DS07-13701-6E

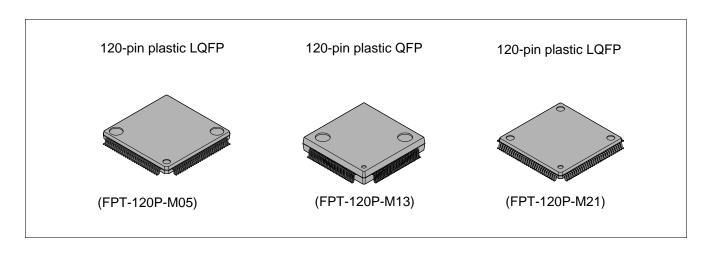
16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90570 Series

MB90573/574/574B/F574/F574A/V570/V570A

■ DESCRIPTION


The MB90570 series is a general-purpose 16-bit microcontroller developed and designed by Fujitsu for process control applications in consumer products that require high-speed real time processing. It contains an I²C*² bus interface that allows inter-equipment communication to be implemented readily. This product is well adapted to car audio equipment, VTR systems, and other equipment and systems.

The instruction set of F²MC-16LX CPU core inherits AT architecture of F²MC*¹ family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90570 series has peripheral resources of an 8/10-bit A/D converter, an 8-bit D/A converter, UART (SCI), an extended I/O serial interface, an 8/16-bit up/down counter/timer, an 8/16-bit PPG timer, I/O timer (a 16-bit free run timer, an input capture (ICU), an output compare (OCU)).

- *1: F2MC stands for FUJITSU Flexible Microcontroller.
- *2: Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ PACKAGE

■ FEATURES

Clock

Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from 1/2 to $4 \times$ oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz). Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, $4 \times$ PLL clock, operation at Vcc of 5.0 V)

· Maximum memory space

16 Mbytes

• Instruction set optimized for controller applications

Rich data types (bit, byte, word, long word)

Rich addressing mode (23 types)

Enhanced signed multiplication/division instruction and RETI instruction functions

Enhanced precision calculation realized by the 32-bit accumulator

• Instruction set designed for high level language (C) and multi-task operations

Adoption of system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed
 - 4-byte instruction queue
- Enhanced interrupt function

8 levels, 34 factors

- Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (El²OS): Up to 16 channels
- Embedded ROM size and types

Mask ROM: 128 kbytes/256 kbytes

Flash ROM: 256 kbytes

Embedded RAM size: 6 kbytes/10 kbytes (mask ROM)

10 kbytes (flash memory)
10 kbytes (evaluation device)

Low-power consumption (standby) mode

Sleep mode (mode in which CPU operating clock is stopped)

Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode

Hardware standby mode

Process

CMOS technology

• I/O port

General-purpose I/O ports (CMOS): 63 ports

General-purpose I/O ports (with pull-up resistors): 24 ports

General-purpose I/O ports (open-drain): 10 ports

Total: 97 ports

(Continued)

Timer

Timebase timer/watchdog timer: 1 channel

8/16-bit PPG timer: 8-bit \times 2 channels or 16-bit \times 1 channel

- 8/16-bit up/down counter/timer: 1 channel (8-bit × 2 channels)
- 16-bit I/O timer

16-bit free run timer: 1 channel

Input capture (ICU): Generates an interrupt request by latching a 16-bit free run timer counter value upon detection of an edge input to the pin.

Output compare (OCU): Generates an interrupt request and reverse the output level upon detection of a match between the 16-bit free run timer counter value and the compare setting value.

- Extended I/O serial interface: 3 channels
- I2C interface (1 channel)

Serial I/O port for supporting Inter IC BUS

• UARTO (SCI), UART1 (SCI)

With full-duplex double buffer

Clock asynchronized or clock synchronized transmission can be selectively used.

• DTP/external interrupt circuit (8 channels)

A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered by an external input.

Delayed interrupt generation module

Generates an interrupt request for switching tasks.

• 8/10-bit A/D converter (8 channels)

8/10-bit resolution

Starting by an external trigger input.

Conversion time: 26.3 µs

8-bit D/A converter (based on the R-2R system)

8-bit resolution: 2 channels (independent)

Setup time: 12.5 μs
• Clock timer: 1 channel

• Chip select output (8 channels)

An active level can be set.

Clock output function

■ PRODUCT LINEUP

Part number		MB90573	MB90574/B	MB90F574/A	MB90V570/A		
Item		MB30373	WID9037 4/D	MID301 37 4/A	WD30V370/A		
Classification		Mask ROM	M products	Flash ROM products	Evaluation product		
ROM size		128 kbytes	256 k	kbytes	None		
RAM size		6 kbytes		10 kbytes			
CPU functions		The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.5 µs (at machine clock of 16 MHz, minimum value)					
Ports		Gen	General-purpose I/O ports (CMOS output): 63 General-purpose I/O ports (with pull-up resistor): 24 General-purpose I/O ports (N-ch open-drain output): 10 Total: 97				
UARTO (SCI), UART1 (SCI)		Clock synchronized transmission (62.5 kbps to 1 Mbps) Clock asynchronized transmission (1202 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.					
8/10-bit A/D (converter	Resolution: 8/10-bit Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)					
8/16-bit PPG	timer	Number of channels: 1 (or 8-bit × 2 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: 62.5 ns to 1 μs (at oscillation of 4 MHz, machine clock of 16 MHz)					
8/16-bit up/down counter/ timer		Number of channels: 1 (or 8-bit × 2 channels) Event input: 6 channels 8-bit up/down counter/timer used: 2 channels 8-bit re-load/compare function supported: 1 channel			ls		
	16-bit free run timer	Number of channel: 1 Overflow interrupts					
16-bit I/O timer	Output compare (OCU)	Number of channels: 4 Pin input factor: A match signal of compare register			ister		
	Input capture (ICU)	Rewriting a reg		channels: 2 n input (rising, falling,	or both edges)		

(Continued)

Part number	MB90573	MB90574/B	MB90F574/A	MB90V570/A	
Item					
DTP/external interrupt circuit		edge, a falling edge	of inputs: 8 , an "H" level input, o elligent I/O service (E		
Delayed interrupt generation module	An interrupt gener		tching tasks used in r ems.	real time operating	
Extended I/O serial interface	Clock		ission (3125 bps to 1 /MSB first	Mbps)	
I ² C interface	Serial I/O port for supporting Inter IC BUS				
Timebase timer	18-bit counter Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms (at oscillation of 4 MHz)				
8-bit D/A converter	8-bit resolution Number of channels: 2 channels Based on the R-2R system				
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)				
Low-power consumption (standby) mode	Sleep/stop/CPU intermittent operation/clock timer/hardware standby				
Process	CMOS				
Power supply voltage for operation*	4.5 V to 5.5 V				

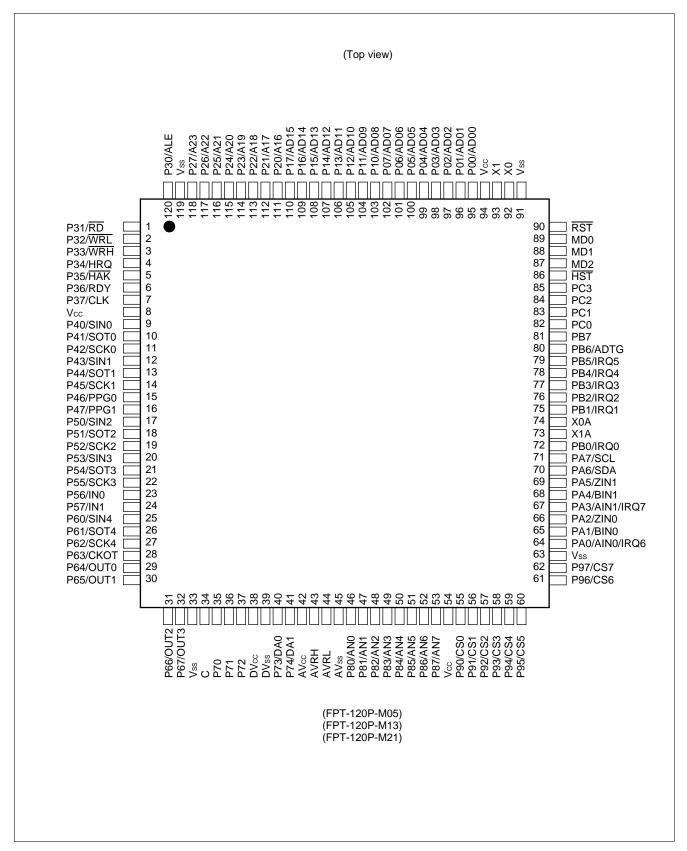
^{* :} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")
Assurance for the MB90V570/A is given only for operation with a tool at a power voltage of 4.5 V to 5.5 V, an operating temperature of 0 to +25°C, and an operating frequency of 1 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90573	MB90574	MB90F574/A	MB90574B
FPT-120P-M05	0	0	0	×
FPT-120P-M13	0	0	0	0
FPT-120P-M21	×	×	0	0

○ : Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."


■ DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V570/A does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V570/A, images from FF4000H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90F574/574/573/F574A/574B, images from FF4000H to FFFFFFH are mapped to bank 00, and FF0000H to FF3FFFH to bank FF only.
- The products designated with /A or /B are different from those without /A or /B in that they are DTP/externally-interrupted types which return from standby mode at the ch.0 to ch.1 edge request.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.			
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function
92,93	X0,X1	А	High speed oscillator input pins
74,73	X0A,X1A	В	Low speed oscillator input pins
89 to 87	MD0 to MD2	С	These are input pins used to designate the operating mode. They should be connected directly to Vcc or Vss.
90	RST	С	Reset input pin
86	HST	С	Hardware standby input pin
95 to 102	P00 to P07	D	In single chip mode, these are general purpose I/O pins. When set for input, they can be set by the pull-up resistance setting register (RDR0). When set for output, this setting will be invalid.
	AD00 to AD07		In external bus mode, these pins function as address low output/data low I/O pins.
103 to 110	P10 to P17	D	In single chip mode, these are general purpose I/O pins. When set for input, they can be set by the pull-up resistance setting register (RDR1). When set for output, the setting will be invalid.
	AD08 to AD15		In external bus mode, these pins function as address middle output/data high I/O pins.
111 to 118	P20 to P27	E	In single chip mode this is a general-purpose I/O port.
	A16 to A23		In external bus mode, these pins function as address high output pins.
120	P30	E	In single chip mode this is a general-purpose I/O port.
	ALE		In external bus mode, this pin functions as the address latch enable signal output pin.
1	P31	Е	In single chip mode this is a general-purpose I/O port.
	RD		In external bus mode, this pin functions as the read strobe signal output pin.
2	P32	E	In single chip mode this is a general-purpose I/O port.
	WRL		In external bus mode, this pin functions as the data bus lower 8-bit write strobe signal output pin.
3	P33	E	In single chip mode this is a general-purpose I/O port.
	WRH		In external bus mode, this pin functions as the data bus upper 8-bit write strobe signal output pin.
4	P34	E	In single chip mode this is a general-purpose I/O port.
	HRQ		In external bus mode, this pin functions as the hold request signal input pin.
5	P35	Е	In single chip mode this is a general-purpose I/O port.
	HAK		In external bus mode, this pin functions as the hold acknowledge signal output pin.
6	P36	Е	In single chip mode this is a general-purpose I/O port.
	RDY		In external bus mode, this pin functions as the ready signal input pin.

^{*1:} FPT-120P-M05

^{*2:} FPT-120P-M13,FPT-120P-M21

Pin no.			
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function
7	P37	Е	In single chip mode this is a general-purpose I/O port.
	CLK		In external bus mode, this pin functions as the clock (CLK) signal output pin.
9	P40	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
	SIN0		This is also the UART ch.0 serial data input pin. While UART ch.0 is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed. If shared by output from other functions, this pin should be output disabled during SIN operation.
10	P41	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
	SOT0		This is also the UART ch.0 serial data output pin. This function is valid when UART ch.0 is enabled for data output.
11	P42	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
	SCK0		This is also the UART ch.0 serial clock I/O pin. This function is valid when UART ch.0 is enabled for clock output.
12	P43	F	In single chip mode this is a general-purpose I/O port. It can be set to open-drain by the ODR4 register.
	SIN1		This is also the UART ch.1 serial data input pin. While UART ch.1 is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed. If shared by output from other functions, this pin should be output disabled during SIN operation.
13	P44	F	In single chip mode this is a general-purpose I/O port. It can be set to opendrain by the ODR4 register.
	SOT1		This is also the UART ch.1 serial data output pin. This function is valid when UART ch.1 is enabled for data output.
14	P45	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
	SCK1		This is also the UART ch.1 serial clock I/O pin. This function is valid when UART ch.1 is enabled for clock output.
15,16	P46,P47	F	In single chip mode this is a general-purpose I/O port. It can be set to open drain by the ODR4 register.
	PPG0,PPG1		These are also the PPG0, 1 output pins. This function is valid when PPG0, 1 output is enabled.
17	P50	E	In single chip mode this is a general-purpose I/O port.
	SIN2		This is also the I/O serial ch.0 data input pin. During serial data input, this input signal is in continuous use, and therefore the output function should only be used when needed.

^{*1:} FPT-120P-M05 (Continued)

^{*2:} FPT-120P-M13,FPT-120P-M21

Pin no.			
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function
18	P51	E	In single chip mode this is a general-purpose I/O port.
	SOT2		This is also the I/O serial ch.0 data output pin. This function is valid when serial ch.0 is enabled for serial data output.
19	P52	E	In single chip mode this is a general-purpose I/O port.
	SCK2		This is also the I/O serial ch.0 clock I/O pin. This function is valid when serial ch.0 is enabled for serial data output.
20	P53	E	In single chip mode this is a general-purpose I/O port.
	SIN3		This is also the I/O serial ch.1 data input pin. During serial data input, this input signal is in continuous use, and therefore the output function should only be used when needed.
21	P54	E	In single chip mode this is a general-purpose I/O port.
	SOT3		This is also the I/O serial ch.1 data output pin. This function is valid when serial ch.1 is enabled for serial data output.
22	P55	E	In single chip mode this is a general-purpose I/O port.
	SCK3		This is also the I/O serial ch.1 clock I/O pin. This function is valid when serial ch.1 is enabled for serial data output.
23,24	P56,P57	E	In single chip mode this is a general-purpose I/O port.
	INO,IN1		These are also the input capture ch.0/1 trigger input pins. During input capture signal input on ch.0/1 this function is in continuous use, and therefore the output function should only be used when needed.
25	P60	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	SIN4		This is also the I/O serial ch.2 data input pin. During serial data input this function is in continuous use, and therefore the output function should only be used when needed.
26	P61	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	SOT4		This is also the I/O serial ch.2 data output pin. This function is valid when serial ch.2 is enabled for serial data output.
27	P62	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	SCK4	1	This is also the I/O serial ch.2 serial clock I/O pin. This function is valid when serial ch.2 is enabled for serial data output.
28	P63	F	In single chip mode this is a general-purpose I/O port. When set for input it can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.
	СКОТ		This is also the clock monitor output pin. This function is valid when clock monitor output is enabled.

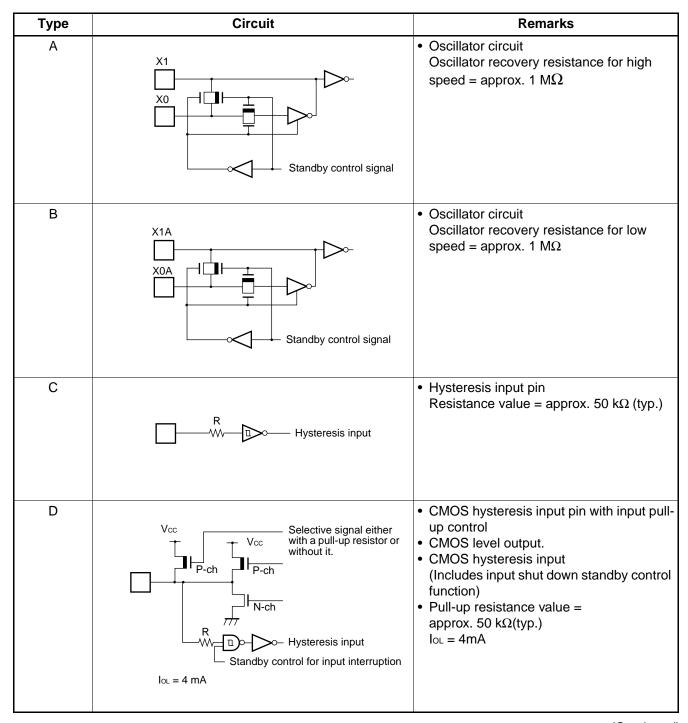
*1: FPT-120P-M05 (Continued)

*2: FPT-120P-M13,FPT-120P-M21

Pin no.				
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function	
29 to 32	P64 to P67	F	In single chip mode these are general-purpose I/O ports. When set for input they can be set by the pull-up resistance register (RDR6). When set for output this setting will be invalid.	
	OUT0 to OUT3		These are also the output compare ch.0 to ch.3 event output pins. This function is valid when the respective channel(s) are enabled for output.	
35 to 37	P70 to P72	E	These are general purpose I/O ports.	
40,41	P73,P74	I	These are general purpose I/O ports.	
	DA0,DA1		These are also the D/A converter ch.0,1 analog signal output pins.	
46 to 53	P80 to P87	K	These are general purpose I/O ports.	
	AN0 to AN7		These are also A/D converter analog input pins. This function is valid when analog input is enabled.	
55 to 62	P90 to P97	Е	These are general purpose I/O ports.	
	CS0 to CS7		These are also chip select signal output pins. This function is valid when chip select signal output is enabled.	
34	С	G	This is the power supply stabilization capacitor pin. It should be connected externally to an 0.1 µF ceramic capacitor. Note that this is not required on the FLASH model (MB90F574/A) and MB90574B.	
64	PA0	E	This is a general purpose I/O port.	
	AIN0		This pin is also used as count clock A input for 8/16-bit up-down counter ch.0.	
	IRQ6		This pin can also be used as interrupt request input ch. 6.	
65	PA1	E	This is a general purpose I/O port.	
	BIN0		This pin is also used as count clock B input for 8/16-bit up-down counter ch.0.	
66	PA2	E	This is a general purpose I/O port.	
	ZIN0		This pin is also used as count clock Z input for 8/16-bit up-down counter ch.0.	
67	PA3	E	This is a general purpose I/O port.	
	AIN1		This pin is also used as count clock A input for 8/16-bit up-down counter ch.1.	
	IRQ7		This pin can also be used as interrupt request input ch.7.	
68	PA4	E	This is a general purpose I/O port.	
	BIN1		This pin is also used as count clock B input for 8/16-bit up-down counter ch.1.	
69	PA5	E	This is a general purpose I/O port.	
	ZIN1		This pin is also used as count clock Z input for 8/16-bit up-down counter ch.1.	

*1: FPT-120P-M05

(Continued)


*2: FPT-120P-M13,FPT-120P-M21

Pin no.			
LQFP-120 *1 QFP-120 *2	Pin name	Circuit type	Function
70	PA6	L	This is a general purpose I/O port.
	SDA		This pin is also used as the data I/O pin for the I ² C interface. This function is valid when the I ² C interface is enabled for operation. While the I ² C interface is operating, this port should be set to the input level (DDRA: bit6 = 0).
71	PA7	L	This is a general purpose I/O port.
	SCL		This pin is also used as the clock I/O pin for the I ² C interface. This function is valid when the I ² C interface is enabled for operation. While the I ² C interface is operating, this port should be set to the input level (DDRA: bit7 = 0).
72, 75 to 79	PB0, PB1 to PB5	Е	These are general-purpose I/O ports.
	IRQ0, IRQ1 to IRQ5		These pins are also the external interrupt input pins. IRQ0, 1 are enabled for both rising and falling edge detection, and therefore cannot be used for recovery from STOP status for MB90V570, MB90F574, MB90573 and MB90574. However, IRQ0, 1 can be used for recovery from STOP status for MB90V570A, MB90F574A and MB90574B.
80	PB6	E	This is a general purpose I/O port.
	ADTG		This is also the A/D converter external trigger input pin. While the A/D converter is in input operation, this input signal is in continuous use, and therefore the output function should only be used when needed.
81	PB7	E	This is a general purpose I/O port.
82 to 85	PC0 to PC3	E	These are general purpose I/O ports.
8,54,94	Vcc	Power supply	These are power supply (5V) input pins.
33,63, 91,119	Vss	Power supply	These are power supply (0V) input pins.
42	AVcc	Н	This is the analog macro (D/A, A/D etc.) Vcc power supply input pin.
43	AVRH	J	This is the A/D converter Vref+ input pin. The input voltage should not exceed Vcc.
44	AVRL	Н	This is the A/D converter Vref-input pin. The input voltage should not less than Vss.
45	AVss	Н	This is the analog macro (D/A, A/D etc.) Vss power supply input pin.
38	DVcc	Н	This is the D/A converter Vref input pin. The input voltage should not exceed Vcc.
39	DVss	Н	This is the D/A converter GND power supply pin. It should be set to Vss equivalent potential.

^{*1:} FPT-120P-M05

^{*2:} FPT-120P-M13,FPT-120P-M21

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
E	N-ch N-ch N-ch Standby control for input interruption	 CMOS hysteresis input/output pin. CMOS level output CMOS hysteresis input (Includes input shut down standby control function) IoL = 4 mA
F	N-ch N-ch N-ch Standby control for input interruption	 CMOS hysteresis input/output pin. CMOS level output CMOS hysteresis input (Includes input shut down standby control function) IoL = 10 mA (Large current port)
G	Vcc P-ch N-ch	C pin output (capacitance connector pin). On the MB90F574 this pin is not connected (NC).
Н	Vcc AVP	Analog power supply protector circuit.
I	N-ch N-ch Standby control for input interruption DAO No. = 4 mA	 CMOS hysteresis input/output Analog output/CMOS output dual-function pin (CMOS output is not available during analog output.) (Analog output priority: DAE = 1) Includes input shout down standby control function. IoL = 4mA

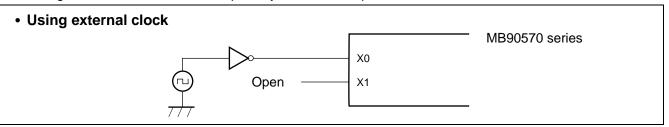
Туре	Circuit	Remarks
J	P-ch ANE P-ch AVR N-ch ANE	A/D converter ref+ power supply input pin(AVRH), with power supply protector circuit.
K	P-ch N-ch N-ch Standby control for input interruption Analog input	 CMOS hysteresis input /analog input dual-function pin. CMOS output Includes input shut down function at input shut down standby.
L	N-ch N-ch N-ch N-ch N-ch Standby control for input interruption	 Hysteresis input N-ch open-drain output Includes input shut down standby control function. IoL= 4mA

■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

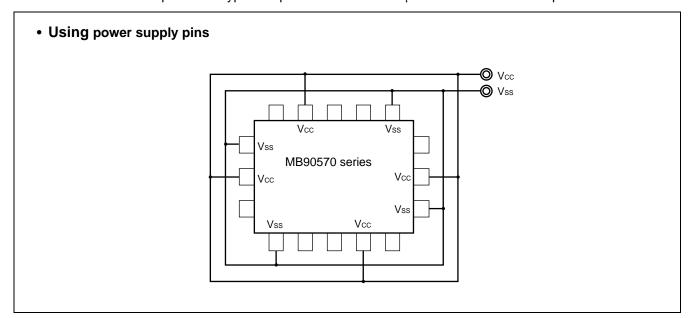

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

2. Connection of Unused Pins

Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up or a pull-down $1k\Omega$ or more resistor.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



4. Power Supply Pins (Vcc/Vss)

In products with multiple V_{CC} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pin near the device.

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL, DVcc, DVss) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

8. N.C. Pins

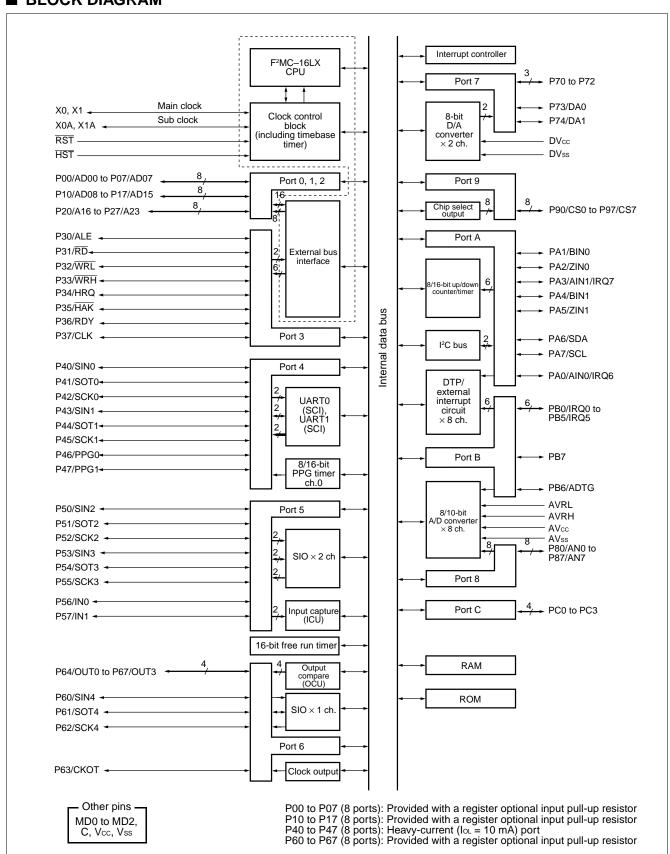
The N.C. (internally connected) pins must be opened for use.

