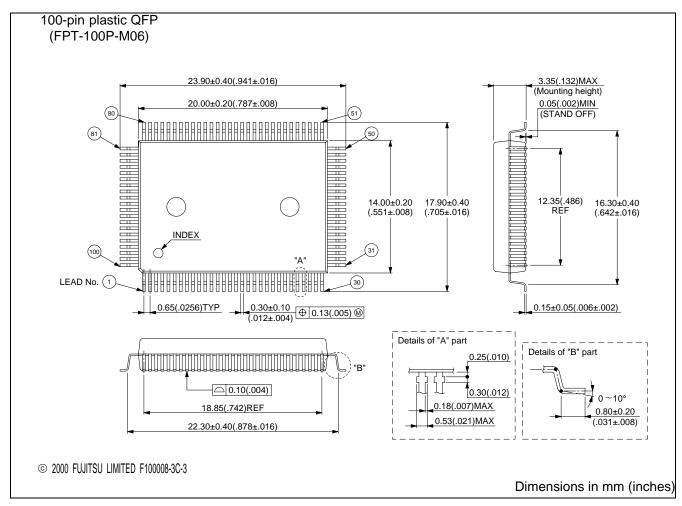
^{*4:} Undefined count

^{*5:} Until condition is satisfied

Table 24 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSD	2	*2	*5	*3	Byte transfer @AH– ← @AL–, counter = RW0	-	-	-	-	_	_	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH–) – AL, counter = RW0	-	-	-	-	_	*	*	*	*	_
FISL/FILSI	2	6m +6	*5	*3	Byte filling $@AH+ \leftarrow AL$, counter = RW0	ı	-	-	ı	_	*	*	-	ı	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter = RW0	1	-	-	-	-	1	1	-	ı	-
MOVSWD	2	*2	*8	*6	Word transfer $@AH-\leftarrow @AL-$, counter = RW0	-	_	_	-	_	_	_	_	_	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH–) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ ← AL, counter = RW0	_	_	-	-	_	*	*	-	-	_

m: RW0 value (counter value)


- n: Loop count
- *1: 5 when RW0 is 0, $4 + 7 \times (RW0)$ for count out, and $7 \times n + 5$ when match occurs
- *2: 5 when RW0 is 0, $4 + 8 \times (RW0)$ in any other case
- *3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
- *4: (b) \times n
- *5: 2 × (RW0)
- *6: (c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.
- *7: (c) \times n
- *8: 2 × (RW0)

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90594PF MB90591PF MB90594GPF* MB90F594GPF* MB90F594APF MB90F591APF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V590ACR MB90V590GCR*	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

^{*:} Under development

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan

Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741

Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0006

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.