9. Notes on Energization

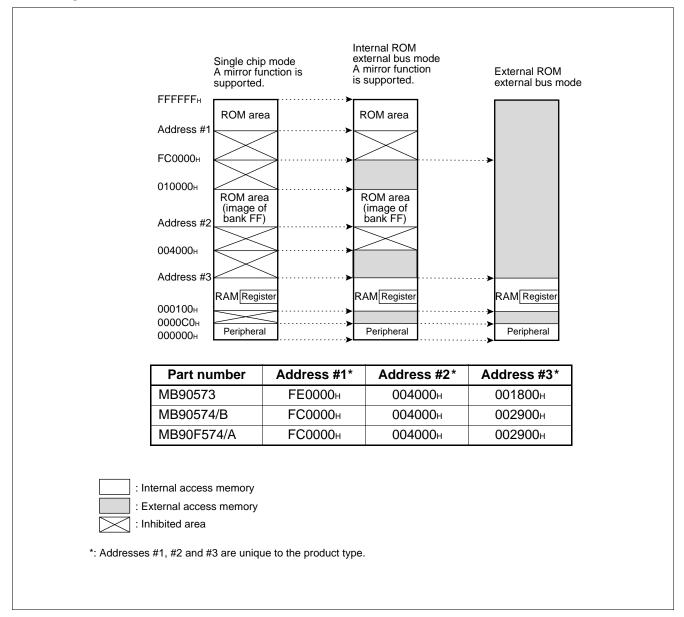
To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more μ s (0.2 V to 2.7 V).

10. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. Turn on the power again to initialize these registers.


11. Return from standby state

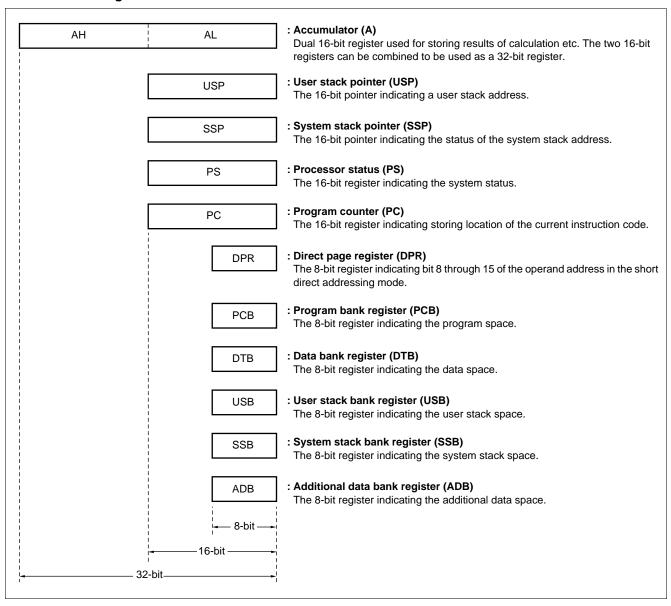
If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.


12. Precautions for Use of 'DIV A, Ri,' and 'DIVW A, Ri' Instructions

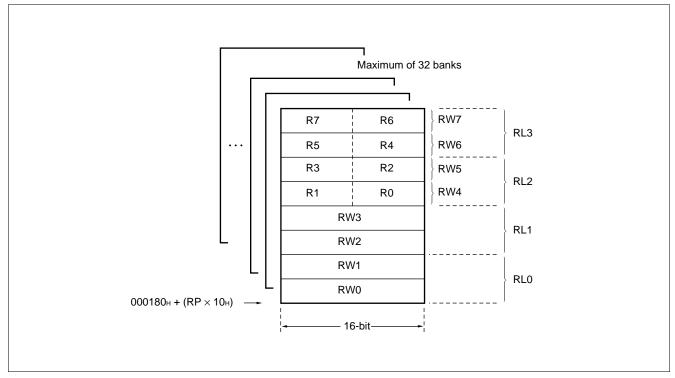
The signed multiplication-division instructions 'DIV A, Ri,' and 'DIVW A, RWi' should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value '00h.' If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than '00h,' then the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

■ BLOCK DIAGRAM

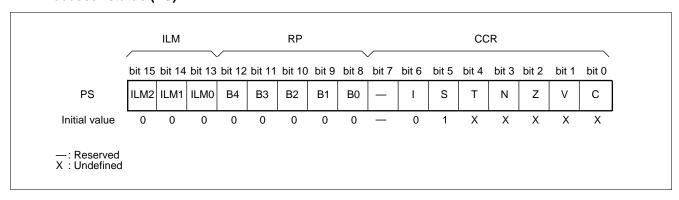
■ MEMORY MAP



Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".


For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed actually. Since the ROM area of the FF bank exceeds 48 kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFFH looks, therefore, as if it were the image for 00400H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFFH.

■ F²MC-16LX CPU PROGRAMMING MODEL


• Dedicated registers

• General-purpose registers

• Processor status (PS)

■ I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXX
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXX
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXX
000006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXX
000007н	PDR7	Port 7 data register	R/W	Port 7	XXXXXXXX
000008н	PDR8	Port 8 data register	R/W	Port 8	XXXXXXXX
000009н	PDR9	Port 9 data register	R/W	Port 9	XXXXXXXX
00000Ан	PDRA	Port A data register	R/W	Port A	XXXXXXXX
00000Вн	PDRB	Port B data register	R/W	Port B	XXXXXXXX
00000Сн	PDRC	Port C data register	R/W	Port C	XXXXXXXX
00000Dн to 00000Fн		(E	Disabled)		
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000
000015н	DDR5	Port 5 direction register	R/W	Port 5	00000000
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000
000017н	DDR7	Port 7 direction register	R/W	Port 7	 00000в
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000000
000019н	DDR9	Port 9 direction register	R/W	Port 9	00000000
00001Ан	DDRA	Port A direction register	R/W	Port A	00000000
00001Вн	DDRB	Port B direction register	R/W	Port B	00000000
00001Сн	DDRC	Port C direction register	R/W	Port C	00000000
00001 Dн	ODR4	Port 4 output pin register	R/W	Port 4	00000000
00001Ен	ADER	Analog input enable register	R/W	Port 8, 8/10-bit A/D converter	11111111
00001Fн		1)	Disabled)		
000020н	SMR0	Serial mode register 0	R/W	UART0	00000000
000021н	SCR0	Serial control register 0	R/W	(SCI)	00000100в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000022н	SIDR0/ SODR0	Serial input data register 0/ serial output data register 0	R/W	UARTO	XXXXXXXX
000023н	SSR0	Serial status register 0	R/W	(SCI)	00001-00в
000024н	SMR1	Serial mode register 1	R/W		00000000
000025н	SCR1	Serial control register 1	R/W	UART1	00000100в
000026н	SIDR1/ SODR1	Serial input data register 1/ serial output data register 1	R/W	(SCI)	XXXXXXXX
000027н	SSR1	Serial status register 1	R/W		00001-00в
000028н	CDCR0	Communications prescaler control register 0	R/W	Communications prescaler register 0	01111в
000029н		(Disab	led)	+	
00002Ан	CDCR1	Communications prescaler control register 1	R/W	Communications prescaler register 0	01111в
00002Вн				1	
to 00002Fн		(Disab	led)		
000030н	ENIR	DTP/interrupt enable register	R/W		00000000
000031н	EIRR	DTP/interrupt factor register	DTP/interrupt factor register R/W DTP/external		XXXXXXXX
000032н	ELVR	Degreest level cotting register	R/W	interrupt circuit	00000000
000033н	ELVK	Request level setting register	K/VV		00000000
000034н		(Disab	lod)		
000035н		(Disab	ileu)		
000036н	ADCS1	A/D control status register lower digits	R/W		00000000
000037н	ADCS2	A/D control status register upper digits	R/W	8/10-bit A/D converter	0 0 0 0 0 0 0 0 в
000038н	ADCR1	A/D data register lower digits	R		XXXXXXX
000039н	ADCR2	A/D data register upper digits	W		00001-ХХв
00003Ан	DADR0	D/A converter data register ch.0	R/W		XXXXXXX
00003Вн	DADR1	D/A converter data register ch.1	R/W	8-bit D/A	XXXXXXX
00003Сн	DACR0	D/A control register 0	R/W	converter	B
00003Dн	DACR1	D/A control register 1	R/W		 0 в
00003Ен	CLKR	Clock output enable register R/W Clock monitor function		Clock monitor function	O O O O B
00003Fн		(Disab	led)		
000040н	PRLL0	PPG0 reload register L ch.0	R/W	8/16-bit PPG	XXXXXXX
000041н	PRLH0	PPG0 reload register H ch.0	R/W	timer 0	XXXXXXXX

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000042н	PRLL1	PPG1 reload register L ch.1	R/W	8/16-bit PPG	XXXXXXXX
000043н	PRLH1	PPG1 reload register H ch.1	R/W	timer 1	XXXXXXXX
000044н	PPGC0	PPG0 operating mode control register ch.0	R/W	8/16-bit PPG timer 0	0 Х 0 0 0 Х Х 1 в
000045н	PPGC1	PPG1 operating mode control register ch.1	R/W	8/16-bit PPG timer 1	0 Х 0 0 0 0 0 1 в
000046н	PPGOE	PPG0 and 1 output control registers ch.0 and ch.1	R/W	8/16-bit PPG timer 0, 1	0 0 0 0 0 0 X X B
000047н		(Disabl	ed)		
000048н	SMCSL0	Serial mode control lower status register 0	R/W	-	 0000в
000049н	SMCSH0	Serial mode control upper status register 0	R/W	Extended I/O serial interface 0	0000010в
00004Ан	SDR0	Serial data register 0	R/W		XXXXXXXX в
00004Вн		(Disabl	ed)		
00004Сн	SMCSL1	Serial mode control lower status register 1	R/W		 0000в
00004Дн	SMCSH1	Serial mode control upper status register 1	R/W	Extended I/O serial interface 1	00000010в
00004Ен	SDR1	Serial data register 1	R/W		XXXXXXXX
00004Fн		(Disabl	ed)		
000050н	IPCP0	ICLI data register ob 0	R		XXXXXXXX
000051н	IFCFU	ICU data register ch.0	K	16-bit I/O timer	XXXXXXXX
000052н	IPCP1	ICLI data register ob 1	R	(input capture	XXXXXXXX
000053н	IFCFI	ICU data register ch.1	K	(ICU) section)	XXXXXXXX
000054н	ICS01	ICU control status register	R/W		00000000
000055н		(Disabl	ed)		
000056н	TCDT		DAM	16-bit I/O timer	00000000
000057н	TODI	Free run timer data register	R/W	(16-bit free run	00000000
000058н	TCCS	Free run timer control status register	R/W	timer section)	00000000
000059н		(Disabl	ed)		
00005Ан	00000	OCI compare register sh	D AA7		XXXXXXXX
00005Вн	OCCP0	OCU compare register ch.0	R/W		XXXXXXXX
00005Сн	00004	OCI compare register sh 4	D AA7	16-bit I/O timer	XXXXXXXX
00005Дн	OCCP1	OCU compare register ch.1	R/W	(output compare (OCU) section)	XXXXXXXX
00005Ен	00000	OCI compare register sh 2	D AA7		XXXXXXXX
00005Fн	OCCP2	OCU compare register ch.2	R/W		XXXXXXXX

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000060н	00000	OCI compare register sh 2	DAM		XXXXXXXX
000061н	OCCP3	OCU compare register ch.3	R/W		XXXXXXXX
000062н	OCS0	OCU control status register ch.0	R/W	16-bit I/O timer	000000в
000063н	OCS1	OCU control status register ch.1	R/W	(output compare (OCU) section)	 00000в
000064н	OCS2	OCU control status register ch.2	R/W		000000в
000065н	OCS3	OCU control status register ch.3	R/W		 00000в
000066н		(Disal	alad)		
000067н		(Disai	oleu)		
000068н	IBSR	I ² C bus status register	R		00000000
000069н	IBCR	I ² C bus control register	R/W		00000000в
00006Ан	ICCR	I ² C bus clock control register	R/W	I ² C interface	—— ОХХХХХ В
00006Вн	IADR	I ² C bus address register	R/W	-	-ХХХХХХХ В
00006Сн	IDAR	I ² C bus data register	R/W	-	XXXXXXXX
00006Dн		(Discal	-11\		
00006Ен		(Disal	olea)		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	1 в
000070н	UDCR0	Up/down count register 0	R		00000000
000071н	UDCR1	Up/down count register 1	R	-	00000000
000072н	RCR0	Reload compare register 0	W	8/16-bit up/down counter/timer	00000000
000073н	RCR1	Reload compare register 1	W		00000000
000074н	CSR0	Counter status register 0	R/W		00000000
000075н		(Reserved	d area)*3		
000076н	CCRL0	Country control vanietos O	DAM		-0000000в
000077н	CCRH0	Counter control register 0	R/W	8/16-bit up/down counter/timer	00000000
000078н	CSR1	Counter status register 1	R/W		00000000
000079н		(Reserved	d area)*3	1	
00007Ан	CCRL1	O	DAM	8/16-bit up/down	-0000000в
00007Вн	CCRH1	Counter control register 1	R/W	counter/timer	-0000000в
00007Сн	SMCSL2	Serial mode control lower status register 2	R/W		0000в
00007Dн	SMCSH2	Serial mode control higher status register 2	R/W	Extended I/O serial interface 2	0000010в
00007Ен	SDR2	Serial data register 2	R/W		XXXXXXXX
00007Fн		(Disal	oled)		

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000080н	CSCR0	Chip selection control register 0	R/W		 0000в
000081н	CSCR1	Chip selection control register 1	R/W		 0000в
000082н	CSCR2	Chip selection control register 2	R/W		 0000в
000083н	CSCR3	Chip selection control register 3	R/W	Chip select output	 00000 в
000084н	CSCR4	Chip selection control register 4	R/W	Julyan	 0000в
000085н	CSCR5	Chip selection control register 5	R/W		 00000 в
000086н	CSCR6	Chip selection control register 6	R/W		 00000 в
000087н to 00008Вн		(Disabl	ed)		
00008Сн	RDR0	Port 0 input pull-up resistor setup register	R/W	Port 0	00000000в
00008Дн	RDR1	Port 1 input pull-up resistor setup register	R/W	Port 1	00000000в
00008Ен	RDR6	Port 6 input pull-up resistor setup register	R/W	Port 6	0000000в
00008Fн to 00009Dн		(Disabl	ed)		
00009Ен	PACSR	Program address detection control status register	R/W	Address match detection function	00000000
00009Fн	DIRR	Delayed interrupt factor generation/ cancellation register	R/W	Delayed interrupt generation module	Ов
0000А0н	LPMCR	Low-power consumption mode control register	R/W	Low-power consumption	00011000в
0000А1н	CKSCR	Clock select register	R/W	(standby) mode	11111100в
0000A2н to 0000A4н		(Disabl	ed)		
0000А5н	ARSR	Automatic ready function select register	W		001100в
0000А6н	HACR	Upper address control register	W	External bus pin	00000000
0000А7н	ECSR	Bus control signal select register	W		00000000
0000А8н	WDTC	Watchdog timer control register	R/W	Watchdog timer	XXXXXXX
0000А9н	TBTC	Timebase timer control register	R/W	Timebase timer	1 — — О О 1 О О в
0000ААн	WTC	Clock timer control register	R/W	Clock timer	1 Х О О О О О О В

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
0000АВн					
to 0000ADн		(Disabl	ed)		
0000АЕн	FMCS	Flash control register	R/W	Flash interface	000Х0ХХ0в
0000АГн		(Disabl	ed)		
0000В0н	ICR00	Interrupt control register 00	R/W		00000111в
0000В1н	ICR01	Interrupt control register 01	R/W		00000111в
0000В2н	ICR02	Interrupt control register 02	R/W		00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W		00000111в
0000В4н	ICR04	Interrupt control register 04	R/W		00000111в
0000В5н	ICR05	Interrupt control register 05	R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W		00000111в
0000В7н	ICR07	Interrupt control register 07	R/W	Interrupt	00000111в
0000В8н	ICR08	Interrupt control register 08	R/W	controller	00000111в
0000В9н	ICR09	Interrupt control register 09	R/W	-	00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W		00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W		00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W		00000111в
0000ВДн	ICR13	Interrupt control register 13	R/W		00000111в
0000ВЕн	ICR14	Interrupt control register 14	R/W		00000111в
0000ВFн	ICR15	Interrupt control register 15	R/W		00000111в
0000С0н					
to 0000FFн		(External a	area)*1		
000100н		(5.4.4) #O		
to 000###н		(RAM ar	ea)^²		
000###н		(5	\ +2		
to 001FEF _H		(Reserved	area)*3		
001FF0н		Program address detection register 0	R/W		XXXXXXXX
001FF1н	PADR0	Program address detection register 1	R/W		XXXXXXXX
001FF2н		Program address detection register 2	R/W	Address match	XXXXXXXX
001FF3н		Program address detection register 3	R/W	detection function	XXXXXXXX
001FF4н	PADR1	Program address detection register 4	R/W		XXXXXXXX
001FF5н		Program address detection register 5	R/W	-	XXXXXXXX
001FF6н to 001FFFн		(Reserved	l area)		

Descriptions for read/write

R/W: Readable and writable

R: Read only W: Write only

Descriptions for initial value

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X: The initial value of this bit is undefined.

- : This bit is unused. The initial value is undefined.

- *1: This area is the only external access area having an address of 0000FF_H or lower. An access operation to this area is handled as that to external I/O area.
- *2: For details of the RAM area, see "■ MEMORY MAP".
- *3: The reserved area is disabled because it is used in the system.
- Notes: For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.

 For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.
 - The addresses following 0000FFH are reserved. No external bus access signal is generated.
 - Boundary ##### between the RAM area and the reserved area varies with the product model.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interment course	El ² OS	Interru	ot vector	Interrupt co	Priority	
Interrupt source	support	Number	Address	ICR	Address	Priority
Reset	×	# 08	FFFFDCH	_	_	High
INT9 instruction	×	# 09	FFFFD8 _H	_	_	•
Exception	×	# 10	FFFFD4 _H	_	_	
8/10-bit A/D converter	0	# 11	FFFFD0 _H	ICR00	0000В0н	
Input capture 0 (ICU) include	0	# 12	FFFFCCH	ICIXOO	ООООВОН	
DTP0 (external interrupt 0)	0	# 13	FFFFC8 _H	ICR01	0000В1н	
Input capture 1 (ICU) include	0	# 14	FFFFC4 _H	ICIXUI	0000D1H	
Output compare 0 (OCU) match	0	# 15	FFFFC0 _H	ICR02	0000В2н	
Output compare 1 (OCU) match	0	# 16	FFFFBCH	ICRUZ	0000Б2н	
Output compare 2 (OCU) match	0	# 17	FFFFB8 _H	ICR03	0000ВЗн	
Output compare 3 (OCU) match	0	# 18	FFFFB4 _H	ICKUS	0000B3H	
Extended I/O serial interface 0	0	# 19	FFFFB0 _H	ICR04	0000В4н	
16-bit free run timer	×	# 20	FFFFACH	101104	0000D4H	
Extended I/O serial interface 1	0	# 21	FFFFA8 _H	ICR05	0000В5н	
Clock timer	×	# 22	FFFFA4 _H	101103	0000B3H	
Extended I/O serial interface 2	0	# 23	FFFFA0 _H	ICR06	0000В6н	
DTP1 (external interrupt 1)	0	# 24	FFFF9C _H	101100	ООООВОН	
DTP2/DTP3 (external interrupt 2/ external interrupt 3)	0	# 25	FFFF98 _H	ICR07	0000В7н	
8/16-bit PPG timer 0 counter borrow	×	# 26	FFFF94 _H	IONO	0000B7H	
DTP4/DTP5 (external interrupt 4/ external interrupt 5)	0	# 27	FFFF90 _H	ICR08	0000В8н	
8/16-bit PPG timer 1 counter borrow	×	# 28	FFFF8C _H	101100	0000D0H	
8/16-bit up/down counter/timer 0 borrow/overflow/inversion	0	# 29	FFFF88 _H	ICPO	0000000	
8/16-bit up/down counter/timer 0 compare match	0	# 30	FFFF84 _H	ICR09	0000В9н	
8/16-bit up/down counter/timer 1 borrow/overflow/inversion	0	# 31	FFFF80 _H	ICR10	0000ВАн	
8/16-bit up/down counter/timer 1 compare match	0	# 32	FFFF7C _H	ICKIU	0000ВАн	
DTP6 (external interrupt 6)	0	# 33	FFFF78 _H	ICR11	0000ВВн	
Timebase timer	×	# 34	FFFF74 _H	ICKII	UUUUDDH	Low

(Continued)

Interrupt source	El ² OS	Interru	ot vector	Interrupt cor	ntrol register	Priority
interrupt source	support	Number	Address	ICR	Address	Filolity
DTP7 (external interrupt 7)	0	# 35	FFFF70 _H	ICR12	0000ВСн	
I ² C interface	×	# 36	FFFF6C _H	ICKIZ	ООООВСН	High
UART1 (SCI) reception complete	0	# 37	FFFF68 _H	ICR13	0000ВДн	
UART1 (SCI) transmission complete	0	# 38	FFFF64 _H	ICKIS	ООООБЪН	
UART0 (SCI) reception complete	0	# 39	FFFF60 _H	ICR14	0000ВЕн	
UART0 (SCI) transmission complete	0	# 40	FFFF5C _H	101(14	OOOOBEH	
Flash memory	×	# 41	FFFF58 _H			
Delayed interrupt generation module	×	# 42	FFFF54 _H	ICR15	0000ВFн	Low

○ : Can be used

 $\times\,$: Can not be used

 $\, \odot \,$: Can be used. With El²OS stop function.

■ PERIPHERALS

1. I/O Port

(1) Input/output Port

Port 0 through 4, 6, 8, A and B are general-purpose I/O ports having a combined function as an external bus pin and a resource input. Port 0 to Port 3 have a general-purpose I/O ports function only in the single-chip mode.

· Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.

· Operation as input port

The pin is configured as an input by setting the corresponding bit of the DDR register to "0".

When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Reading the PDR register reads out the pin level ("0" or "1").

(2) Register Configuration

	ess bi	t 15 · · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000	000н		(PDR1)		P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXX
Dout 1 data va				<u>-</u>	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 data reg	_		(1) bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	hit 7		···· bit 0	Initial value
0000	Г	P17	P16	P15	P14		1		P10	7	(PDR0		XXXXXXXX
0000	/ L	R/W	R/W	R/W	R/W	R/W		R/W	R/W	_	(<u></u> :	
Port 2 data re	gister	(PDF	₹2)										
Addı	ess bi	t 15 · · ·		··bit 8_	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000	02н	((PDR3)		P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXX
	٠.			-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 3 data re	gister	(PDF	₹3)										
	-	bit 15	,	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
0000	003н Г	P37	P36	P35	P34	P33	P32	P31	P30		(PDR2	1	XXXXXXX
	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	—			
Port 4 data re	gister	(PDR	₹4)										
Addı	ess bi	t 15 · · ·		· · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
0000	04н	((PDR5)		P47	P46	P45	P44	P43	P42	P41	P40	XXXXXXX
Port 5 data re	aietar	· (DDE	25)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	-	•	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
0000	005н	P57	P56	P55	P54	P53	P52	P51	P50	<u> </u>	(PDR4	:	XXXXXXX
0000		D/4/	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
0000	_	R/W											
	gister												
Port 6 data re	_	(PDR			bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Port 6 data re	ess bi	(PDR t 15 · · ·	R6)	··bit 8	bit 7 P67	bit 6 P66	bit 5 P65		bit 3	bit 2 P62	bit 1	bit 0 P60	Initial value
Port 6 data re	ess bi	(PDR t 15 · · ·	R6)	··bit 8				bit 4					
Port 6 data ree	ress bi	t 15 · · · (R6) (PDR7)	··bit 8	P67	P66	P65	bit 4 P64	P63	P62	P61	P60	
Port 6 data reg Addi 0000	ress bi	t 15 · · · (PDR	R6) (PDR7)	· · bit 8	P67 R/W	P66 R/W	P65 R/W	bit 4 P64 R/W	P63 R/W	P62 R/W	P61 R/W	P60 R/W	
Port 6 data reg	ress bi	t 15 · · · (PDR	R6) (PDR7)	· · bit 8	P67 R/W	P66 R/W	P65 R/W	bit 4 P64 R/W bit 9	P63 R/W	P62 R/W	P61 R/W	P60 R/W	XXXXXXXE
Port 6 data reg	ress bi	t 15 · · · (PDR	R6) (PDR7)	· · bit 8	P67 R/W bit 12	P66 R/W bit 11	P65 R/W bit 10	bit 4 P64 R/W bit 9	P63 R/W bit 8	P62 R/W	P61 R/W	P60 R/W	XXXXXXX s
Port 6 data reg	gister	t 15 (PDR (PDR bit 15	R6) (PDR7) bit 14	· · bit 8	P67 R/W bit 12 P74	P66 R/W bit 11 P73	P65 R/W bit 10	bit 4 P64 R/W bit 9 P71	P63 R/W bit 8 P70	P62 R/W	P61 R/W	P60 R/W	XXXXXXX s
Port 6 data ree Add OOO Port 7 data ree Add OOO Port 8 data ree	gister	(PDR (15 · · · · (PDR bit 15 · · · · · - · · (PDR	R6) (PDR7) bit 14	bit 13	P67 R/W bit 12 P74 R/W	P66 R/W bit 11 P73	P65 R/W bit 10	bit 4 P64 R/W bit 9 P71	P63 R/W bit 8 P70	P62 R/W	P61 R/W	P60 R/W	XXXXXXX s
Port 6 data ree Add Occor Port 7 data ree Add Occor Port 8 data ree	gister ress bir gister ress bir	(PDR t 15 (PDR bit 15 _ (PDR t 15	R7) bit 14 — R8)	bit 13	P67 R/W bit 12 P74 R/W	P66 R/W bit 11 P73 R/W	P65 R/W bit 10 P72 R/W	bit 4 P64 R/W bit 9 P71 R/W	P63 R/W bit 8 P70 R/W	P62 R/W bit 7	P61 R/W (PDR6	P60 R/W bit 0	Initial value
Port 6 data ree Addi OOOC Port 7 data ree Add OOOC Port 8 data ree Addi	gister ress bir gister ress bir	(PDR t 15 (PDR bit 15 _ (PDR t 15	R6) (PDR7) bit 14	bit 13	P67 R/W bit 12 P74 R/W bit 7	P66 R/W bit 11 P73 R/W bit 6	P65 R/W bit 10 P72 R/W bit 5	bit 4 P64 R/W bit 9 P71 R/W	P63 R/W bit 8 P70 R/W bit 3	P62 R/W bit 7	P61 R/W (PDR6	P60 R/W bit 0	Initial value

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial value
000009н	P97	P96	P95	-		P92	P91	P90		(PDR8	3)	XXXXXXXX
Dant A data na siat	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Port A data regist	•	,	1 ' 0		1.77.0		1.92.4	1 '' 0	1 '' 0	1.9.4	1.4.0	
Address	,		B JIG		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000Ан		(PDRB)	L	PA7 R/W	PA6 R/W	PA5 R/W	PA4 R/W	PA3 R/W	PA2 R/W	PA1 R/W	PA0 R/W	XXXXXXXX
Port B data regist	er (PDI	RB)		IX/ V V	IX/ VV	IX/ V V	IX/ VV	IX/ V V	IX/ VV	IX/ V V	IX/ VV	
Address	`	,	··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000Вн		(PDRA)		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	XXXXXXXX
			L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port C data regist	er (PDF	RC)										
Address	bit 15 · ·		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000Сн	1)	Disabled))			_	_	PC3	PC2	PC1	PC0	XXXXXXX
Port 0 direction re	aister (DDR0)	·			_		R/W	R/W	R/W	R/W	
Address	•	•		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000010н	:			D07	D06	D05	D04	D03	D02	D01	D00	000000001
000010	·	(DDR1)	L		200			500		50.		00000000
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 direction re	aister (DDR1)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 direction re	-										R/W bit 0	Initial value
	-			bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		bit 0	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		bit 0	
Address 000011 _H	bit 15 D17 R/W	bit 14 D16 R/W	D15 R/W	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		bit 0	
Address 000011 _H	bit 15 D17 R/W gister (bit 14 D16 R/W DDR2)	D15 R/W	bit 12 D14 R/W	bit 11	bit 10	bit 9	bit 8	bit 7		bit 0	
Address 000011H Port 2 direction re	bit 15 D17 R/W gister (bit 15 ····	bit 14 D16 R/W DDR2)	D15 R/W	bit 12 D14 R/W	bit 11 D13 R/W	bit 10 D12 R/W	bit 9 D11 R/W	bit 8 D10 R/W	bit 7	(DDRC	bit 0	0000000
Port 2 direction re	bit 15 D17 R/W gister (bit 15 ····	D16 R/W DDR2)	D15	bit 12 D14 R/W bit 7	bit 11 D13 R/W bit 6	bit 10 D12 R/W bit 5	bit 9 D11 R/W	bit 8 D10 R/W	bit 7	(DDR0	bit 0	00000000
Address 000011H Port 2 direction re Address I 000012H	bit 15 D17 R/W gister (bit 15 · · ·	bit 14 D16 R/W DDR2)	D15 R/W	bit 12 D14 R/W bit 7 D27	bit 11 D13 R/W bit 6 D26	bit 10 D12 R/W bit 5 D25	bit 9 D11 R/W bit 4 D24	bit 8 D10 R/W bit 3 D23	bit 7	(DDR0	bit 0	00000000
Address 000011H Port 2 direction re Address I 000012H	bit 15 D17 R/W gister (bit 15 ····	bit 14 D16 R/W DDR2) (DDR3)	D15 R/Wbit 8	bit 12 D14 R/W bit 7 D27 R/W	bit 11 D13 R/W bit 6 D26 R/W	bit 10 D12 R/W bit 5 D25 R/W	bit 9 D11 R/W bit 4 D24 R/W	bit 8 D10 R/W bit 3 D23 R/W	bit 7 bit 2 D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	00000000
Address 000011H Port 2 direction re Address 000012H Port 3 direction re	bit 15 D17 R/W gister (bit 15 ····	bit 14 D16 R/W DDR2) (DDR3)	D15 R/Wbit 8	bit 12 D14 R/W bit 7 D27 R/W	bit 11 D13 R/W bit 6 D26 R/W bit 11	bit 10 D12 R/W bit 5 D25 R/W bit 10	bit 9 D11 R/W bit 4 D24 R/W	bit 8 D10 R/W bit 3 D23 R/W	bit 7 bit 2 D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	00000000 s
Address 000011H Port 2 direction re Address 000012H Port 3 direction re Address	bit 15 D17 R/W gister (bit 15 ··· egister (bit 15	bit 14 D16 R/W DDR2) (DDR3) bit 14	bit 13 D15 R/Wbit 8 bit 13	bit 12 D14 R/W bit 7 D27 R/W	bit 11 D13 R/W bit 6 D26 R/W bit 11	bit 10 D12 R/W bit 5 D25 R/W bit 10	bit 9 D11 R/W bit 4 D24 R/W	bit 8 D10 R/W bit 3 D23 R/W bit 8	bit 7 bit 2 D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	Initial value
Address 000011H Port 2 direction re Address 000012H Port 3 direction re Address 000013H	bit 15 D17 R/W gister (bit 15 · · · · · · · · · · · · · · · · · ·	DDR3) bit 14 D16 R/W DDR2) (DDR3) bit 14 D36 R/W	bit 13 D15 R/W bit 8 bit 13 D35 R/W	bit 12 D14 R/W bit 7 D27 R/W bit 12 D34	bit 11 D13 R/W bit 6 D26 R/W bit 11 D33	bit 10 D12 R/W bit 5 D25 R/W bit 10 D32	bit 9 D11 R/W bit 4 D24 R/W bit 9	bit 8 D10 R/W bit 3 D23 R/W bit 8 D30	bit 7 bit 2 D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	Initial value
Address 000011H Port 2 direction re Address 000012H Port 3 direction re Address 000013H	bit 15 D17 R/W gister (bit 15 gister (bit 15 D37 R/W gister (DDR3) bit 14 D16 R/W DDR2) (DDR3) bit 14 D36 R/W DDR4)	bit 13 D15 R/W bit 8 bit 13 D35 R/W	bit 12 D14 R/W bit 7 D27 R/W bit 12 D34 R/W	bit 11 D13 R/W bit 6 D26 R/W bit 11 D33	bit 10 D12 R/W bit 5 D25 R/W bit 10 D32	bit 9 D11 R/W bit 4 D24 R/W bit 9	bit 8 D10 R/W bit 3 D23 R/W bit 8 D30	bit 7 bit 2 D22 R/W	bit 1 D21 R/W	bit 0 D20 R/W	Initial value
Address 000011H Port 2 direction re Address 000012H Port 3 direction re Address 000013H Port 4 direction re	bit 15 D17 R/W gister (bit 15 ··· bit 15 D37 R/W gister (bit 15	DDR3) bit 14 D16 R/W DDR2) (DDR3) bit 14 D36 R/W DDR4)	bit 13 D15 R/W bit 8 bit 13 D35 R/W	bit 12 D14 R/W bit 7 D27 R/W bit 12 D34 R/W	bit 11 D13 R/W bit 6 D26 R/W bit 11 D33 R/W	bit 10 D12 R/W bit 5 D25 R/W bit 10 D32 R/W	bit 9 D11 R/W bit 4 D24 R/W bit 9 D31 R/W	bit 8 D10 R/W bit 3 D23 R/W bit 8 D30 R/W	bit 7 bit 2 D22 R/W bit 7	bit 1 D21 R/W	bit 0 D20 R/W bit 0	Initial value

Address	bit 15	bit 14	bit 13	bit 12	bit 1	bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial valu
000015н	D57	D56	D55	D54	D53	D52	D51	D50		(DDR4	1)	00000000
Port 6 direction re	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address	_	. ,		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial valu
000016н	,	(DDR7)		D67	D66	D65	D64	D63	D62	D61	D60	00000000
	L		اا	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 7 direction re	aister	(DDR7)										
Address	-	,		bit 12	bit 1	l bit 10	bit 9	bit 8	bit 7		· · · · bit 0	Initial valu
000017н		_	_	D74	D73	D72	D71	D70		(DDR6	3)	00000
	_		_	R/W	R/W	R/W	R/W	R/W				
Port 8 direction re	gister ((DDR8)										
Address	bit 15 · ·		· · bit 8		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial valu
000018н	<u> </u>	(DDR9)		D87	D86	D85	D84	D83	D82	D81	D80	0000000
Port 9 direction re	gister	(DDR9)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		bit 14		bit 12	bit 1	l bit 10	bit 9	bit 8	bit 7		···· bit 0	Initial valu
000019н	D97	D96	D95	D94	D93	D92	D91	D90		(DDR8	3)	0000000
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Port A direction re	gister	(DDRA))									
Address	:		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial valu
00001Ан		(DDRB)		DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	00000000
D (D !		(DDDD		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port B direction re	•	•	•	hit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
Address	JIL 13	(DDB \\)	10110	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Initial valu
00001Вн		(DDRA)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	00000000
Port C direction re	aictor		١	1000	1000	1000	10,00	1000	1000	10,00	1000	
Address	•	•	•	hit 7	hit 6	hit 5	hit 1	hit 2	hit 2	hit 1	hit O	Initial valu
00001CH	(***********	(ODR4)			DIL U		DIL 4	DC3	DC2	DC1	DC0	Initial value
00001 0 H	L							R/W	R/W	R/W	R/W	0000000
Port 4 output pin r	egister	r (ODR4	4)								•	
Address	•	•	•	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial valu
00001Дн		(DDRC)		OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	00000000
	·			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 0 input pull-u	p resis	tor setu	ıp reg	ister (F	RDR0)							
Address	oit 15 · ·		·bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial valu
00008Сн		(RDR1)		RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000
			ل	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

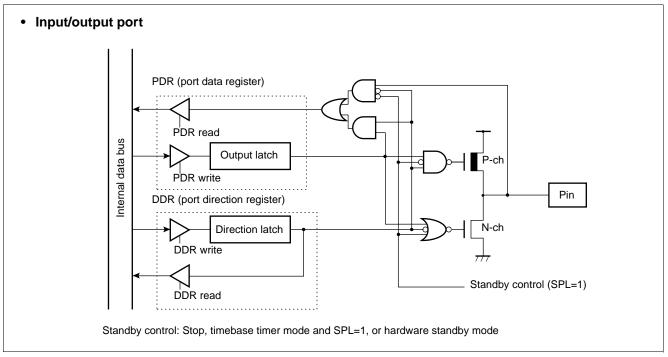
(Continued)

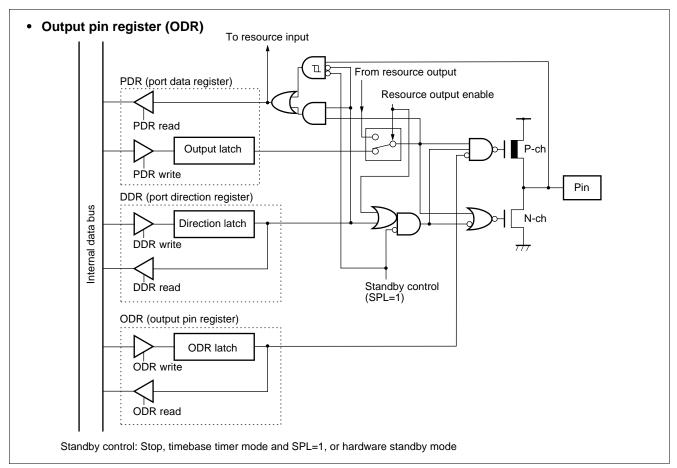
• Port 1 input pull-up resistor setup register (RDR1)

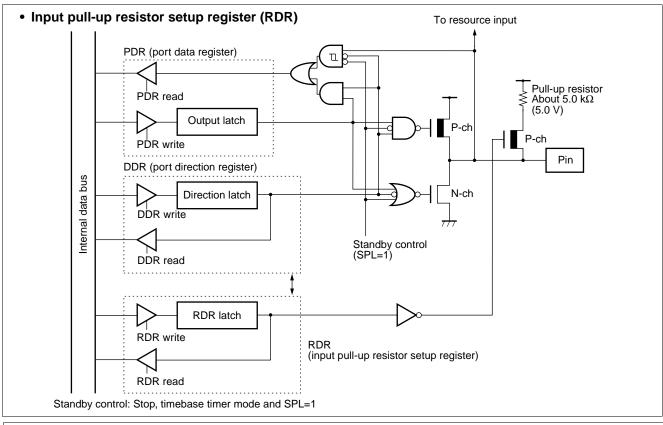
Address bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 <u>bit 8</u> <u>bit 7 · · · · · · bit 0</u> Initial value 00008Дн RD17 RD16 RD15 RD14 RD13 RD12 RD11 RD10 (RDR0) 0000000 в R/W R/W R/W R/W R/W R/W R/W R/W

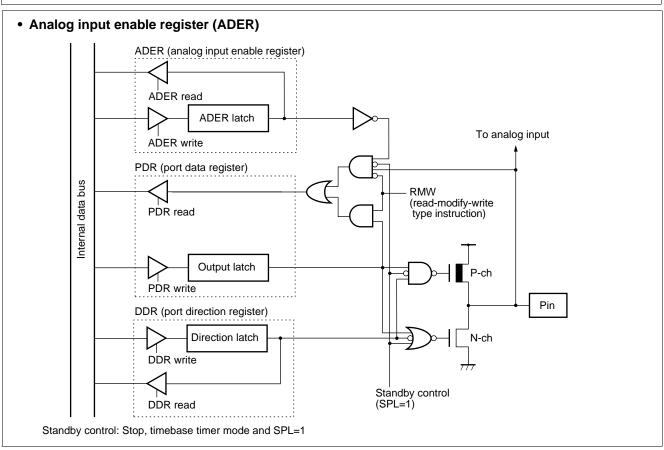
• Port 6 input pull-up resistor setup register (RDR6)

Address bit 15 $\cdots \cdots$ bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value 00008Ен (Disabled) RD67 RD66 RD65 RD64 RD63 RD62 RD61 RD60 00000000 в R/W R/W R/W R/W R/W R/W R/W R/W

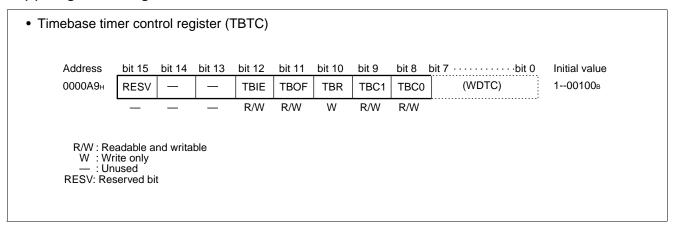

• Analog input enable register (ADER)

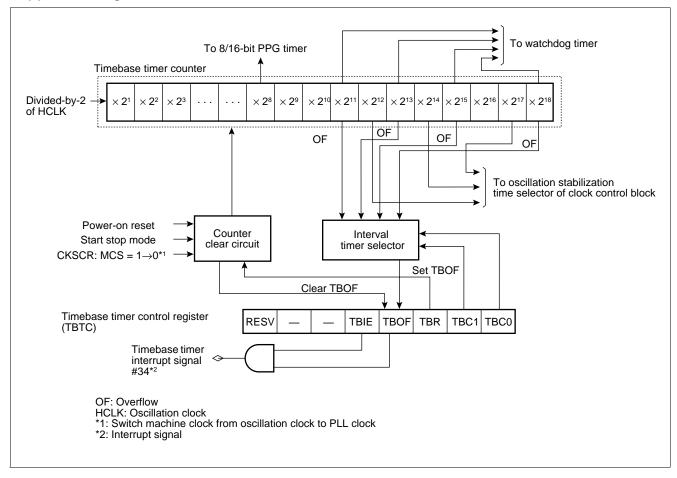

Address bit 15 · · · · · · bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value ADE6 ADE1 ADE0 00001Ен (Disabled) ADE7 ADE5 ADE4 ADE3 ADE2 11111111 в R/W R/W R/W R/W R/W R/W R/W R/W


R/W: Readable and writable


ReservedUndefined

(3) Block Diagram

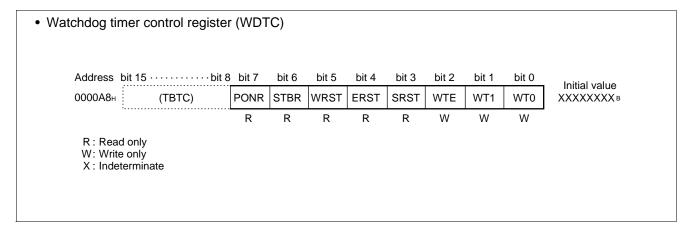


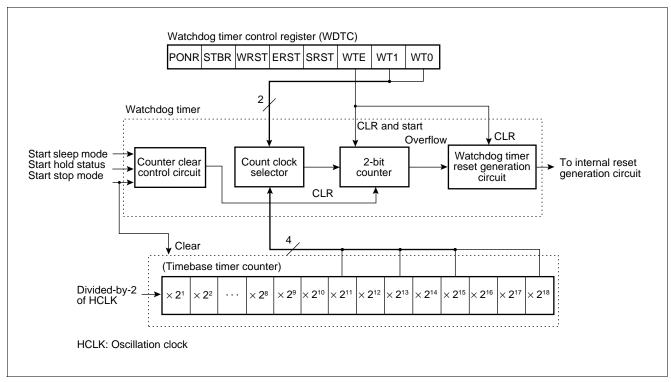

2. Timebase Timer

The timebase timer is a 18-bit free run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of 2¹²/HCLK, 2¹⁴/HCLK, 2¹⁶/HCLK, and 2¹⁹/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.

(1) Register Configuration





3. Watchdog Timer

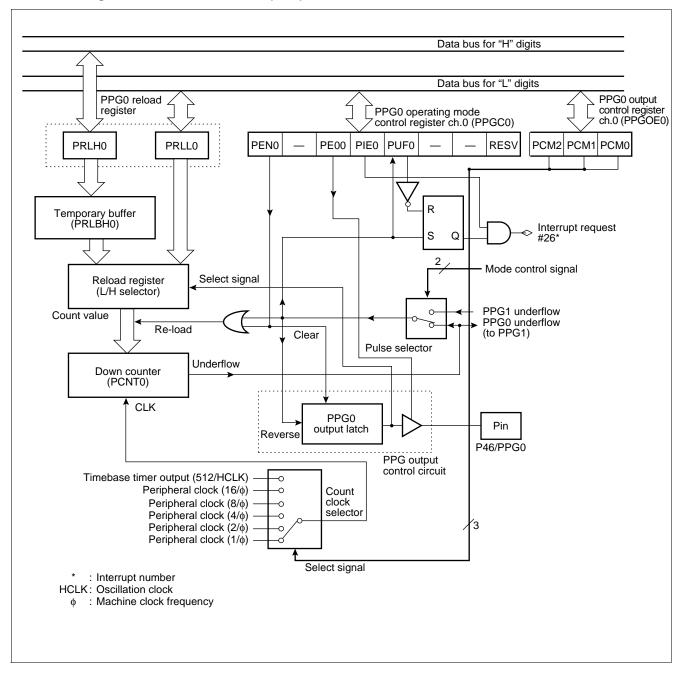
The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

(1) Register Configuration

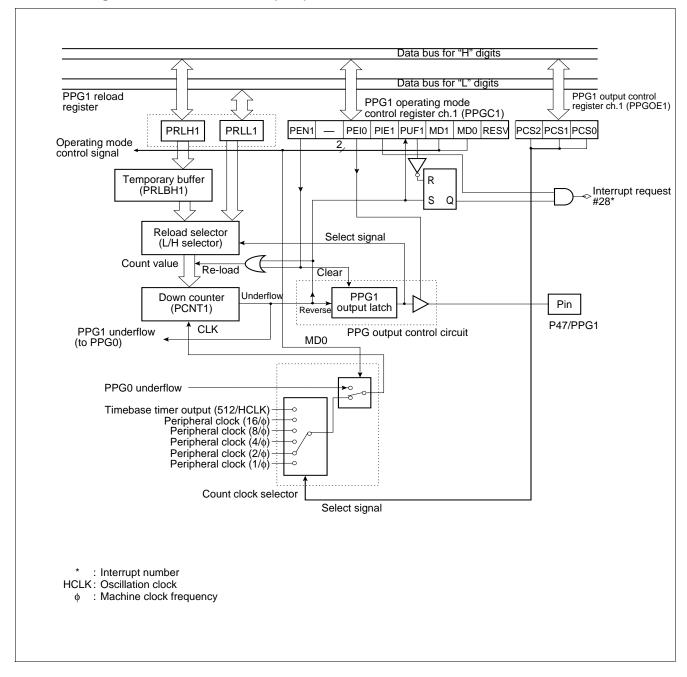
4. 8/16-bit PPG Timer

The 8/16-bit PPG timer is a 2-CH reload timer module for outputting pulse having given frequencies/duty ratios.

The two modules performs the following operation by combining functions.

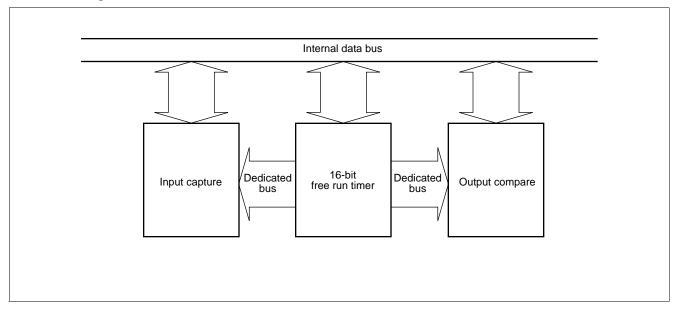

- 8-bit PPG output 2-CH independent operation mode
 This is a mode for operating independent 2-CH 8-bit PPG timer, in which PPG0 and PPG1 pins correspond to outputs from PPG0 and PPG1 respectively.
- 16-bit PPG timer output operation mode
 In this mode, PPG0 and PPG1 are combined to be operated as a 1-CH 8/16-bit PPG timer operating as a 16-bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same output pulses from PPG0 and PPG1 pins.
- 8 + 8-bit PPG timer output operation mode
 In this mode, PPG0 is operated as an 8-bit communications prescaler, in which an underflow output of PPG0 is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0 and PPG1 respectively.
- PPG output operation
 A pulse wave with any period/duty ratio is output. The module can also be used as a D/A converter with an external add-on circuit.

(1) Register Configuration


Address			•		(PPGC	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000044н	(PPGC1)		PEN0	_	PE00	PIE0	PUF0	_	-	RESV	0X000XX1 E
 PPG1 operating r 	node c	ontrol r	egiste	R/W er ch.1	— (PPGC	R/W C1)	R/W	R/W	_	_		
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7		· · · bit 0	Initial value
000045н	PEN1	_	PEI0	PIE1	PUF ²	MD1	MD0	RES	/	(PPGC	0)	0X00001
PPG0, 1 output co		•		,		•	R/W	R/W				
Address					bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000046н	([Disabled)) 	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0		_	000000XX
PPG0 reload regions		•		•	R/W	R/W	R/W	R/W	R/W	_	_	1.00.1
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit /	(PRLI	••••bit 0	Initial value
000041н	R/W	R/W	R/W	 ' R/W	R/W	/ R/W	 ' R/W	' R/W		(FKLI		XXXXXXXX
PPG1 reload regi	ster H	ch.1 (P	RLH1	1)							hit O	la Walio alon
Address 000043 _H		bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	DIL 6	_ DIL 7	(PRLL	bit 0	Initial value
000043H	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W			· · · · · · · · · · · · · · · · · · ·	^^^^
PPG0 reload regi	ster L o	ch.0 (P	RLL0)	.,,,,	.,,,,,	.,,,,,	1000				
Address	bit 15 · ·		…bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000040⊦	(1	PRLH0)										XXXXXXX
PPG1 reload regi	ster L d	ch.1 (P	RLL1	R/W)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 · ·		⋯bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000042н	(PRLH1)										XXXXXXX
				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Readable — : Reserved X : Undefinec		able										

(2) Block Diagram

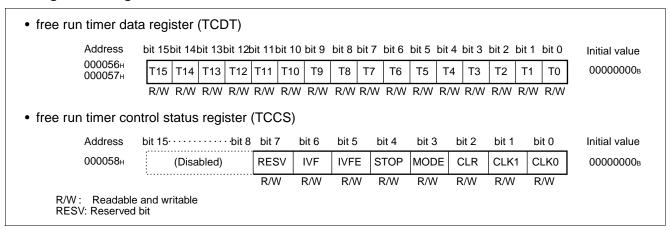
• Block diagram of 8/16-bit PPG timer (ch.0)


• Block diagram of 8/16-bit PPG timer (ch.1)

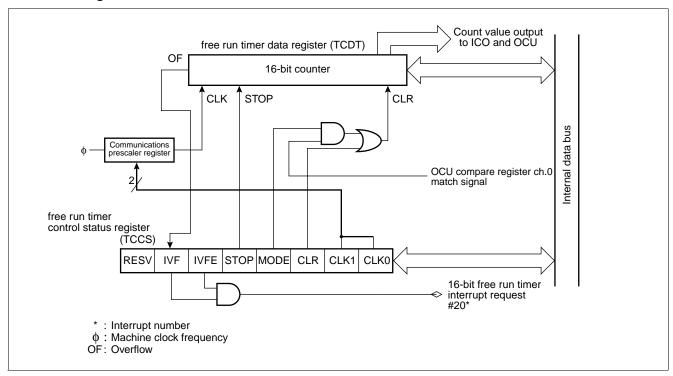
5. 16-bit I/O timer

The 16-bit I/O timer module consists of one 16-bit free run timer, two input capture circuits, and four output comparators. This module allows two independent waveforms to be output on the basis of the 16-bit free run timer. Input pulse width and external clock periods can, therefore, be measured.

• Block Diagram



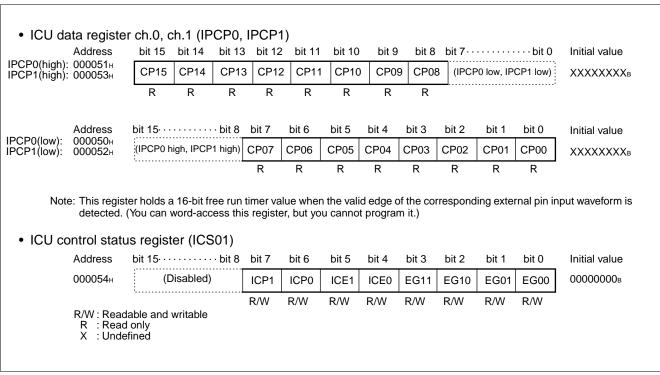
(1) 16-bit free run Timer


The 16-bit free run timer consists of a 16-bit up counter, a control register, and a communications prescaler register. The value output from the timer counter is used as basic timer (base timer) for input capture (ICU) and output compare (OCU).

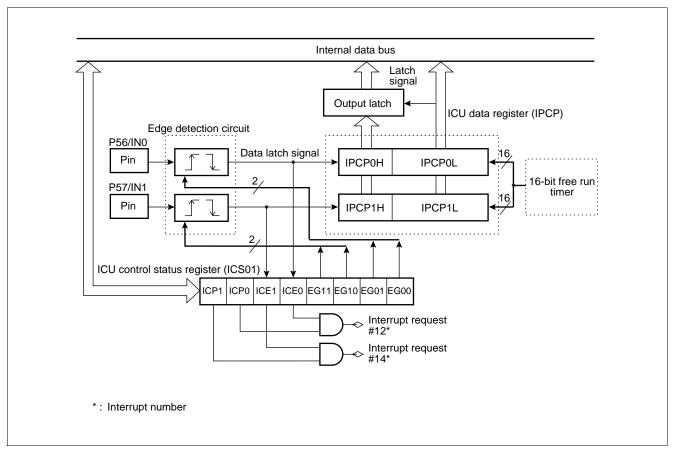
- A counter operation clock can be selected from four internal clocks (φ/4, φ/16, φ/32 and φ/64).
- An interrupt can be generated by overflow of counter value or compare match with OCU compare register 0. (Compare match requires mode setup.)
- The counter value can be initialized to "0000_H" by a reset, software clear or compare match with OCU compare register 0.

Register Configuration

Block Diagram


(2) Input Capture (ICU)

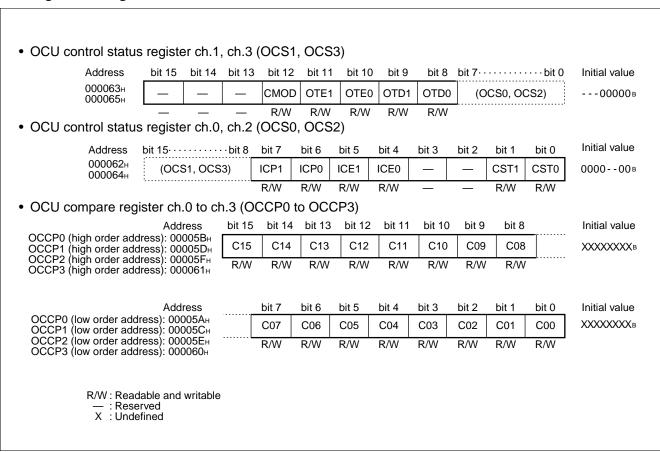
The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of current counter value of the 16-bit free run timer to the ICU data register (IPCP) upon an input of a trigger edge to the external pin.


There are four sets (four channels) of the input capture external pins and ICU data registers, enabling measurements of maximum of four events.

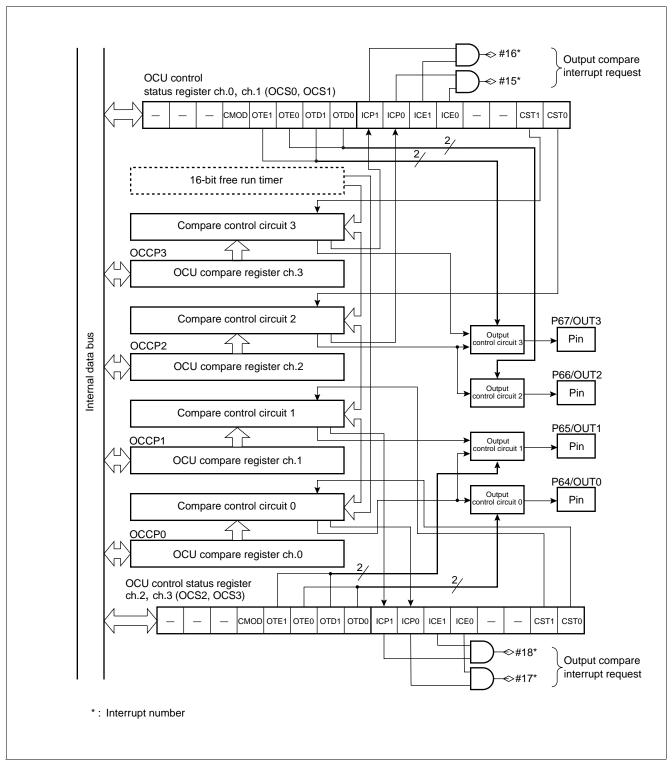
- The input capture has two sets of external input pins (IN0, IN1) and ICU registers (IPCP), enabling measurements of maximum of four events.
- A trigger edge direction can be selected from rising/falling/both edges.
- The input capture can be set to generate an interrupt request at the storage timing of the counter value of the 16-bit free run timer to the ICU data register (IPCP).
- The input compare conforms to the extended intelligent I/O service (EI2OS).
- The input capture (ICU) function is suited for measurements of intervals (frequencies) and pulse widths.

Register Configuration

• Block Diagram

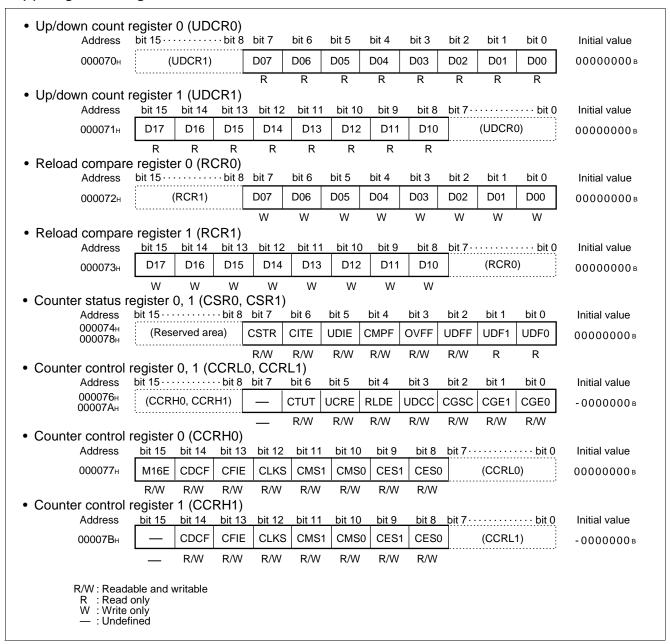

(3) Output Compare (OCU)

The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare registers, a comparator and a control register.

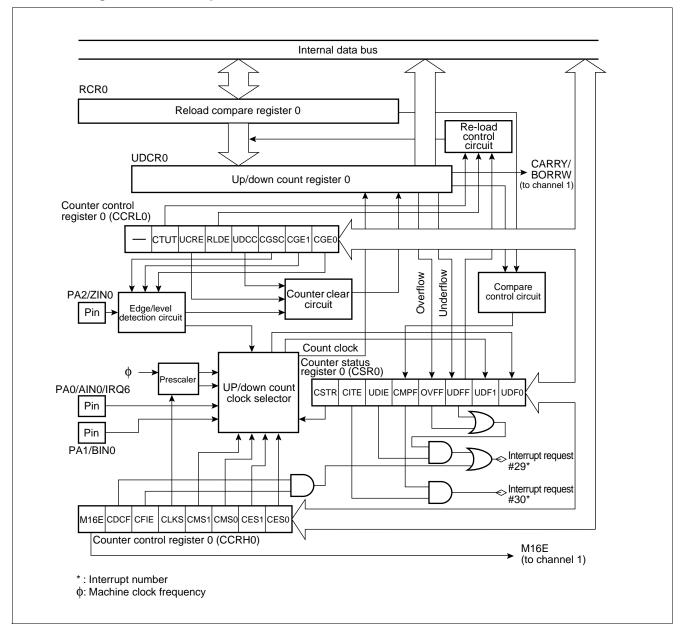

An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 16-bit free run timer.

The OUT pin can be used as a waveform output pin for reversing output upon a match detection or a general-purpose output port for directly outputting the setting value of the CMOD bit.

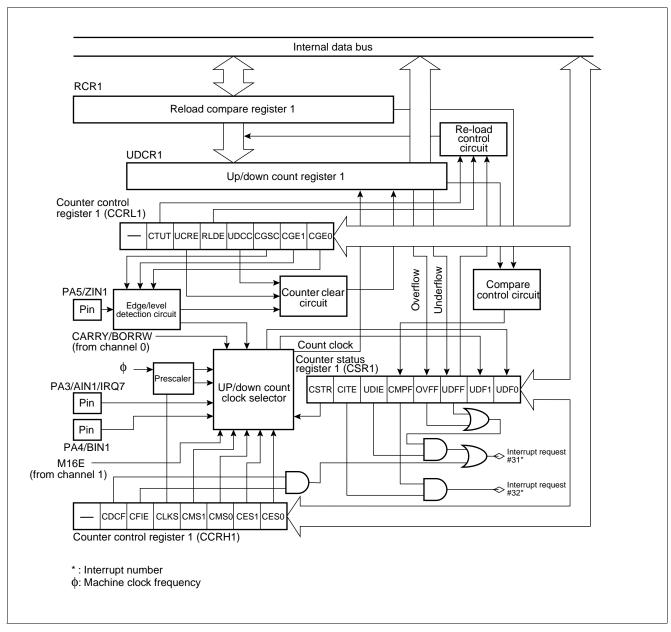
Register Configuration


• Block diagram

6. 8/16-bit up/down counter/timer


The 8/16-bit up/down counter/timer consists of six event input pins, two 8-bit up/down counters, two 8-bit reload compare registers, and their controllers.

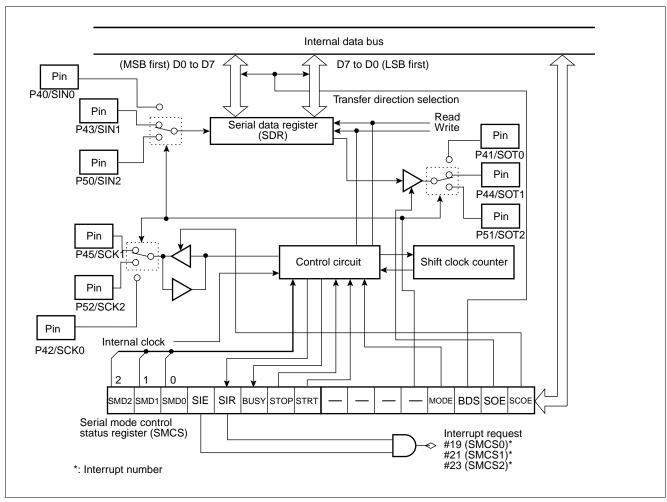
(1) Register configuration



(2) Block Diagram

• Block diagram of 8/16-bit up/down counter/timer 0

• Block diagram of 8/16-bit up/down counter/timer 1


7. Extended I/O serial interface

The extended I/O serial interface transfers data using a clock synchronization system having an 8-bit x 1 channel configuration.

For data transfer, you can select LSB first/MSB first.

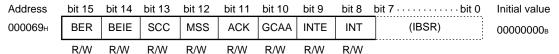
(1) Register Configuration

Address SMCSH0: 000049 _H SMCSH1: 00004D _H SMCSH2: 00007D _H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 · ·		bit 0	Initial value
	SMD2	SMD1	SMD0	SIE	SIR	BUSY	′ STOF	STRT		(SMCS	_)	0000010в
	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W				
Serial mode con	trol low	er statı	us reg	ister 0	to 2 (S	MCSL	0 to SI	MCSL2	<u>'</u> .)			
Address	bit 15···		··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
SMCSL0: 000048 _H SMCSL1: 00004C _H	(S	MCSH)		_	_	_	_	MODE	BDS	SOE	SCOE	0000в
SMCSL2: 00007CH				_			_	R/W	R/W	R/W	R/W	
Serial data regis	ter 0 to	2 (SDI	R0 to	SDR2) bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
SDR0: 00004Ан SDR1: 00004Ен	(D	isabled)		D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
SDR2: 00007E _H				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W : Readable and R : Read only — : Reserved X : Undefined	d writable											

8. I2C Interface

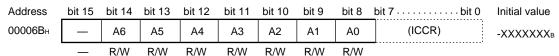
The I²C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I²C bus.

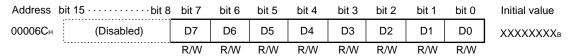
The MB90570/A series contains one channel of an I²C interface, having the following features.


- · Master/slave transmission/reception
- Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transmission direction detection function
- Repeated generation function start condition and detection function
- Bus error detection function

(1) Register Configuration

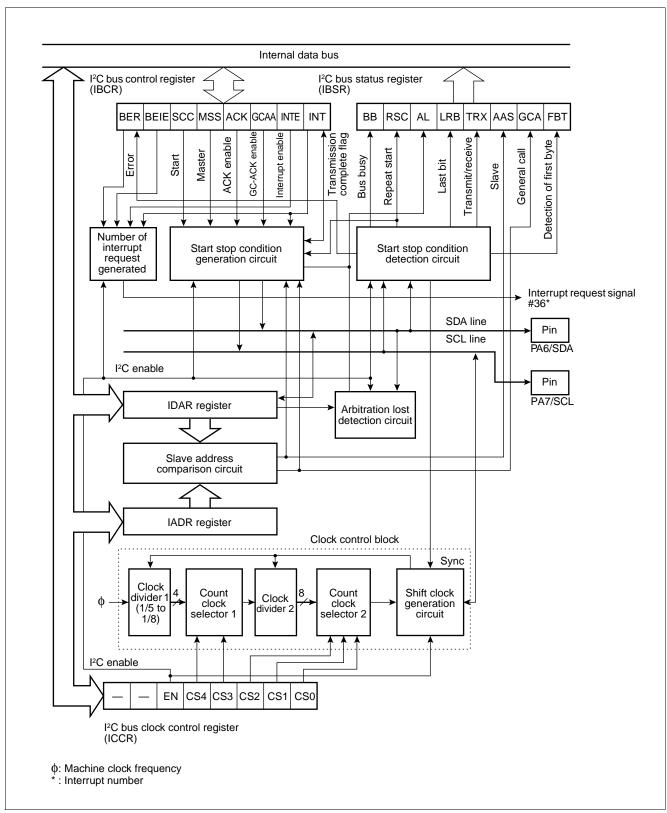
• I²C bus status register (IBSR)


• I2C bus control register (IBCR)


• I²C bus clock control register (ICCR)

Address b	oit 15 · · · · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00006Ан	(IADR)	_	_	EN	CS4	CS3	CS2	CS1	CS0	0XXXXXB
			_	R/W	R/W	R/W	R/W	R/W	R/W	

• I2C bus address register (IADR)



• I2C bus data register (IDAR)

R/W : Readable and writable

R : Read only
— : Reserved
X : Indeterminate

9. UARTO (SCI), UART1 (SCI)

UART0 (SCI) and UART1 (SCI) are general-purpose serial data communication interfaces for performing synchronous or asynchronous communication (start-stop synchronization system).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

Baud rate: Embedded dedicated baud rate generator

External clock input possible

Internal clock (a clock supplied from 16-bit reload timer 0 can be used.)

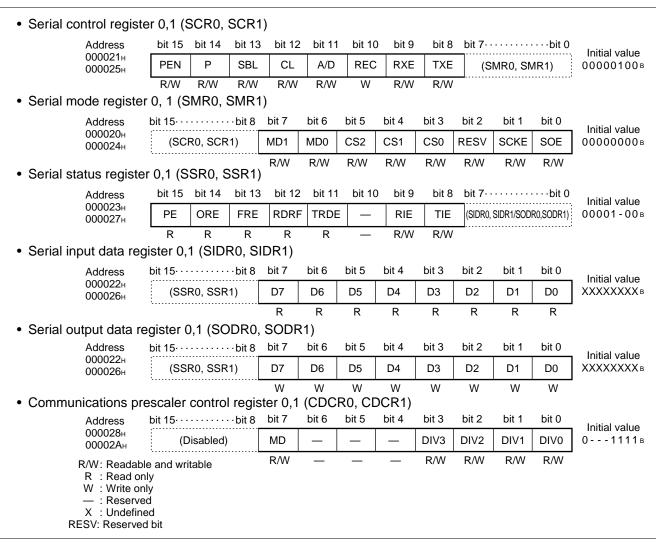
Asynchronization 9615 bps/31250 bps/4808 bps/2404 bps/1202 bps Internal machine clock CLK synchronization 1 Mbps/500 kbps/250 kbps/125 kbps/62.5 kbps Internal machine clock For 6 MHz, 8 MHz, 10 MHz 12 MHz and 16 MHz

• Data length: 7 bit to 9 bit selective (without a parity bit)

6 bit to 8 bit selective (with a parity bit)

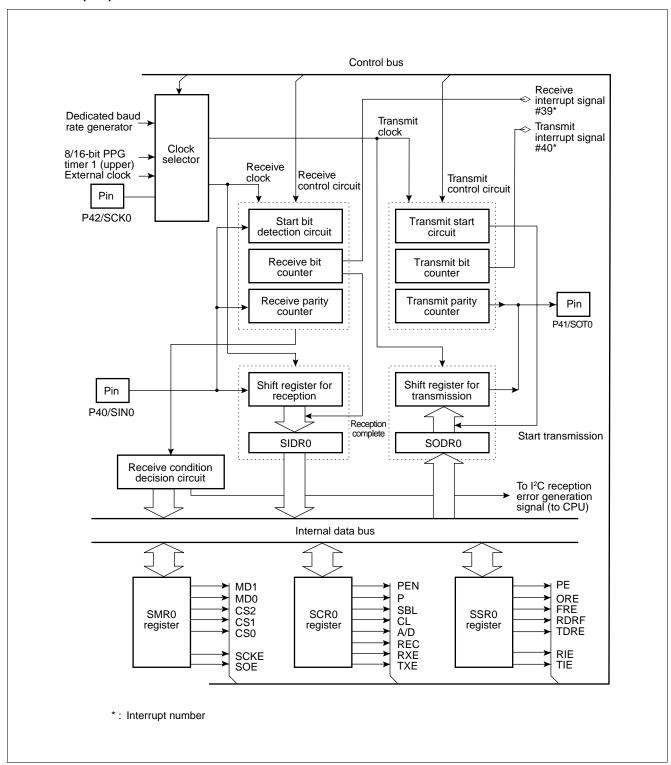
- Signal format: NRZ (Non Return to Zero) system
- Reception error detection: Framing error

Overrun error

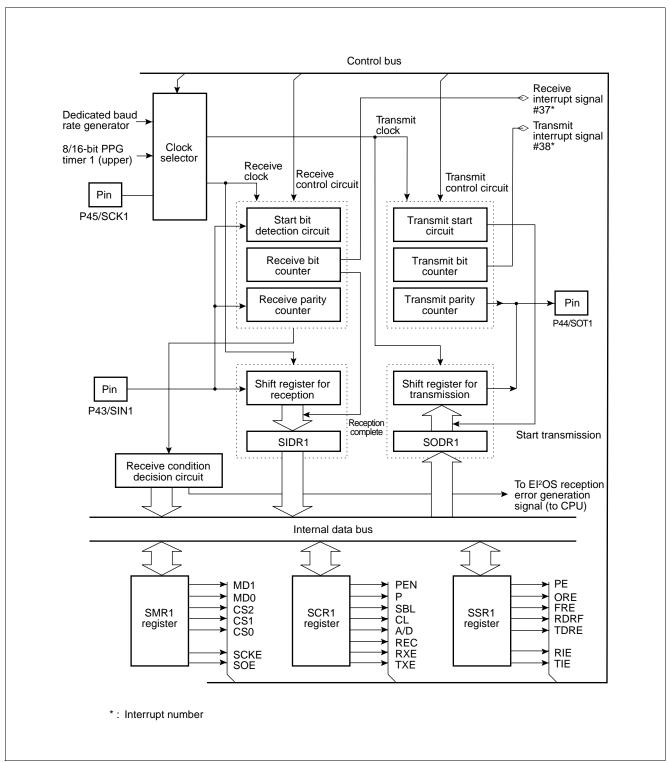

Parity error (multi-processor mode is supported, enabling setup of any baud rate by an external clock.)

• Interrupt request: Receive interrupt (receive complete, receive error detection)

Transmit interrupt (transmission complete)


Transmit/receive conforms to extended intelligent I/O service (EI2OS)

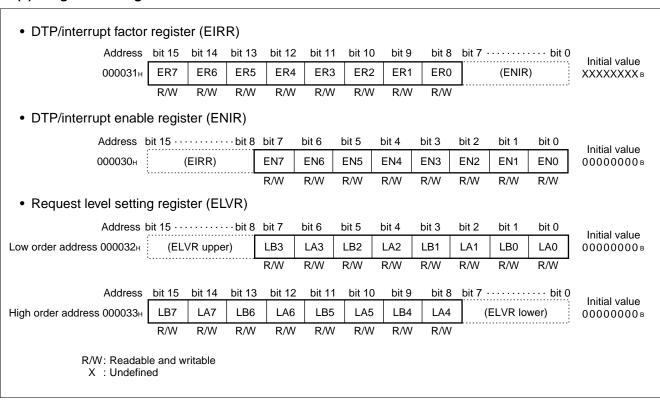
(1) Register Configuration

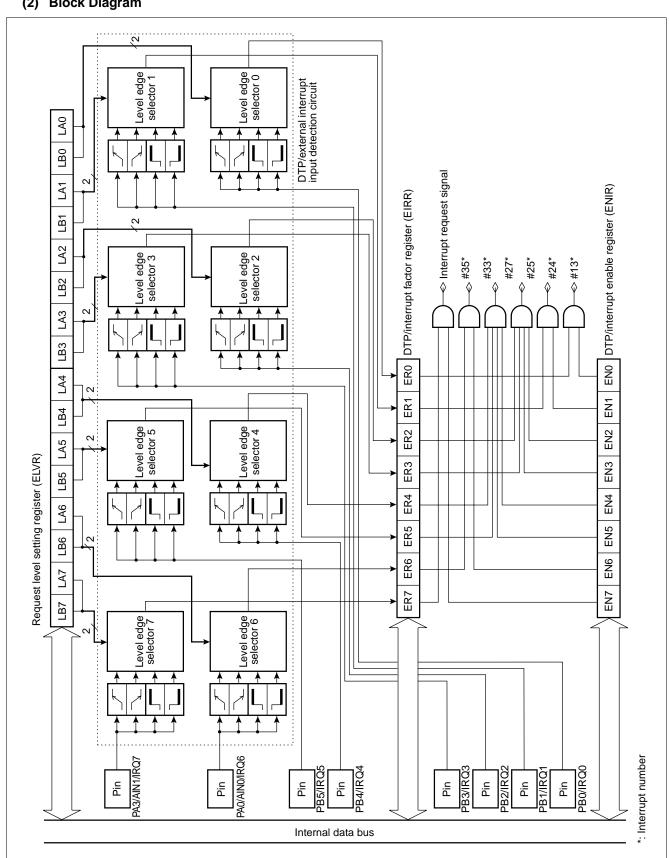


(2) Block Diagram

• UARTO (SCI)

• UART1 (SCI)

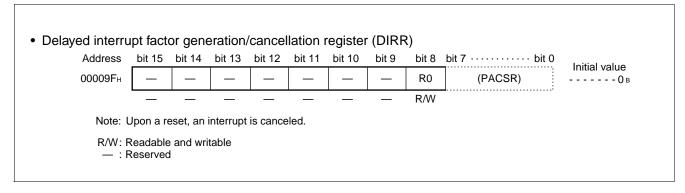

10. DTP/External Interrupt Circuit


DTP (Data Transfer Peripheral), which is located between the peripheral circuit outside the device and the F²MC-16LX CPU, receives an interrupt request or DMA request generated by the external peripheral circuit* for transmission to the F²MC-16LX CPU. DTP is used to activate the intelligent I/O service or interrupt processing. As request levels for IRQ2 to IRQ7, two types of "H" and "L" can be selected for the intelligent I/O service. Rising and falling edges as well as "H" and "L" can be selected for an external interrupt request. For IRQ0 and IRQ1, a request by a level cannot be entered, but both edges can be entered.

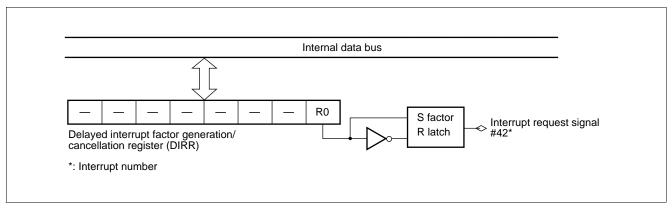
*: The external peripheral circuit is connected outside the MB90570/A series device.

Note: IRQ0 and IRQ1 cannot be used for the intelligent I/O service and return from an interrupt.

(1) Register Configuration



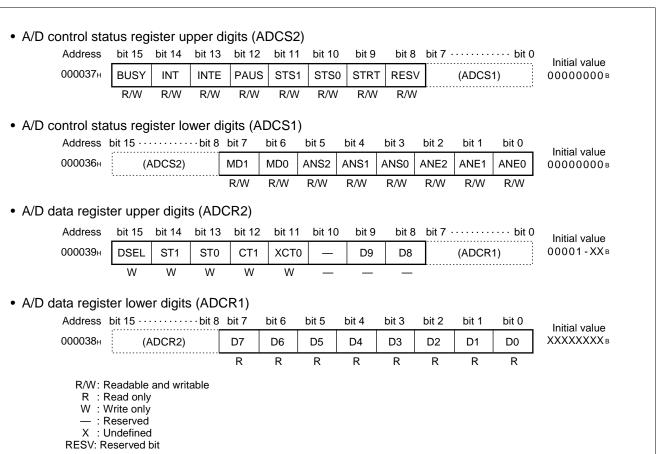
11. Delayed Interrupt Generation Module

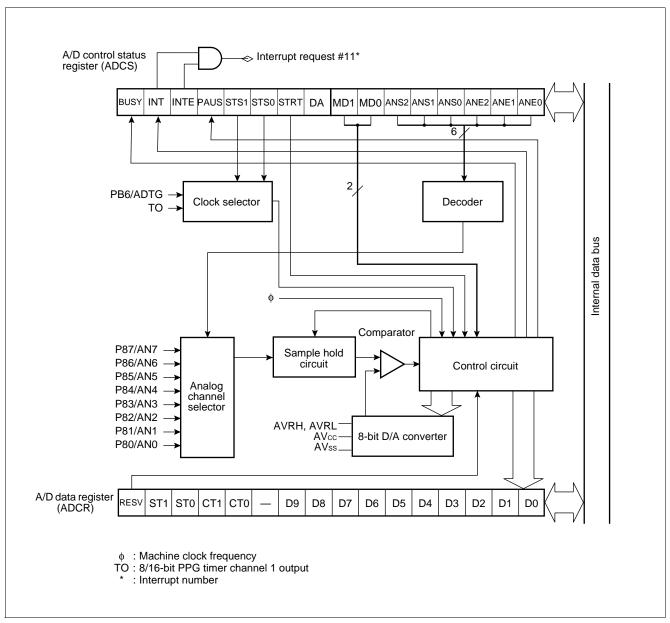

The delayed interrupt generation module generates interrupts for switching tasks for development on a real-time operating system (REALOS series). The module can be used to generate softwarewise generates hardware interrupt requests to the CPU and cancel the interrupts.

This module does not conform to the extended intelligent I/O service (EI2OS).

(1) Register Configuration

The DIRR is the register used to control delay interrupt request generation/cancellation. Programming this register with "1" generates a delay interrupt request. Programming this register with "0" cancels a delay interrupt request. Upon a reset, an interrupt is canceled. The reserved bit area can be programmed with either "0" or "1". For future extension, however, it is recommended that bit set and clear instructions be used to access this register.

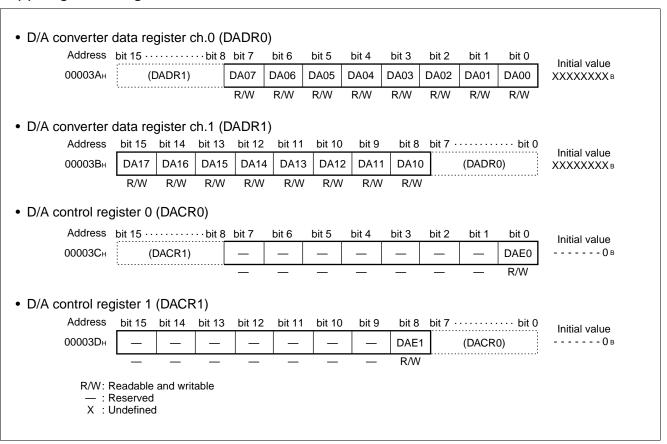


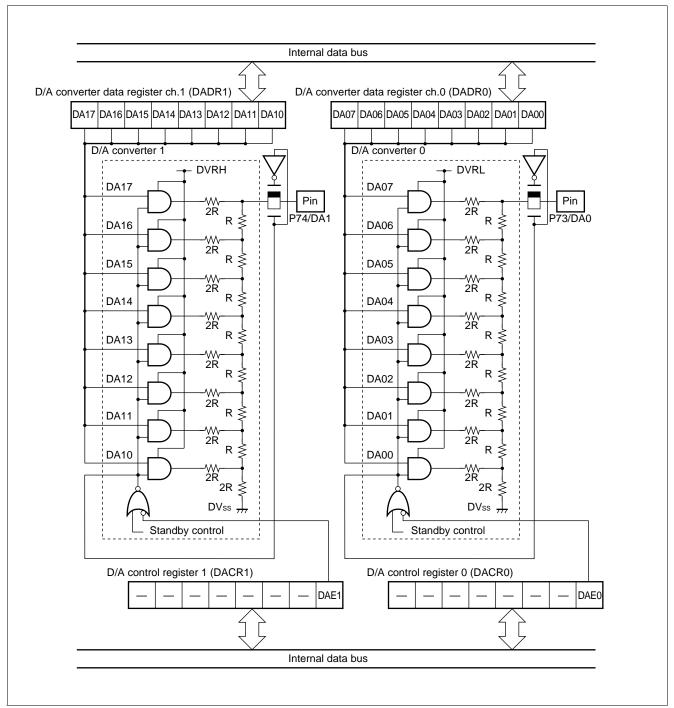

12. 8/10-bit A/D Converter

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

- Minimum conversion time: 26.3 μs (at machine clock of 16 MHz, including sampling time)
- Minimum sampling time: 4 μs/256 μs (at machine clock of 16 MHz)
- Compare time: 176/352 machine cycles per channel (176 machine cycles are used for a machine clock below 8 MHz.)
- Conversion method: RC successive approximation method with a sample and hold circuit.
- 8-bit or 10-bit resolution
- Analog input pins: Selectable from eight channels by software Single conversion mode: Selects and converts one channel.
 - Scan conversion mode: Converts two or more successive channels. Up to eight channels can be programmed. Continuous conversion mode: Repeatedly converts specified channels.
 - Stop conversion mode: Stops conversion after completing a conversion for one channel and wait for the next activation (conversion can be started synchronously.)
- Interrupt requests can be generated and the extended intelligent I/O service (EI²OS) can be started after the end of A/D conversion. Furthermore, A/D conversion result data can be transferred to the memory, enabling efficient continuous processing.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion: Selected from software activation, and external trigger (falling edge).

(1) Register Configuration

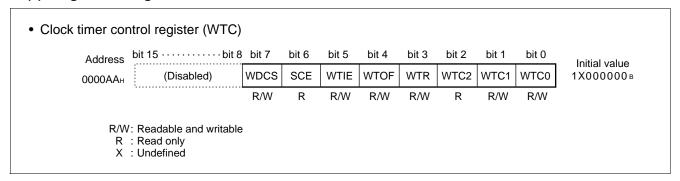


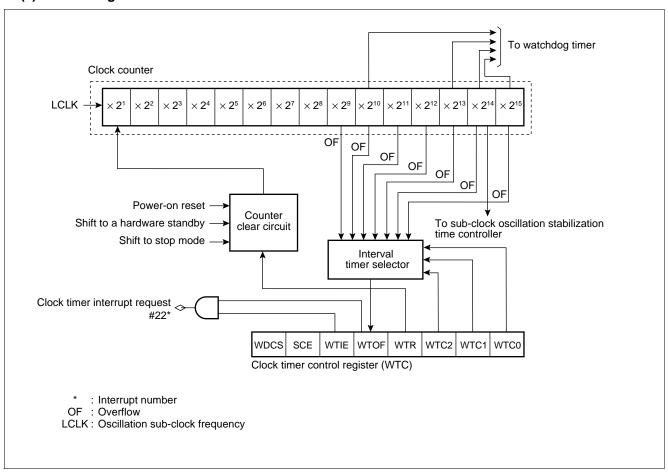


13. 8-bit D/A Converter

The 8-bit D/A converter, which is based on the R-2R system, supports 8-bit resolution mode. It contains two channels each of which can be controlled in terms of output by the D/A control register.

(1) Register Configuration

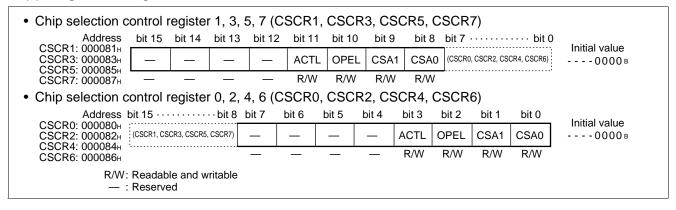


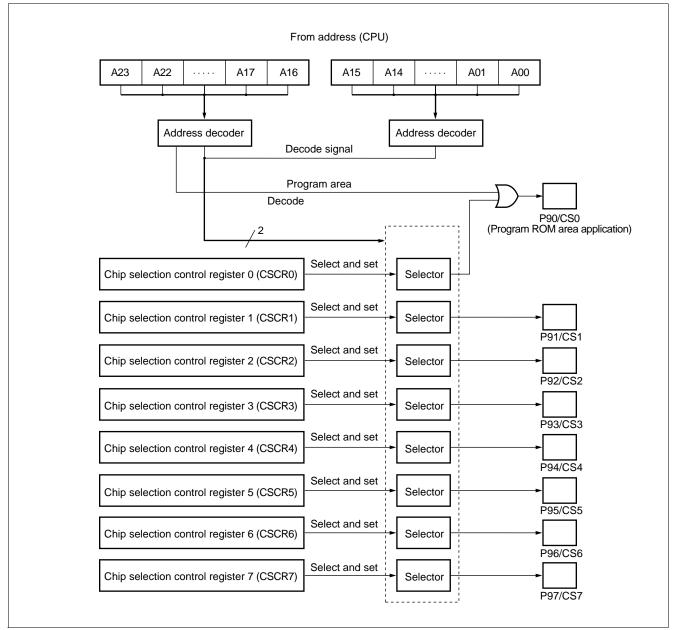


14. Clock Timer

The clock timer control register (WTC) controls operation of the clock timer, and time for an interval interrupt.

(1) Register Configuration





15. Chip Select Output

This module generates a chip select signal for facilitating a memory and I/O unit, and is provided with eight chip select output pins. When access to an address is detected with a hardware-set area set for each pin register, a select signal is output from the pin.

(1) Register Configuration

(3) Decode Address Spaces

Pin CSA		SA	Danada anasa	Number of	Domestic.						
name	1	0	Decode space	area bytes	Remarks						
	0	0	F00000н to FFFFFFн	1 Mbyte	Becomes active when the program ROM						
CS0	0	1	F80000н to FFFFFFн	512 kbyte	area or the program vector is fetched.						
C30	1	0	FE0000h to FFFFFh	128 kbyte							
	1	1	_	Disabled							
	0 0		E00000н to EFFFFFн	1 Mbyte	Adapted to the data ROM and RAM areas, and external circuit connection applications.						
CS1			F00000h to F7FFFh	512 kbyte							
CSI	1	0	FC0000h to FDFFFFh	128 kbyte							
	1	1	68FF80н to 68FFFFн	128 byte							
	0	0	003000н to 003FFFн	4 kbyte	Adapted to the data ROM and RAM areas,						
CCO	0	1	FA0000 _H to FBFFFF _H 128 kbyte		and external circuit connection applications.						
U32	CS2 1		68FF80н to 68FFFFн	128 byte							
	1	1	68FF00н to 68FF7Fн	128 byte							
	0	0	F80000н to F9FFFFн	128 kbyte	Adapted to the data ROM and RAM areas,						
000	0	1 68FF00н to 68FF7Fн		128 byte	and external circuit connection applications.						
CS3	1	0	68FE80н to 68FEFFн	128 byte							
	1	1	_	Disabled							
	0	0	002800н to 002FFFн	2 kbyte	Adapted to the data ROM and RAM areas,						
CS4	0	1	68FE80н to 68FEFFн	128 byte	and external circuit connection applications.						
US4	1 0		_	Disabled							
	1	1	_	Disabled							
	0	0	68FF80н to 68FFFFн	128 byte	Adapted to the data ROM and RAM areas,						
CS5	0	1	_	Disabled	and external circuit connection applications.						
CSS	1	0	_	Disabled							
	1 1		_	Disabled							
	0	0	68FF00н to 68FF7Fн	128 byte	Adapted to the data ROM and RAM areas,						
CSS	0	1	_	Disabled	and external circuit connection applications.						
CS6	1	0	_	Disabled	7						
	1	1	_	Disabled							
CS7	_	_	_	Disabled	Disabled						

16. Communications Prescaler Register

This register controls machine clock division.

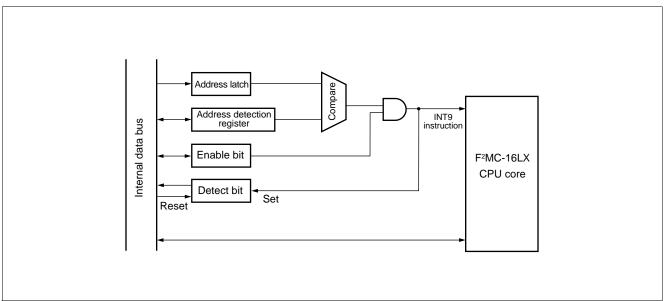
Output from the communications prescaler register is used for UART0 (SCI), UART1 (SCI), and extended I/O serial interface.

The communications prescaler register is so designed that a constant baud rate may be acquired for various machine clocks.

(1) Register Configuration

Address	bit 1	5 · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000028н 00002Ан		(Disabled)	MD	_	-	_	DIV3	DIV2	DIV1	DIV0	0 1111
	`		R/W				R/W	R/W	R/W	R/W	

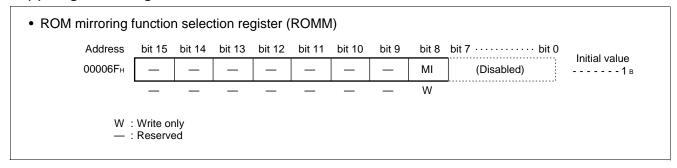
17. Address Match Detection Function


When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program patching function to be implemented.

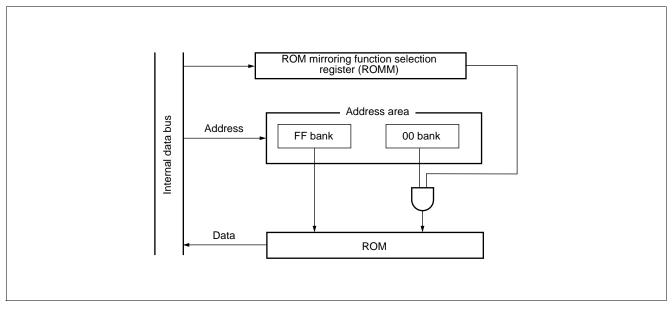
Two address detection registers are supported. An interrupt enable bit and flag are prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at "1", the interrupt flag is set at "1" and the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code. The interrupt flag is cleared to "0" by writing "0" by an instruction.

(1) Register Configuration

Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PADR0 (Low order address): 001FF0 _H									XXXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PADR0 (Middle order address): 001FF1 _H									XXXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PADR0 (High order address): 001FF2 _H									XXXXXXXX
Program address detection register	R/W r 3 to 5	R/W (PADF	R/W R1)	R/W	R/W	R/W	R/W	R/W	
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PADR1 (Low order address): 001FF3 _H									XXXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PADR1 (Middle order address): 001FF4 _H									XXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
PADR1 (High order address): 001FF5 _H									XXXXXXXX
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Program address detection control Address		-	•		h:+ 0	h:+ 0	h:+ 1	b:t 0	
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00009Ен	RESV	RESV	RESV	RESV	AD1E R/W	AD1D R/W	AD0E R/W	AD0D R/W	0000000
	_	_	_	_	IX/ VV	IX/ VV	IX/ VV	IX/ VV	
R/W: Readable and writable — : Reserved X : Undefined RESV: Reserved bit									


(2) Block Diagram

18. ROM Mirroring Function Selection Module


The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the 00 bank according to register settings.

(1) Register Configuration

Note: Do not access this register during operation at addresses 004000H to 00FFFFH.

(2) Block Diagram

19. Low-power Consumption (Standby) Mode

The F²MC-16LX has the following CPU operating mode configured by selection of an operating clock and clock operation control.

Clock mode

PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation

clock (HCLK).

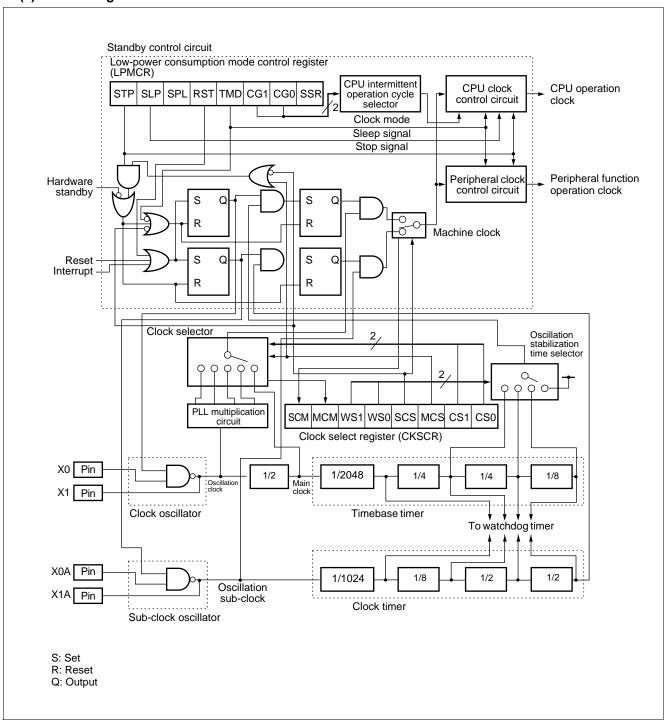
Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the

oscillation clock (HCLK).

The PLL multiplication circuits stops in the main clock mode.


• CPU intermittent operation mode

The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high-speed.


· Hardware standby mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes, modes other than the PLL clock mode are power consumption modes.

(1) Register Configuration

(2) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss-0.3	Vss + 6.0	V	
	AVcc	Vss-0.3	Vss + 6.0	V	*1
Power supply voltage	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	*1
	DVRH	Vss-0.3	Vss + 6.0	V	*1
Input voltage	Vı	Vss-0.3	Vss + 6.0	V	*2
Output voltage	Vo	Vss-0.3	Vss + 6.0	V	*2
"L" level maximum output current	loL		15	mA	*3
"L" level average output current	lolav		4	mA	*4
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ lolav		50	mA	*5
"H" level maximum output current	І он		-15	mA	*3
"H" level average output current	lohav		-4	mA	*4
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	ΣΙομαν		-50	mA	*5
		_	300	mW	MB90573/4 MB90V570/A
Power consumption	P _D		500	mW	MB90574B
		_	800	mW	MB90F574/A
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

^{*1:} AVcc, AVRH, AVRL, and DVRH shall never exceed Vcc. AVRL shall never exceed AVRH.

Note: Average output current = operating \times operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_1 and V_2 shall never exceed V_{CC} + 0.3 V_2

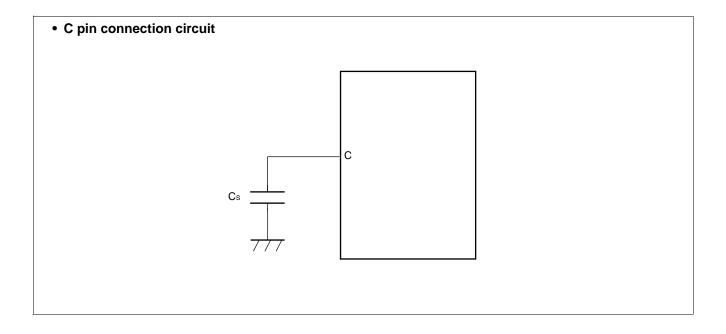
^{*3:} The maximum output current is a peak value for a corresponding pin.

^{*4:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)


Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Syllibol	Min.	Max.	Ullit	Remarks
	Vcc	3.0	5.5	V	Normal operation (MB90574/B)
Power supply voltage	Vcc	4.5	5.5	V	Normal operation (MB90F574/A)
Tomor ouppry remage	Vcc	3.0	5.5	V	Retains status at the time of operation stop
Smoothing capacitor	Cs	0.1	1.0	μF	*
Operating temperature	TA	-40	+85	°C	

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)

Doromotor	Cumbal	Din nome	Condition		Value	<u>- , </u>		ĺ
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level input voltage	Vihs	CMOS hysteresis input pin	Vcc = 3.0 V to 5.5 V	0.8 Vcc	_	Vcc + 0.3	V	
Voltage	Vінм	MD pin input	(MB90573) (MB90574)	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input voltage	VILS	CMOS hysteresis input pin	Vcc = 4.5 V to 5.5 V (MB90F574)	Vss - 0.3	_	0.2 Vcc	V	
voitage	VILM	MD pin input		Vss - 0.3	_	Vss + 0.3	V	
"H" level output voltage	Vон	Other than PA6 and PA7	Vcc = 4.5 V Іон = -2.0 mA	Vcc - 0.5	_	_	V	
"L" level output voltage	Vol	All output pins	Vcc = 4.5 V IoL = 2.0 mA	_	_	0.4	V	
Open-drain output leakage current	lleak	PA6, PA7	_	_	0.1	5	μА	
Input leakage current	lı.	Other than PA6 and PA7	Vcc = 5.5 V Vss < V _I < Vcc	- 5	_	5	μА	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P60 to P67, RST, MD0, MD1	_	15	30	100	kΩ	
Pull-down resistance	RDOWN	MD0 to MD2	_	15	30	100	kΩ	
	Icc	Vcc	Internal operation	_	30	40	mA	MB90574
	Icc	Vcc	at 16 MHz Vcc at 5.0 V	_	85	130	mA	MB90F574/A
	Icc	Vcc	Normal operation	_	50	80	mA	MB90574B
	Icc	Vcc	Internal operation	_	35	45	mA	MB90574
Power	Icc	Vcc	at 16 MHz Vcc at 5.0 V	_	90	140	mA	MB90F574/A
supply current*	Icc	Vcc	A/D converter operation	_	55	85	mA	MB90574B
	Icc	Vcc	Internal operation	_	40	50	mA	MB90574
	Icc	Vcc	at 16 MHz Vcc at 5.0 V	_	95	145	mA	MB90F574/A
	Icc	Vcc	D/A converter operation	_	65	85	mA	MB90574B

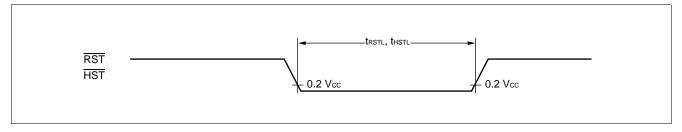
(Continued)

(Continued)

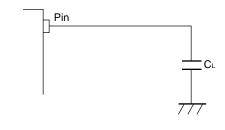
(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Condition		Value	3 0.0 1,	Unit	Remarks	
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks	
	Icc	Vcc	When data written in flash mode programming of erasing	_	95	140	mA	MB90F574/A	
	Iccs	Vcc	Internal operation	_	7	12	mA	MB90574	
	Iccs	Vcc	at 16 MHz Vcc = 5.0 V	_	5	10	mA	MB90F574/A	
	Iccs	Vcc	In sleep mode	_	15	20	mA	MB90574B	
	Iccl	Vcc	Internal operation	_	0.1	1.0	mA	MB90574	
	Iccl	Vcc	at 8 kHz Vcc = 5.0 V	_	4	7	mA	MB90F574/A	
Power supply	ICCL	Vcc	T _A = +25°C Subsystem	$T_A = +25^{\circ}C$	_	0.03	1	mA	MB90574B
current*	Iccls	Vcc	Internal operation	_	30	50	mA	MB90574	
	Iccls	Vcc	at 8 kHz Vcc = 5.0 V	_	0.1	1	mA	MB90F574/A	
	Iccls	Vcc	T _A = +25°C In subsleep mode	_	10	50	μА	MB90574B	
	Ісст	Vcc	Internal operation	_	15	30	μΑ	MB90574	
	Ісст	Vcc	at 8 kHz Vcc = 5.0 V	_	30	50	μΑ	MB90F574/A	
	Ісст	Vcc	T _A = +25°C In clock mode	_	1.0	30	μА	MB90574B	
	Іссн	Vcc	T _A = +25°C	_	5	20	μΑ	MB90574	
	Іссн	Vcc	In stop mode	_	0.1	10	μΑ	MB90F574/A MB90574B	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	10	80	pF		

^{*:} The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice.


4. AC Characteristics

(1) Reset, Hardware Standby Input Timing


 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Va	lue	Unit	Remarks
Parameter	Symbol	riii iiaiiie	Condition	Min.	Max.	Ollit	Remarks
Reset input time	t rstl	RST		4 tcp*	_	ns	
Hardware standby input time	t HSTL	HST		4 tcp*	_	ns	

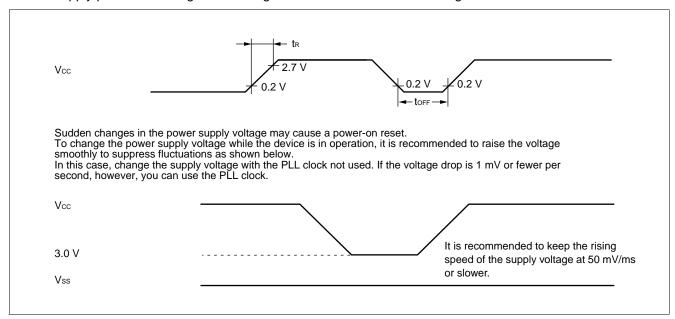
*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

• Measurement conditions for AC characteristics

C∟ is a load capacitance connected to a pin under test.

Capacitors of C_L = 30 pF must be connected to CLK and ALE pins, while C_L of 80 pF must be connected to address data bus (AD15 to AD00), \overline{RD} , \overline{WRL} , and \overline{WRH} pins.

(2) Specification for Power-on Reset

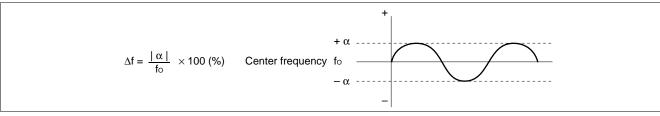

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Doromotor	Symbol	Pin name	Condition	Va	alue	Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Ullit	Remarks
Power supply rising time	t R	Vcc		0.05	30	ms	*
Power supply cut-off time	toff	Vcc	_	4	_	ms	Due to repeated operations

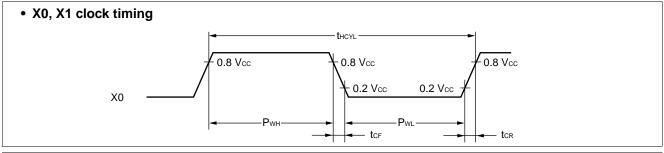
^{*:} Vcc must be kept lower than 0.2 V before power-on.

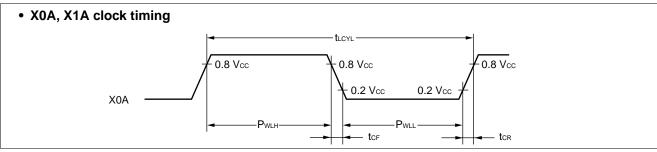
Notes: • The above ratings are values for causing a power-on reset.

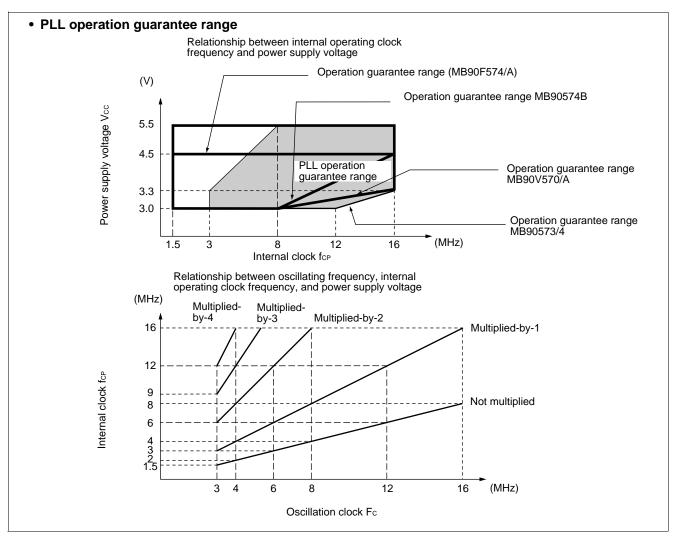
• There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.



(3) Clock Timings

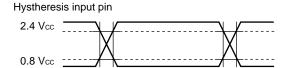

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Doromotor	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	riii iiaiiie	Condition	Min.	Тур.	Max.	Onit	Remarks
Clock frequency	Fc	X0, X1		3	_	16	MHz	
Clock frequency	FcL	X0A, X1A		_	32.768	_	kHz	
Clock cycle time	t HCYL	X0, X1		62.5	_	333	ns	
Clock cycle time	t LCYL	X0A, X1A		_	30.5	_	μs	
Input clock pulse width	P _{WH} , P _{WL}	X0		10	_	_	ns	Recommend duty ratio of 30% to 70%
	Pwlh, Pwll	X0A		_	15.2		μs	
Input clock rising/falling time	tcr, tcr	X0, X0A	_	_	_	5	ns	External clock operation
Internal operating clock	f CP	_		1.5	_	16	MHz	Main clock operation
frequency	f LCP	_		_	8.192	_	kHz	Subclock operation
Internal operating clock cycle	t CP	_		62.5	_	333	ns	External clock operation
time	t LCP	_		_	122.1	_	μs	Subclock operation
Frequency fluctuation rate locked	Δf	_		_	_	5	%	*

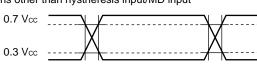

^{* :} The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$ ", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).

The AC ratings are measured for the following measurement reference voltages.

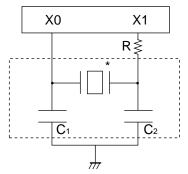

• Input signal waveform

Hystheresis input pin


0.8 Vcc

0.2 Vcc

Output signal waveform



Pins other than hystheresis input/MD input

(4) Recommended Resonator Manufacturers

• Sample application of ceramic resonator

Mask ROM product (MB90574)

Resonator manufacturer*	Resonator	Frequency (MHz)	C ₁ (pF)	C ₁ (pF)	R
manuracturer		. , ,		\(\(\frac{1}{2}\)	
	CSA2.00MG040	2.00	100	100	No required
	CSA4.00MG040	4.00	100	100	No required
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.00	30	30	No required
	CSA16.00MXZ040	16.00	15	15	No required
	CSA32.00MXZ040	32.00	5	5	No required
	CCR3.52MC3 to CCR6.96MC3	3.52 to 6.96	Built-in	Built-in	No required
TDK Corporation	CCR7.0MC5 to CCR12.0MC5	7.00 to 12.00	Built-in	Built-in	No required
	CCR20.0MSC6 to CCR32.0MSC6	20.00 to 32.00	Built-in	Built-in	No required

(Continued)

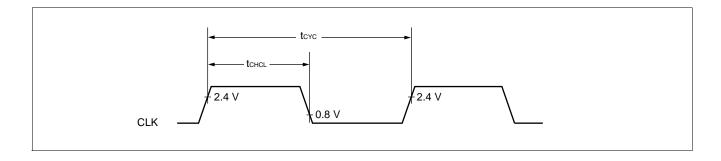
(Continued)

• Flash product (MB90F574)

Resonator manufacturer*	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	CSA2.00MG040	2.00	100	100	No required
	CSA4.00MG040	4.00	100	100	No required
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.00	30	30	No required
	CSA16.00MXZ040	16.00	15	15	No required
	CSA32.00MXZ040	32.00	5	5	No required
	CCR3.52MC3 to CCR6.96MC3	3.52 to 6.96	Built-in	Built-in	No required
TDK Corporation	CCR7.0MC5 to CCR12.0MC5	7.00 to 12.00	Built-in	Built-in	No required
	CCR20.0MSC6 to CCR32.0MSC6	20.00 to 32.00	Built-in	Built-in	No required

Inquiry: Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.): TEL 65-758-4233

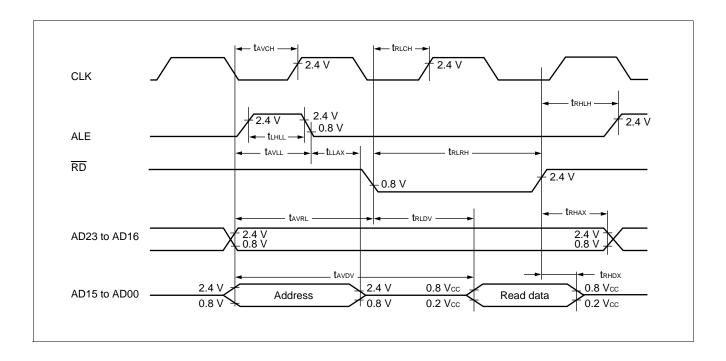

TDK Corporation

- TDK Corporation of America
 - Chicago Regional Office: TEL 1-708-803-6100
- TDK Electronics Europe GmbH
 - Components Division: TEL 49-2102-9450
- TDK Singapore (PTE) Ltd.: TEL 65-273-5022
- TDK Hongkong Co., Ltd.: TEL: 852-736-2238
- Korea Branch, TDK Corporation: TEL 82-2-554-6636

(5) Clock Output Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Linit	Remarks
Parameter	Syllibol	Fili liallie	Condition	Min.	Max.	Oilit	iveillaiks
Cycle time	tcyc	CLK		62.5	_	ns	
$CLK \uparrow \to CLK \downarrow$	tchcl	CLK	_	20	_	ns	

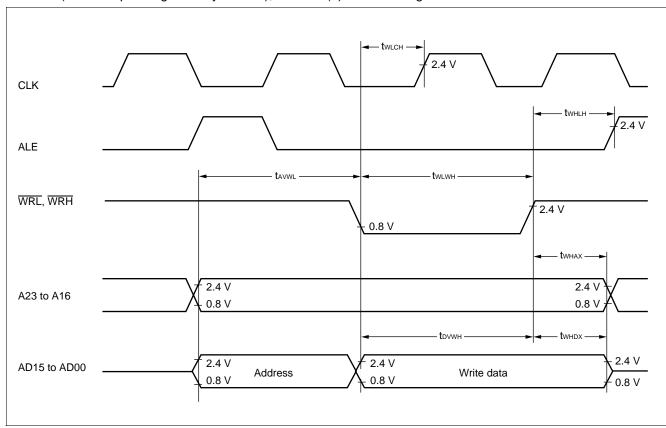


(6) Bus Read Timing

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40° C to $+85^{\circ}$ C)

Parameter	Symbol	Pin name	Condition	Va	lue	Hois	Remarks
Parameter	Syllibol	Fili lialile	Condition	Min.	Max.	Offic	Neillai NS
ALE pulse width	t LHLL	ALE		1 tcp*/2 - 20	_	ns	
Effective address → ALE ↓ time	tavll	ALE, A23 to A16, AD15 to AD00		1 tcp*/2 – 20	_	ns	
$ ALE \downarrow \to address \\ effective \ time $	tLLAX	ALE, AD15 to AD00		1 tcp*/2 - 15	_	ns	
$\frac{\text{Effective address} \rightarrow}{\text{RD}} \downarrow \text{time}$	t avrl	RD, A23 to A16, AD15 to AD00		1 tcp* – 15	_	ns	
Effective address → valid data input	tavdv	A23 to A16, AD15 to AD00		_	5 tcp*/2 - 60	ns	
RD pulse width	t rlrh	RD		3 tcp*/2 - 20	_	ns	
$\overline{RD} \downarrow \to valid \; data \; input$	t RLDV	RD, AD15 to AD00	_	_	3 tcp*/2 - 60	ns	
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	RD, AD15 to AD00		0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	ALE, RD		1 tcp*/2 - 15	_	ns	
$\overline{\mbox{RD}} \uparrow \rightarrow \mbox{address}$ effective time	t RHAX	ALE, A23 to A16		1 tcp*/2 - 10	_	ns	
Effective address → CLK ↑ time	tavch	CLK, A23 to A16, AD15 to AD00		1 tcp*/2 – 20	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	CLK, RD		1 tcp*/2 - 20	_	ns	
ALE $\downarrow \rightarrow \overline{RD} \downarrow$ time	t alrl	ALE, RD		1 tcp*/2 - 15	_	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

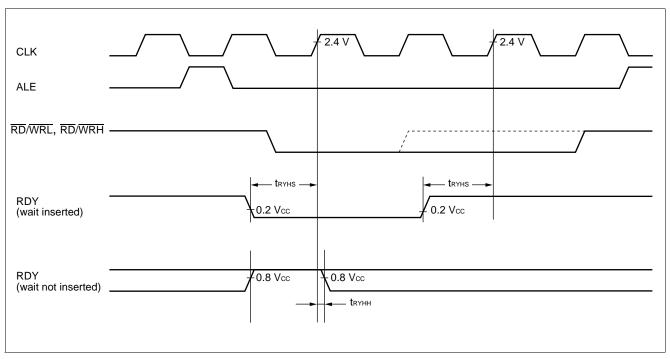


(7) Bus Write Timing

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -40°C to $+85^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Condition	Val	lue	Unit	Remarks
Parameter	Syllibol	Pili name	Condition	Min.	Min. Max.		Remarks
$\frac{\text{Effective address}}{\text{WR}} \downarrow \text{time}$	tavwl	WRL, WRH, A23 to A16, AD15 to AD00		1 tcp — 15	_	ns	
WR pulse width	twlwh	WRL, WRH		3 tcp*/2 - 20	_	ns	
Write data $\rightarrow \overline{\text{WR}} \uparrow \text{time}$	tovwh	WRL, WRH, AD15 to AD00		3 tcp*/2 - 20	_	ns	
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	WRL, WRH, AD15 to AD00	_	20	_	ns	
$\overline{\text{WR}} \uparrow \rightarrow \text{address}$ effective time	twhax	WRL, WRH, A23 to A16		1 tcp*/2 - 10	_	ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	ALE, WRL		1 tcp*/2 - 15	_	ns	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	CLK, WRH		1 tcp*/2 - 20	_	ns	

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

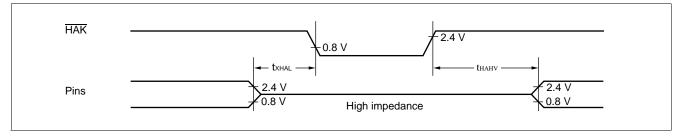


(8) Ready Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Pin name		Condition	Va	lue	Linit	Remarks
Parameter	Syllibol	Fili liaille	Condition	Min.	Max.	Oilit	iveillai ka
RDY setup time	t RYHS	RDY		45	_	ns	
RDY hold time	t RYHH	RDY	_	0	_	ns	

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.


(9) Hold Timing

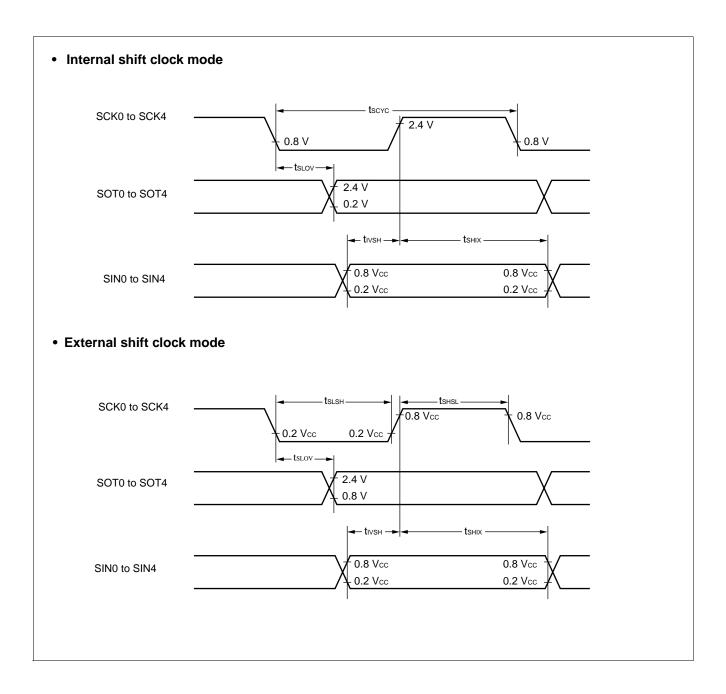
 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Pin name		Condition	Va	lue	l Init	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Offic	IVEIIIAI NS
$\frac{\text{Pins in floating status} \rightarrow}{\text{HAK}} \downarrow \text{time}$	txhal	HAK	_	30	1 t cp*	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t hahv	HAK		1 tcp*	2 tcp*	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

(10) UARTO (SCI), UART1 (SCI) Timing

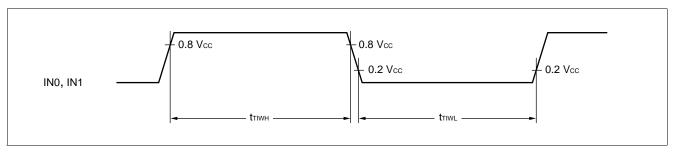

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
raiailletei	Syllibol	Filitianie	Condition	Min.	Max.	Oilit	I/Ciliai K3
Serial clock cycle time	tscyc	SCK0 to SCK4		8 tcp*	_	ns	
$\begin{array}{c} SCK \downarrow \to SOT \ delay \\ time \end{array}$	tsLOV	SCK0 to SCK4, SOT0 to SOT4	Internal shift clock mode	- 80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK0 to SCK4, SIN0 to SIN4	+ 1 TTL for an	100	_	ns	
$SCK \uparrow \rightarrow valid SIN$ hold time	t shix	SCK0 to SCK4, SIN0 to SIN4	output pin	60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK4		4 tcp*	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK4	External shift	4 tcp*	_	ns	
$\begin{array}{c} SCK \downarrow \to SOT \ delay \\ time \end{array}$	tslov	SCK0 to SCK4, SOT0 to SOT4	clock mode C∟ = 80 pF + 1 TTL for an		150	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK0 to SCK4, SIN0 to SIN4	output pin	60	_	ns	
$SCK \uparrow \rightarrow valid SIN$ hold time	t sнıx	SCK0 to SCK4, SIN0 to SIN4		60	_	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

Notes: • These are AC ratings in the CLK synchronous mode.

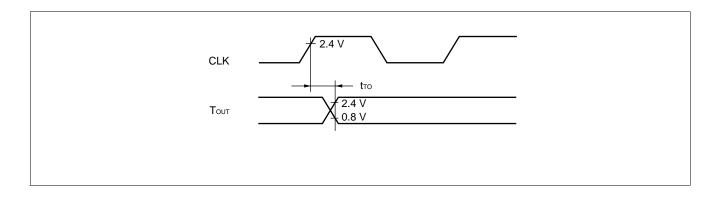
[•] C_L is the load capacitance value connected to pins while testing.



(11) Timer Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

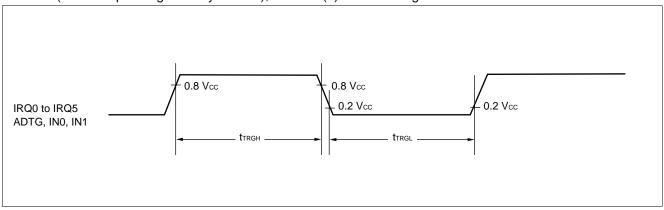
Parameter	Symbol	Pin name	Condition	Value		Linit	Remarks
Parameter	Symbol Fin hame	Condition	Min.	Max.	Oilit	iveillai ks	
Input pulse width	tтıwн, tтıwL	INO, IN1	_	4 tcp*	_	ns	


*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

(12) Timer Output Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Farameter	Symbol	i ili ilalile	Condition	Min.	Max.	Oilit	Kemarks
CLK $\uparrow \rightarrow T_{OUT}$ transition time	t 10	OUT0 to OUT3, PPG0, PPG1	_	30	_	ns	

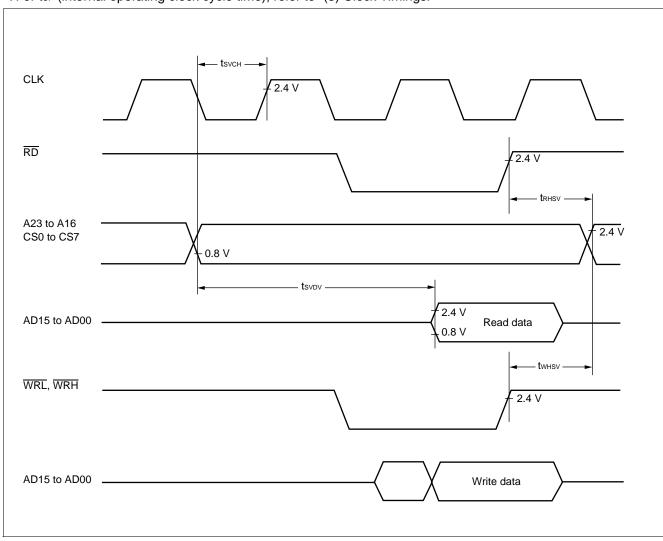


(13) Trigger Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Ī	Parameter Sv		Pin name	Condition	Va	lue	Unit	Remarks
	Faranielei	Symbol	Fili lialile	Condition	Min.	Max.	Oilit	I/Cilial K2
	Input pulse width	t TRGL	IRQ0 to IRQ5, ADTG, IN0, IN1	_	5 tcp*	_	ns	

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

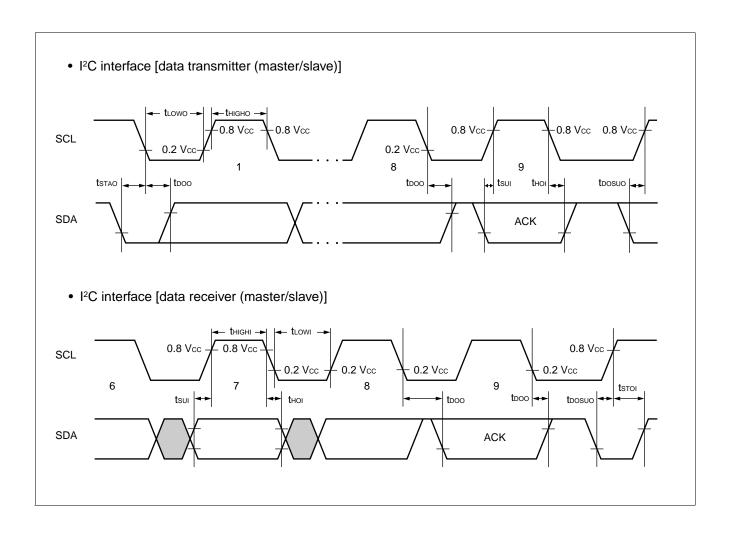


(14) Chip Select Output Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Daramatar	Cymphal	Pin name	Condition	Va	lue	Linit	Remarks
Parameter	Symbol		Condition	Min.	Max.	Unit	Remarks
Valid chip select output → Valid data input time	tsvov	CS0 to CS7, AD15 to AD00		_	5 tcp*/2 - 60	ns	
$\overline{\text{RD}} \uparrow \rightarrow \text{chip select}$ output effective time	trhsv	RD, CS0 to CS7		1 tcp*/2 - 10	_	ns	
$\overline{ m WR} \uparrow \rightarrow { m chip\ select}$ output effective time	twnsv	CS0 to CS7, WRL, WRH	_	1 tcp*/2 - 10	_	ns	
Valid chip select output → CLK ↑ time	tsvcн	CLK, CS0 to CS7		1 tcp*/2 - 20	_	ns	

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."


(15) I2C Timing

(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, $T_A = -40$ °C to +85°C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	1 III IIaiiie	Condition	Min.	Max.	Oilit	Remarks
Internal clock cycle time	t CP	_		62.5	666	ns	All products
Start condition output	t stao			tcp×m×n/2-20	tcp×m×n/2+20	ns	
Stop condition output	tsтоо	SDA,SCL		tc₂(m×n/ 2+4)-20	tc _P (m×n/ 2+4)+20	ns	Only as master
Start condition detection	t stai	3 27 ., 332		3tcp+40	_	ns	Only as slave
Stop condition detection	tsтоі			3tcp+40	_	ns	Offig as slave
SCL output "L" width	tLowo	001		tcp×m×n/2-20	tcp×m×n/2+20	ns	0-1
SCL output "H" width	tнівно	SCL	_	tcp(m×n/ 2+4)-20	tc _P (m×n/ 2+4)+20	ns	Only as master
SDA output delay time	tDOO			2tcp-20	2tcp+20	ns	
Setup after SDA output interrupt period	toosuo	SDA,SCL		4tcp-20	_	ns	
SCL input "L" width	tLOWI	SCL		3tcp+40	_	ns	
SCL input "H" width	t HIGHI	JOL		tcp+40	_	ns	
SDA input setup time	t suı	SDA,SCL		40	_	ns	
SDA input hold time	tноі	SDA,SCL		0	_	ns	

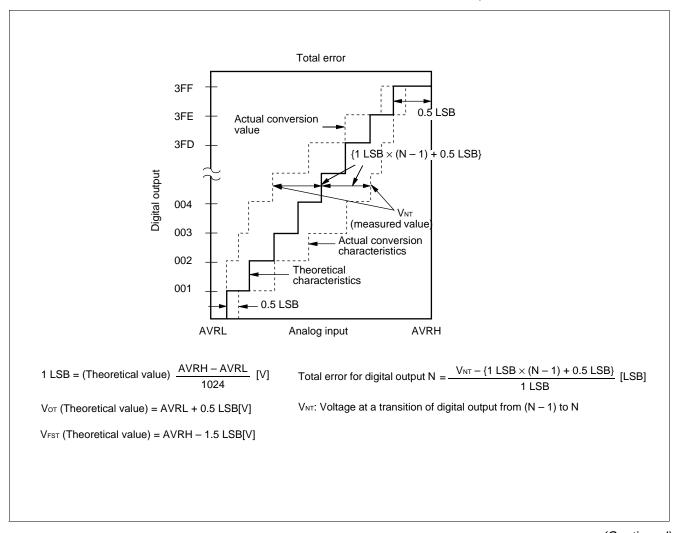
Notes: • "m" and "n" in the above table represent the values of shift clock frequency setting bits (CS4-CS0) in the clock control register "ICCR". For details, refer to the register description in the hardware manual.

- toosuo represents the minimum value when the interrupt period is equal to or greater than the SCL "L" width.
- The SDA and SCL output values indicate that rise time is 0 ns.

5. A/D Converter Electrical Characteristics

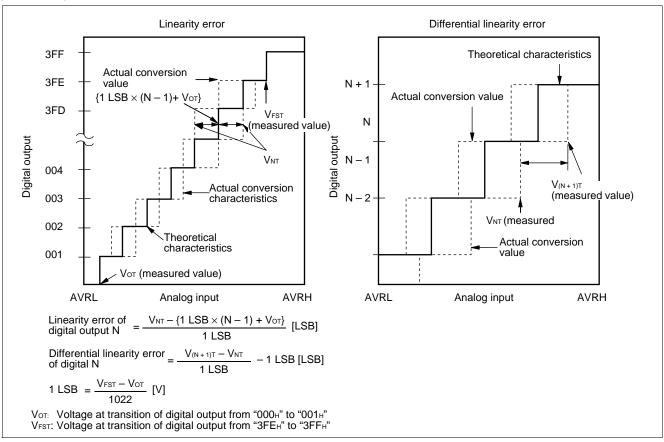
 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, \text{ AVss} = \frac{\text{Vss}}{\text{0.0 V}}, 2.7 \text{ V} \le \frac{\text{AVRH}}{\text{AVRL}}, \text{ T}_{\text{A}} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Denometer			Condition		Value		Unit
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit
Resolution	_	_			8/10		bit
Total error	_	_		_	_	±5.0	LSB
Non-linear error	_	_		_	_	±2.5	LSB
Differential linearity error	_	_	_	_	_	±1.9	LSB
Zero transition voltage	Vот	AN0 to AN7		-3.5 LSB	+0.5 LSB	+4.5 LSB	mV
Full-scale transition voltage	V _{FST}	AN0 to AN7		AVRH -6.5 LSB	AVRH -1.5 LSB	AVRH +1.5 LSB	mV
Conversion time	_	_	$Vcc = 5.0 \text{ V} \pm 10\%$ at machine clock of 16 MHz	352tcp	_	_	μs
Sampling period	_	_	Vcc = 5.0 V ±10% at machine clock of 6 MHz	64tcp	_	_	μs
Analog port input current	Iain	AN0 to AN7		_	_	10	μΑ
Analog input voltage	Vain	AN0 to AN7		AVRL	_	AVRH	V
Reference	_	AVRH	_	AVRL +2.7	_	AVcc	V
voltage	_	AVRL		0	_	AVRH -2.7	V
	IA	AVcc			5		mΑ
Power supply current	Іан	AVcc	CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μА
	IR	AVRH	_	_	400	_	μΑ
Reference voltage supply current	IRH	AVRH	CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μА
Offset between channels	_	AN0 to AN7	_	_	_	4	LSB


6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

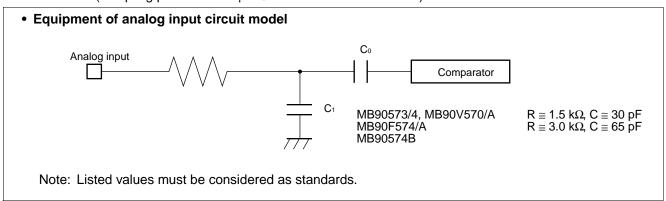
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0000") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

(Continued)



7. Notes on Using A/D Converter

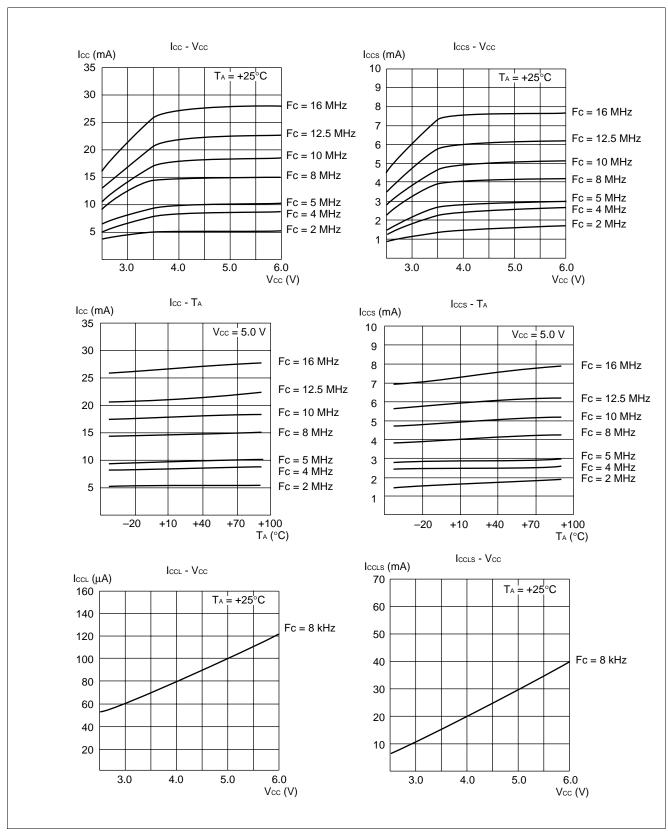
Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 7 k Ω or lower are recommended.

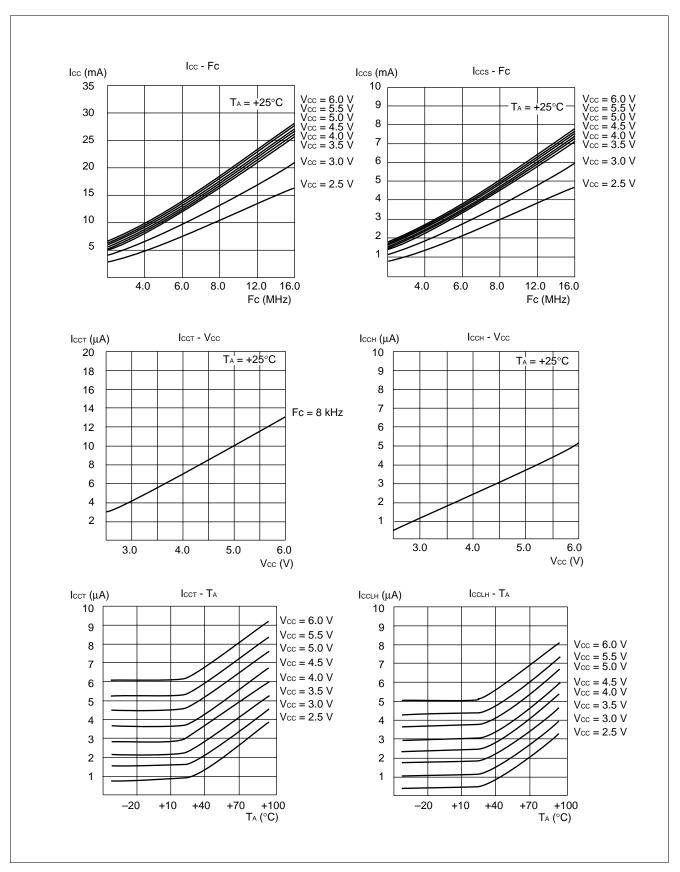
When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

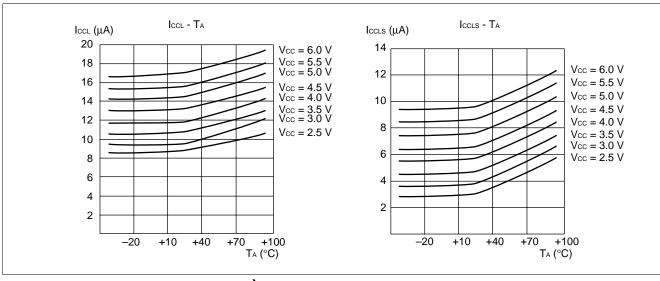
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \, \mu s$ @machine clock of $16 \, MHz$).

• Error

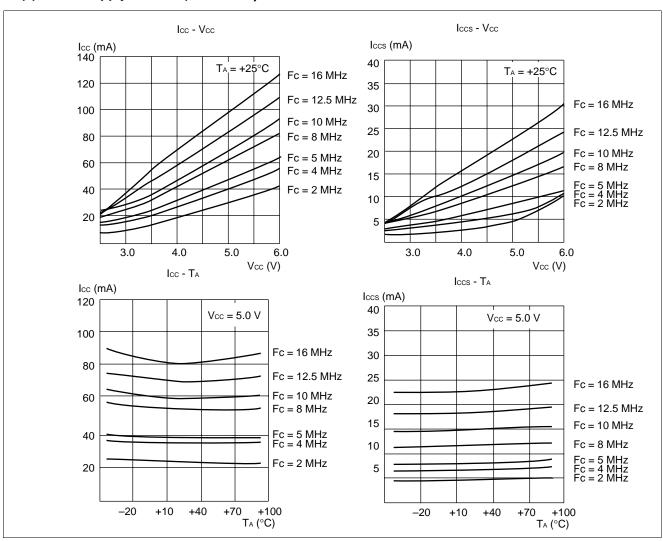
The smaller the | AVRH – AVRL |, the greater the error would become relatively.

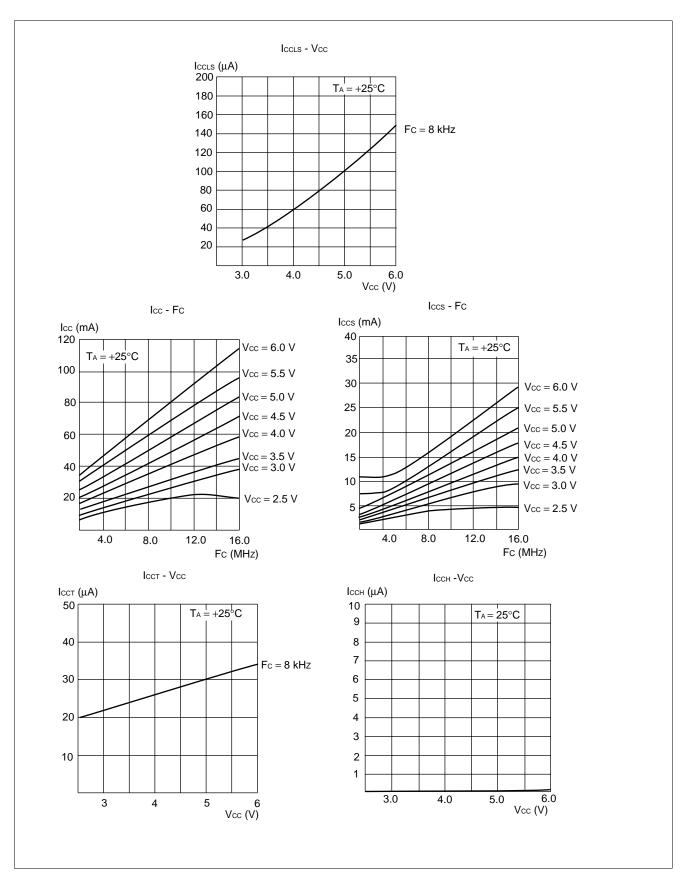

8. D/A Converter Electrical Characteristics

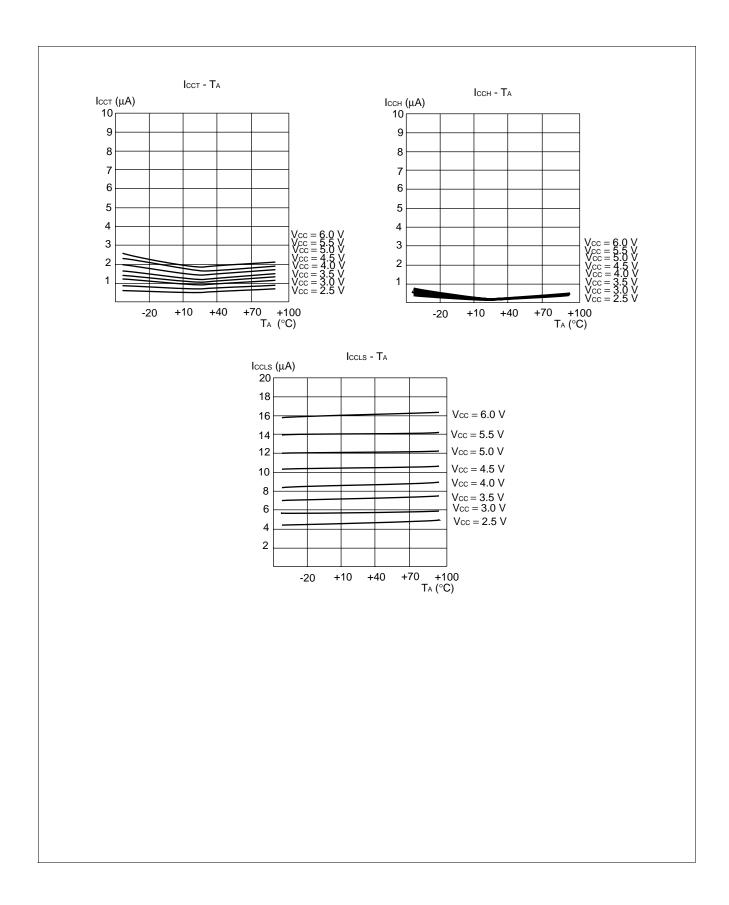

(AVcc = Vcc = DVcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = DVss = 0.0 V, T_A = -40° C to $+85^{\circ}$ C)

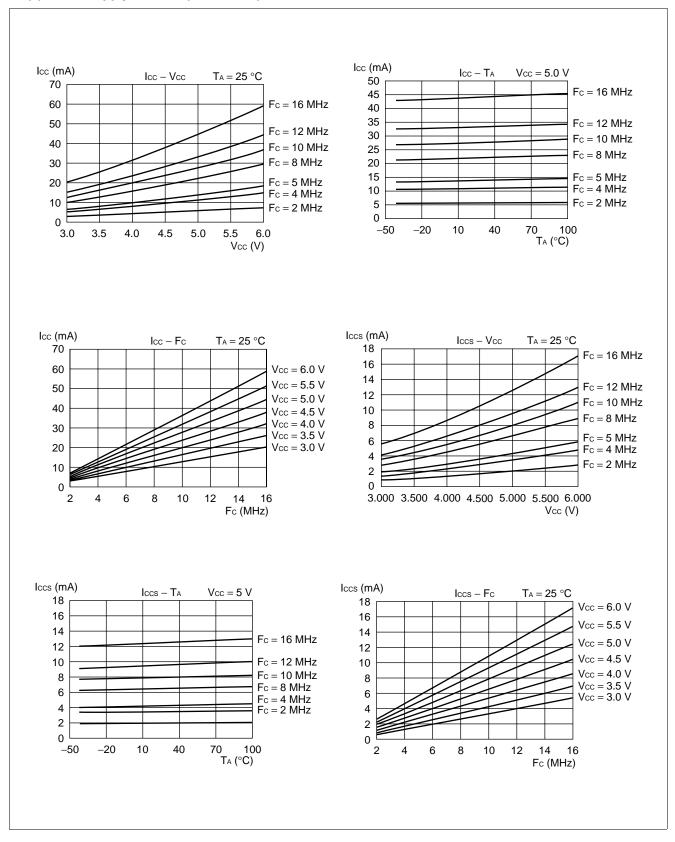

Devementes	Cumbal	Din nome		Value		Unit	Remarks
Parameter	Symbol	Pin name	Min.	Тур.	Max.	Unit	Remarks
Resolution	_	_	_	8	_	bit	
Differential linearity error	_	_		_	±0.9	LSB	
Absolute accuracy	_	_	_	_	±1.2	%	
Linearity error	_	_	_	_	±1.5	LSB	
Conversion time	_	_	_	10	20	μs	Load capacitance: 20 pF
Analog reference voltage	_	DVcc	Vss + 3.0	_	AVcc	V	
Reference voltage	I _{DVR}	DVcc	_	120	300	μΑ	Conversion under no load
supply current	IDVRS	DVcc	_	_	10	μΑ	In sleep mode
Analog output impedance	_	_		20	_	kΩ	

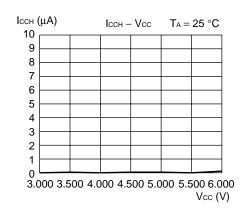
■ EXAMPLE CHARACTERISTICS

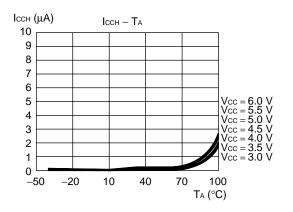

(1) Power Supply Current (MB90574)

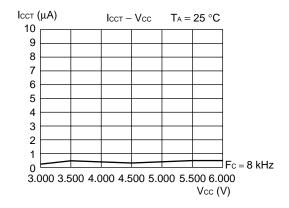


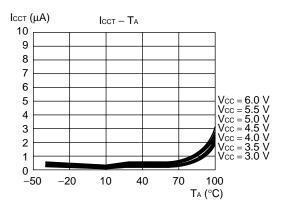


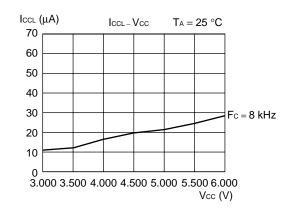

(2) Power Supply Current (MB90F574)

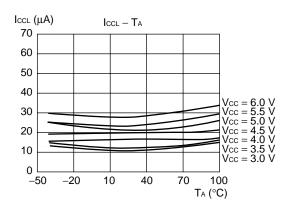


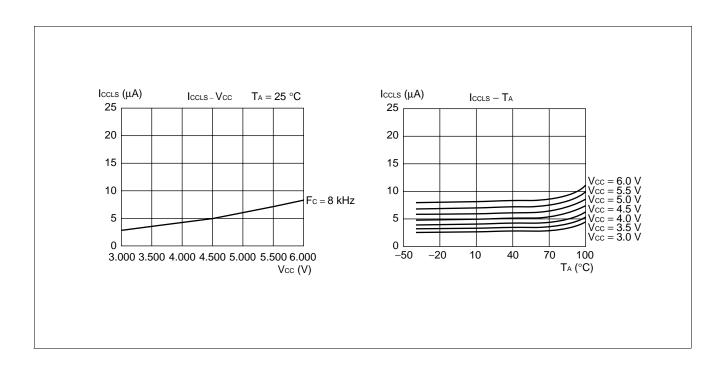





(3)Power Supply Current (MB90574B)







■ INSTRUCTIONS (351 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S: Set by execution of instruction.
Z	R: Reset by execution of instruction.
V	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

• Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16-bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.

For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL and AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	ı	Notation	l	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@R\ @R\ @R\ @R\	N1 N2		Register indirect	0
OC OD OE OF	@R\ @R\	N0 + N1 + N2 + N3 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@R\ @R\ @R\ @R\ @R\	N0 + dis N1 + dis N2 + dis N3 + dis N4 + dis N5 + dis N6 + dis N7 + dis	p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@R\ @R\	N0 + dis N1 + dis N2 + dis N3 + dis	p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@R\	W0 + RW W1 + RW C + disp1 16	<i>1</i> 7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register accesses
Code	Operand	Number of execution cycles for each type of addressing	Number of register accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b)	byte	(c) v	vord	(d) I	ong
Operand	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

N	Inemonic	#	~	RG	В	Operation	LH	АН	ı	s	т	N	z	٧	С	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, Ri	1	2	1	O´	byte (A) \leftarrow (Ri)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	Ö	byte (A) \leftarrow (ear)	Z	*	_	_	_	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	Ö	(b)	byte (A) \leftarrow (eam)	Z	*	_	_	_	*	*	_	_	_
MOV	A, io	2	3	ő	(b)	byte (A) \leftarrow (io)	Z	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	0	byte (A) \leftarrow imm8	Z	*	_	_	_	*	*		_	_
MOV	A, #IIIIIIO A, @A	2	3	0	-		5		_		_	*	*	_	_	
				2	(b)	byte (A) \leftarrow ((A))	Z Z	*	_	_	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10		(b)	byte (A) \leftarrow ((RLi)+disp8)		*	_	_	_		*	_	_	_
MOVN	A, #imm4	1	1	0	0	byte (A) ← imm4	Z	^	_	_	_	R	^	_	_	_
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Х	*	_	_	_	*	*	_	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, Ri	2	2	1	`o´	byte (A) ← (Ri)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, ear	2	2	1	Ö	byte (A) ← (ear)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	X	*	_	_	_	*	*	_	_	_
MOVX	A, io	2	3	ő	(b)	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_	_	_
MOVX	A, #imm8	2	2	0	0	byte (A) \leftarrow (io) byte (A) \leftarrow imm8	X	*		_		*	*		_	_
MOVX							x				_	*	*			
	A, @A	2	3	0	(b)	byte (A) \leftarrow ((A))		*	_	_	_	*	*	_	_	_
MOVX	A,@RWi+disp8	2	5	1	(b)	byte (A) \leftarrow ((RWi)+disp8)	X	*	_	_	_	*	*	_	_	_
MOVX	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	X	^	_	_	_		^	_	_	_
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	0	(b)	byte (addr16) ← (A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, A	1	2	1	`o´	byte (Ri) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	ear, A	2	2	1	Ö	byte (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	eam, A	2+	3+ (a)	Ö	(b)	byte (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	io, A	2	3	0	(b)	byte (io) \leftarrow (A)	_		_	_	_	*	*	_	_	_
MOV	@RLi+disp8, A	3	10	2		byte ((RLi) +disp8) \leftarrow (A)			_	_		*	*	_	_	_
MOV		2	3	2	(b)		_	_			_	*	*	_		
	Ri, ear				0	byte (Ri) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) ← (eam)	_	_	_	_	_	*	*	_	-	_
MOV	ear, Ri	2	4	2	0	byte (ear) ← (Ri)	_	_	_	_	_	*	*	_	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) ← (Ri)	_	_	_	_	_			_	_	_
MOV	Ri, #imm8	2	2	1	0	byte (Ri) ← imm8	-	-	_	_	-	*	*	_	-	_
MOV	io, #imm8	3	5	0	(b)	byte (io) ← imm8	_	-	_	_	_	-	_	_	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (dir) ← imm8	_	-	_	_	-	_	_	_	_	_
MOV	ear, #imm8	3	2	1	O O	byte (ear) ← imm8	_	_	_	_	_	*	*	_	_	-
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (eam) ← imm8	_	_	_	_	l –	l –	_	_	_	_
MOV	@AL, AH		()		(-,											
/MOV	@A, T	2	3	0	(b)	byte $((A)) \leftarrow (AH)$	_	_	_	_	_	*	*	_	_	_
VOLL	A			_		hto (A) ()	_									
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z	-	_	_	-	-	_	_	_	-
XCH	A, eam	2+	5+_(a)	0	2× (b)	byte (A) \leftrightarrow (eam)	Z	-	_	_	-	-	_	_	-	_
XCH	Ri, ear	2	7	4	0,,	byte (Ri) \leftrightarrow (ear)	_	-	-	-	_	-	-	_	_	-
XCH	Ri, eam	2+	9+ (a)	2	2× (b)	byte (Ri) \leftrightarrow (eam)	-	-	-	_	-	-	_	_	-	_

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
MOVW A, dir	2 3	3 4	0	(c)	word (A) \leftarrow (dir)	-	*	_	- 1	_	*	*	_	<u>-</u>	_
MOVW A, addr16 MOVW A, SP	1	1	0	(c)	word (A) ← (addr16) word (A) ← (SP)	_	*	_	_	_	*	*	_	_	_
MOVW A, SP	1	2	1	0	word (A) \leftarrow (SP) word (A) \leftarrow (RWi)	_	*	_	_		*	*		_	
MOVW A, RWI	2	2	1	Ö	word (A) \leftarrow (RVVI) word (A) \leftarrow (ear)	_	*	_	_	_	*	*	_	_	_
MOVW A, eam	2+	3+ (a)	Ö	(c)	word (A) \leftarrow (eam)	_	*	_	_	_	*	*	_	_	_
MOVW A, io	2	3	Ö	(c)	word (A) \leftarrow (io)	_	*	_	_	_	*	*	_	_	_
MOVW A, @A	2	3	Ō	(c)	word (A) \leftarrow ((A))	_	_	_	_	_	*	*	_	_	_
MOVW A, #imm16	3	2	0)O´	word $(A) \leftarrow imm^{\prime}16$	_	*	_	_	_	*	*	_	_	_
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) \leftarrow ((RWi) +disp8)	_	*	_	_	_	*	*	_	_	_
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	-	*	-	-	_	*	*	-	-	_
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	-	_	_	-	_	*	*	-	_	_
MOVW SP, A	1	1	0	0	word (SP) \leftarrow (A)	-	_	-	-	_	*	*	_	_	_
MOVW RWi, A	1	2	1	0	word (RWi) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW ear, A	2	2	1	0	word (ear) \leftarrow (A)	_	_	_	_	-	*	*	_	_	_
MOVW eam, A	2+ 2	3+ (a)	0	(c)	word (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW io, A MOVW @RWi+disp8, A	2	3 5	0 1	(c)	word (io) \leftarrow (A) word ((RWi) +disp8) \leftarrow (A)	_	_	-	_	_	*	*	_	_	_
MOVW @RVII+disp8, A	3	10	2	(c)	word ((RVII) +disp8) \leftarrow (A) word ((RLi) +disp8) \leftarrow (A)	_	_	_	_		*	*			
MOVW @KLi+dispo, A	2	3	2	(0)	word ((REI) +dispo) \leftarrow (A) word (RWi) \leftarrow (ear)	_	_	_	_		*	*		_	_
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) \leftarrow (ear) word (RWi) \leftarrow (earn)	_	_	_	_	_	*	*	_	_	_
MOVW ear, RWi	2	4	2	0	word (ear) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, #imm16	3	2	1	0	word (RWi) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW io, #imm16	4	5	0	(c)	word (io) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW ear, #imm16	4	2	1	O	word (ear) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW eam, #imm16	4+	4+ (a)	0	(c)	word (eam) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW @AL, AH															
/MOVW@A, T	2	3	0	(c)	word $((A)) \leftarrow (AH)$	-	-	-	-	_	*	*	-	-	_
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+_(a)	0	2×(c)		_	_	_	_	-	_	_	_	_	_
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	_	-	-	_	-	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	. , , , ,	-	_	_	-	_	_	_	_	-	_
MOVL A, ear	2	4	2	0	$long (A) \leftarrow (ear)$	_	_	_	_	-	*	*	_	_	_
MOVL A, eam	2+	5+ (a)	0	(d)	long (A) \leftarrow (eam)	_	_	_	_	-	*	*	_	-	_
MOVL A, #imm32	5	3	0	0	long (A) ← imm32	-	-	-	-	_	*	*	_	_	_
MOVL ear, A	2	4	2	0	long (ear) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) ← (A)	-	_	_	_	_	*	*	_	_	_

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	s	т	N	z	٧	С	RMW
ADD	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Z	_	_	_	_	*	*	*	*	_
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) + (dir)$	Ζ	_	_	l —	_	*	*	*	*	_
ADD	A, ear	2	3	1	`o´	byte $(A) \leftarrow (A) + (ear)$	Ζ	_	_	l —	_	*	*	*	*	_
ADD	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow (A) + (eam)$	Ζ	_	_	_	_	*	*	*	*	_
ADD	ear, A	2	3 ′	2	`o´	byte (ear) ← (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) ← (eam) + (A)	Ζ	_	_	_	_	*	*	*	*	*
ADDC	Α	1	2 ′	0	o`´	byte $(A) \leftarrow (AH) + (AL) + (C)$	Ζ	_	_	_	_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte $(A) \leftarrow (A) + (ear) + (C)$	Ζ	_	_	l —	_	*	*	*	*	_
ADDC	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow (A) + (eam) + (C)$	Ζ	_	_	_	_	*	*	*	*	_
ADDDC	A	1	3 ′	0	`o´	byte (A) ← (AH) + (AL) + (C) (decimal)	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, #imm8	2	2	0	0	byte (A) \leftarrow (A) $-imm8$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) - (dir)$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, ear	2	3	1	`o´	byte $(A) \leftarrow (A) - (ear)$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow (A) - (eam)$	Ζ	_	_	_	_	*	*	*	*	_
SUB	ear, A	2	3	2	O	byte (ear) ← (ear) – (A)	_	_	_	_	_	*	*	*	*	_
SUB	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	*
SUBC	A	1	2	0	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C)	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, ear	2	3	1	0	byte $(A) \leftarrow (A) - (ear) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $-$ (eam) $-$ (C)	Ζ	_	_	l _	_	*	*	*	*	_
SUBDC		1	3	0	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
ADDW	Α	1	2	0	0	word (A) \leftarrow (AH) + (AL)	-	_	_	_	_	*	*	*	*	_
ADDW	A, ear	2	3	1	0	word (A) \leftarrow (A) +(ear)	_	_	—	—	_	*	*	*	*	_
ADDW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) +(eam)	_	_	—	—	_	*	*	*	*	_
ADDW	A, #imm16	3	2	0	0	word $(A) \leftarrow (A) + imm16$	_	_	—	—	_	*	*	*	*	_
ADDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADDW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) ← (eam) + (A)	_	_	_	_	_	*	*	*	*	*
ADDCW	/A, ear	2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	_	_	_	*	*	*	*	_
ADDCW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	_	_	_	_	_	*	*	*	*	_
SUBW	Α	1	2	0	Ô	word $(A) \leftarrow (AH) - (AL)$	_	_	_	_	_	*	*	*	*	_
SUBW	A, ear	2	3	1	0	word $(A) \leftarrow (A) - (ear)$	_	_	_	_	_	*	*	*	*	_
SUBW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam)	_	_	_	_	_	*	*	*	*	_
SUBW	A, #imm16	3	2 ′	0	`o´	word $(A) \leftarrow (A) - imm16$	_	_	l —	l —	_	*	*	*	*	_
SUBW	ear, A	2	3	2	0	word (ear) ← (ear) – (A)	_	_	l —	l —	_	*	*	*	*	_
SUBW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) ← (eam) – (A)	_	_	_	_	_	*	*	*	*	*
SUBCW		2	3	1	0	word (A) \leftarrow (A) $-$ (ear) $-$ (C)	_	_	_	_	_	*	*	*	*	_
SUBCW		2+	4+ (a)	0	(c)	word $(A) \leftarrow (A) - (eam) - (C)$	_	-	_	_	_	*	*	*	*	_
ADDL	A, ear	2	6	2	0	$long (A) \leftarrow (A) + (ear)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) + (eam)$	_	_	_	_	_	*	*	*	*	_
ADDL	A, #imm32	5	4 ′	0	`o´	$long(A) \leftarrow (A) + lmm32$	_	_	_	_	_	*	*	*	*	_
SUBL	A, ear	2	6	2	0	$long(A) \leftarrow (A) - (ear)$	_	_	_	_	_	*	*	*	*	_
SUBL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) - (eam)$	_	_	_	_	_	*	*	*	*	_
SUBL	A, #imm32	5	4 ′	0	`o´	$long(A) \leftarrow (A) - lmm32$	_	-	_	–	-	*	*	*	*	_

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1		_	_		-	*	*	*	-	- *
DEC DEC	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow (ear) -1 byte (eam) \leftarrow (eam) -1	 - 	_ _	_ _	_ _	_ _	*	*	*	_ _	_ *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	_	_		_	*	*	*		- *
DECW DECW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) -1 word (eam) \leftarrow (eam) -1	 -	_ _	_ _	<u>-</u>	_	*	*	*	_ _	- *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_	_	_	_	_	*	*	*	_ _	- *
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) -1 long (eam) ← (eam) -1	_ _	_ _	_ _	_ _	_ _	*	*	*	_ _	- *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
CMP	Α	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2 ′	0	Ò	byte (A) ← imm8	_	_	_	_	_	*	*	*	*	_
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2	0	0	word $(A) \leftarrow imm16$	_	_	_	_	_	*	*	*	*	_
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) \leftarrow (eam)	_	_	-	_	-	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	_	_	_	_	_	*	*	*	*	_

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
DIVU	Α	1	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	-	-	1	-	1	ı	1	*	*	-
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	_	-	-	_	-	-	*	*	_
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	_	-	-	-	-	-	*	*	_
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	-	_	-	-	-	-	-	*	*	_
DIVUW	A, eam	2+	*5	0	*7	$\begin{array}{l} \text{long (A)/word (eam)} \\ \text{Quotient} \rightarrow \text{word (A) Remainder} \rightarrow \text{word (eam)} \end{array}$	-	_	1	-	_	1	1	*	*	_
MULU	Α	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) → word (A)	_	_	-	_	-	-	_	_	_	_
MULUW	Α	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) → long (A)	_	_	-	-	-	_	-	-	_	_

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
DIV	A	2	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	Z	Ι	-	ı	-	-	Ι	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient → byte (A) Remainder → byte (ear)	Z	-	-	-	-	-	-	*	*	_
DIV	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient → byte (A) Remainder → byte (eam)	Z	-	1	1	1	_	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	_	_	ı	1	ı	_	_	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient → word (A) Remainder → word (eam)	_	ı	1	1	1	_	ı	*	*	_
MULU	Α	2 2	*8 *9	0	0	byte (AH) *byte (AL) → word (A)	_	_	-	-	-	_	_	_	_	_
MULU MULU	A, ear A, eam	2+	*10	0	0 (b)	byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A)	_		_	_	_		_			
MULUW		2	*11	ő	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2	*12	1	Ö	word (A) *word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word $(eam) \rightarrow long(A)$	_	_	_	_	_	_	_	_	_	_

- *1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
- *2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
- *3: Set to 4 + (a) when the division-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.
- *4: Positive dividend: Set to 4 when the division-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
- *5: Positive dividend: Set to 4 + (a) when the division-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation.

Negative dividend: Set to 4 + (a) when the division-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal operation.

- *6: When the division-by-0, (b) for an overflow, and $2 \times$ (b) for normal operation.
- *7: When the division-by-0, (c) for an overflow, and $2 \times (c)$ for normal operation.
- *8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10: Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13: Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
- Notes: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.
 - · When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
 - For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _	_ _ _ _		- - - -	_ _ _ _	* * * * *	* * * * * *	RRRRR		- - - *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+ 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	_ _ _ _	_ _ _ _		_ _ _ _	_ _ _ _	* * * * *	* * * * *	R R R R R		- - - - *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	- - - -	_ _ _ _		_ _ _ _	- - - -	* * * * *	* * * * *	R R R R R		- - - - *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	_ _ _	_ _ _	- - -	_ _ _	_ _ _	* *	* *	R R R	- - -	_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -	- - - -	11111	- - - -	- - - -	* * * * *	* * * * * *	RRRRRR	_ _ _ _	_ _ _ _ *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -	- - - -		- - - -	_ _ _ _	* * * * *	* * * * * *	RRRRR	_ _ _ _	- - - - *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -	- - - -		- - - -	_ _ _ _	* * * * *	* * * * * *	RRRRRR	_ _ _ _ _	- - - - *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	_ _ _	- - -	_ _ _	_ _ _	* *	* * *	R R R	_ _ _	_ _ *

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
ANDL A, ear ANDL A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	-				-	*	*	R R	_	_
ORL A, ear ORL A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_	_	_ _	_ _	_	*	*	R R	_	_ _
XORL A, ea XORL A, eam	2 2+	6 7+ (a)	2	0 (d)	$\begin{array}{l} \text{long (A)} \leftarrow \text{(A) xor (ear)} \\ \text{long (A)} \leftarrow \text{(A) xor (eam)} \end{array}$	_ _				_ _	*	*	R R	_	_ _

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	-	_	ı	*	*	*	*	_
NEG NEG	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	- -	-	- -	-	*	*	*	*	<u>-</u>
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	_	_	_	-	_	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	1 1	1 1	1 1	1 1	*	*	*	*	<u>-</u> *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
NRML A, R0	2	*1	1	0	long (A) ← Shift until first digit is "1" byte (R0) ← Current shift count	_	-	-	1	-	1	*	-	-	_

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	z	٧	С	RMW
RORC A	2	2	0	0	byte (A) ← Right rotation with carry	_	-	-	1	-	*	*	-	*	_
ROLC A	2	2	0	0	byte (A) ← Left rotation with carry	-	_	_	_	-	*	*	_	*	_
RORC ear	2	3	2	0	byte (ear) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	_
RORC eam	2+	5+ (a)	0	2× (b)	byte (eam) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	*
ROLC ear	2	3	2	0	byte (ear) ← Left rotation with carry	_	_	_	_	_	*	*	_	*	_
ROLC eam	2+	5+ (a)	0	2× (b)	byte (eam) ← Left rotation with carry	-	_	_	-	-	*	*	_	*	*
ASR A, R0	2	*1	1	0	byte (A) ← Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSR A, R0	2	*1	1	0	byte (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSL A, R0	2	*1	1	0	byte (A) ← Logical left barrel shift (A, R0)	-	_	_	-	-	*	*	_	*	_
ASRW A	1	2	0	0	word (A) ← Arithmetic right shift (A, 1 bit)	_	_	_	_	*	*	*	_	*	_
LSRW A/SHRW A	1	2	0	0	word (A) ← Logical right shift (A, 1 bit)	_	_	_	_	*	R	*	_	*	_
LSLW A/SHLW A	1	2	0	0	word (A) ← Logical left shift (A, 1 bit)	_	_	_	-	-	*	*	_	*	_
ASRW A, R0	2	*1	1	0	word (A) ← Arithmetic right barrel shift (A,	_	_	_	_	*	*	*	_	*	_
LSRW A, R0	2	*1	1	0	R0)	_	_	_	_	*	*	*	_	*	_
LSLW A, R0	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, R0)	_	_	_	_	_	*	*	_	*	_
					word (A) ← Logical left barrel shift (A, R0)										
ASRL A, R0	2	*2	1	0	long (A) ← Arithmetic right shift (A, R0)	_	_	_	_	*	*	*	-	*	_
LSRL A, R0	2	*2	1	0	long (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	-	*	_
LSLL A, R0	2	*2	1	0	long (A) ← Logical left barrel shift (A, R0)	_	-	-	_	_	*	*	-	*	_

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 19 Branch 1 Instructions [31 Instructions]

	monic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
BZ/BEQ	rel	2	*1	0	0	Branch when (Z) = 1	_	-	_	_	_	_	-	_	_	_
BNZ/BN	E rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLO		2	*1	0	0	Branch when $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BH	IS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP i	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV i	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV i	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT i	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT i	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE i	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 1$	_	_	_	_	_	_	_	_	_	_
BGT i	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	_	_	_	_	_
BLS i	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
	rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BRA i	rel	2	*1	0	0	Branch unconditionally	_	_	_	_	_	_	_	_	_	-
JMP	@A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_		_	_	_
	addr16	3	3	0	Ö	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
	@ear	2	3	1	0	word (PC) \leftarrow (ear)	_	_	_	_	_	_	_	_	_	_
	@eam	2+	4+ (a)	0	(c)	word (PC) \leftarrow (ean)	_	_	_	_	_	_	_	_	_	_
-	@ear *3	2	5 5	2	0	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
	@eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
	addr24	4	4	0	0	word (PC) \leftarrow ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
Joivii 1	addizə	•	· ·	J	Ü	$(PCB) \leftarrow ad24 \ 16 \ to \ 23$										
CALL	@ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
	@eam *4	2+	7+ (a)	0	2× (c)	word (PC) \leftarrow (eam)	_	_	_	_	_	_	_	_	_	_
	addr16 *5	3	6	0	(c) ´	word (PC) ← àddr16	_	_	_	_	_	_	_	_	_	_
	#vct4 *5	1	7	0	2× (c)	Vector call instruction	_	_	_	_	_	_	_	_	_	_
CALLP		2	10	2	2× (c)	word (PC) \leftarrow (ear) 0 to 15,	_	_	_	_	_	_	_	_	_	_
3, 122	Jour				` '	(PCB) ← (ear) 16 to 23										
CALLP	@eam *6	2+	11+ (a)	0	*2	word (PC) \leftarrow (eam) 0 to 15,	_	_	_	_	_	_	_	_	_	_
			`			(PCB) ← (eam) 16 to 23										
CALLP	addr24 *7	4	10	0	2× (c)	word (PC) \leftarrow addr0 to 15,	_	_	_	_	_	_	_	_	_	_
					. ,	(PCB) ← addr16 to 23										

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 20 Branch 2 Instructions [19 Instructions]

r	Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	z	٧	С	RMW
CBNE	A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠ imm8	_	_	_	-	_	*	*	*	*	_
CWBNE	A, #imm16, rel	4	*1	0	0	Branch when word (A) ≠ imm16	_	_	_	-	-	*	*	*	*	-
CBNE	ear, #imm8, rel	4	*2	1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE	eam, #imm8, rel*10	4+	*3	0	(b)	Branch when byte (eam) ≠ imm8	_	 	_	_	_	*	*	*	*	_
CWBNE	ear, #imm16, rel	5	*4	1	0	Branch when word (ear) ≠ imm16	_	 	_	_	_	*	*	*	*	_
CWBNE	eam, #imm16, rel*10	5+	*3	0	(c)	Branch when word (eam) ≠ imm16	_	_	_	-	_	*	*	*	*	-
DBNZ	ear, rel	3	*5	2	0	Branch when byte (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	_	_	*	*	*	_	_
DBNZ	eam, rel	3+	*6	2	2× (b)	Branch when byte (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	-	-	_	*	*	*	_	*
DWBNZ	ear, rel	3	*5	2	0	Branch when word (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	-	_	*	*	*	_	_
DWBNZ	eam, rel	3+	*6	2	2× (c)	Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	_	-	_	*	*	*	_	*
INT	#vct8	2	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT	addr16	3	16	0	6× (c)	Software interrupt	_	l —	R	SSSS	_	_	_	_	_	_
INTP	addr24	4	17	0	6× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT9		1	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
RETI		1	15	0	*7	Return from interrupt	_	_	*	*	*	*	*	*	*	-
LINK	#imm8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	_	_	_	_	_	_	-	ı	_	-
UNLINK		1	5	0	(c)	allocate local pointer area At constant entry, retrieve old frame pointer from stack.	_	_	_	_	_	_	-	_	_	_
RET *8 RETP *9)	1 1	4 6	0	(c) (d)	Return from subroutine Return from subroutine	_ _	_ _	_ _	_ _	_ _	_ _	<u> </u>		<u>-</u>	_ _

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Set to $3 \times$ (b) + $2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.

^{*8:} Retrieve (word) from stack

^{*9:} Retrieve (long word) from stack

^{*10:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 21 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rist	1 1 1 2	4 4 4 *3	0 0 0 *5	(c) (c) (c) *4	$\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ & (\text{SP}) \leftarrow (\text{SP}) - 2\text{n}, ((\text{SP})) \leftarrow (\text{rlst}) \end{aligned}$	_ _ _		1 1 1 1	1 1 1 1	1 1 1 1	_ _ _ _	1 1 1 1	_ _ _	_ _ _	- - -
POPW A POPW AH POPW PS POPW rist	1 1 1 2	3 3 4 *2	0 0 0 *5	(C) (C) (C) *4	$\begin{aligned} &\text{word (A)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ &\text{word (AH)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ &\text{word (PS)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ &\text{(rlst)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2n \end{aligned}$	- - -	*	*	*	- - * -	- * -	*	- * -	- * -	- - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	-
AND CCR, #imm8 OR CCR, #imm8	2 2	3 3	0	0	byte (CCR) ← (CCR) and imm8 byte (CCR) ← (CCR) or imm8	-	_	*	*	*	*	*	*	*	<u> </u>
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	-	_	_	- 1	_	-	1 1	- 1	1 1	- -
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	_ _ _ _	- * *	1 1 1 1	1 1 1 1	1 1 1 1	_ _ _ _	1 1 1 1			- - -
ADDSP #imm8 ADDSP #imm16	2	3 3	0 0	0 0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16	_ _	-	-	1 1		_ _	1 1			- -
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	1 1	1 1	1 1	*	*			- -
NOP ADB DTB PCB SPB NCC	1 1 1 1 1	1 1 1 1 1	0 0 0 0 0	0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change			1 1 1 1 1	1 1 1 1 1	1 1 1 1 1		1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	
CMR	1	1	0	0	Prefix code for common register bank	-	_	_	_	_	-	-	-	-	_

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 +3} \times (push count) – 3 \times (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
MOVB A, dir:bp MOVB A, addr16:bp MOVB A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *		1 1 1	1 1 1	* *	* *	1 1 1	_ _ _	- - -
MOVB dir:bp, A MOVB addr16:bp, A MOVB io:bp, A	3 4 3	7 7 6	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	- -	1 1 1	- - -	1 1 1	1 1 1	* *	* *	1 1 1	- -	* * *
SETB dir:bp SETB addr16:bp SETB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	<u> </u>	1 1 1		1 1 1	1 1 1		<u> </u>	1 1 1	_ _ _	* *
CLRB dir:bp CLRB addr16:bp CLRB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ 	1 1 1		1 1 1	1 1 1			1 1 1	- -	* *
BBC dir:bp, rel BBC addr16:bp, rel BBC io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	_ _ _	1 1 1	I I	1 1 1	1 1 1		* *	1 1 1	_ _ _	- - -
BBS dir:bp, rel BBS addr16:bp, rel BBS io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	_ _ _	1 1 1	I I	1 1 1	1 1 1		* *	1 1 1	_ 	- - -
SBBS addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	_	_	-	-	*	_	_	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	_
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	-	_	-	_	_	_	_	_	_	_

^{*1: 8} when branching, 7 when not branching

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	?	RG	В	Operation	H	АН	-	s	Т	N	z	٧	C	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	-	-	_	-	-	-	-	1	_	_
SWAPW/XCHW A,T	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Х	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Χ	_	_	_	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	_	Z	-	_	_	R	*	_	-	_

^{*2: 7} when branching, 6 when not branching

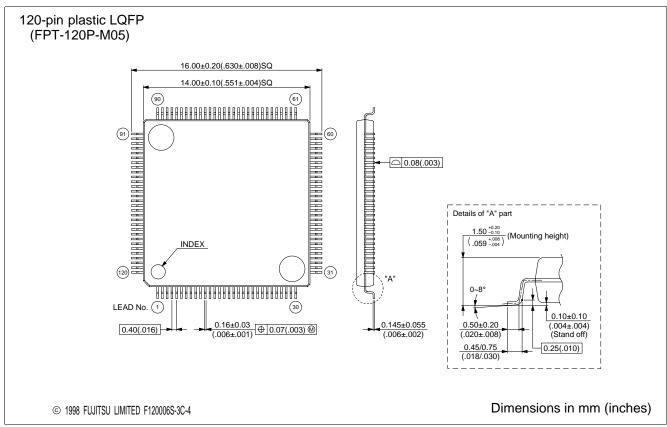
^{*3: 10} when condition is satisfied, 9 when not satisfied

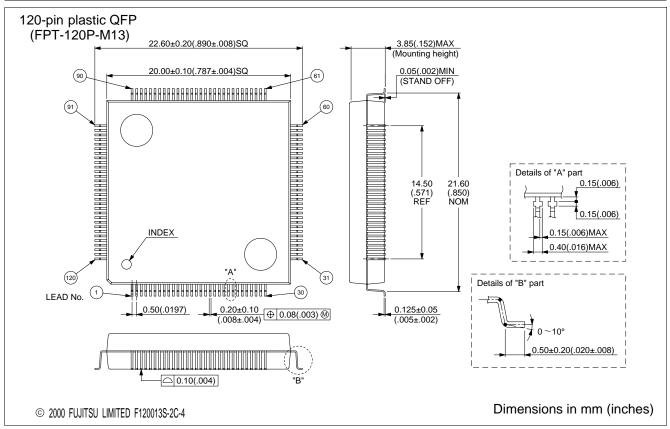
^{*4:} Undefined count

^{*5:} Until condition is satisfied

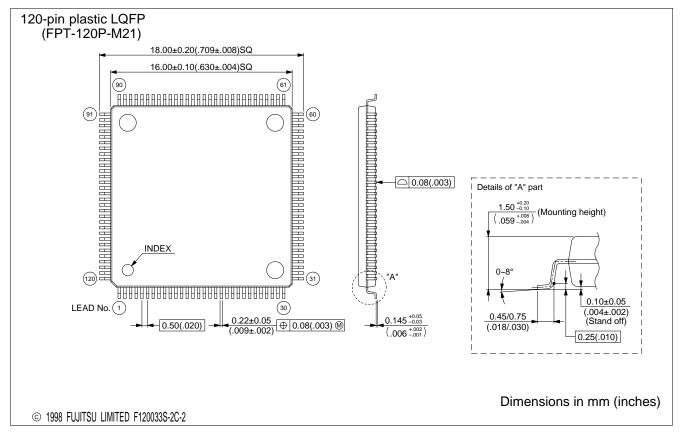
Table 24 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	_		_	_	_	_	_	_	_	_
MOVSD	2	*2	*5	*3	Byte transfer @AH $-\leftarrow$ @AL $-$, counter = RW0	_	-	-	-	-	_	-	-	-	_
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH–) – AL, counter = RW0	_	-	-	_	-	*	*	*	*	_
FISL/FILSI	2	6m +6	*5	*3	Byte filling $@AH+ \leftarrow AL$, counter = RW0	_	-	_	_	_	*	*	_	-	_
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter = RW0	_	-	1	1	1	1	-	1	-	_
MOVSWD	2	*2	*8	*6	Word transfer $@AH-\leftarrow @AL-$, counter = RW0	_	-	-	_	_	_	-	-	_	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH–) – AL, counter = RW0	_	-	_	_	-	*	*	*	*	_
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ \leftarrow AL, counter = RW0	_	_	_	-	-	*	*	_	-	_


m: RW0 value (counter value)


- n: Loop count
- *1: 5 when RW0 is 0, 4 + 7 × (RW0) for count out, and $7 \times n + 5$ when match occurs
- *2: 5 when RW0 is 0, $4 + 8 \times (RW0)$ in any other case
- *3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
- *4: (b) \times n
- *5: 2 × (RW0)
- *6: (c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.
- *7: (c) \times n
- *8: 2 × (RW0)

■ ORDERING INFORMATION


Part number	Package	Remarks
MB90573PFF MB90574PFF MB90574BPFF MB90F574PFF MB90F574APFF	120-pin Plastic LQFP (FPT-120P-M05)	
MB90573PFV MB90574PFV MB90574BPFV MB90F574PFV MB90F574APFV	120-pin Plastic QFP (FPT-120P-M13)	
MB90574BPMT MB90F574PMT MB90F574APMT	120-pin Plastic LQFP (FPT-120P-M21)	

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan

Tel: +81-44-754-3763 Fax: +81-44-754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0007

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.