DS07-13703-1E

16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90540/545 Series

MB90543/F543/549/F549/V540

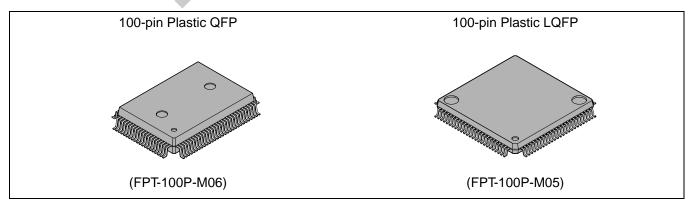
■ DESCRIPTION

The MB90540/545 series with FULL-CAN and FLASH ROM is specially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces (one for MB90V545 series), which conform to V2.0 Part A and Part B, supporting very flexible message buffering. Thus, offering more functions than a normal full CAN approach. In the new 0.5μm Technology Fujitsu now also offer FLASH-ROM. An internal voltage booster substitutes the necessity of a second programming voltage.

An on board voltage regulator provides 3V to the internal MCU core. This constitutes a major advantage in terms of EMI and power consumption.

The internal PLL clock frequency multiplier, provides an internal 62.5 nsec instruction cycle time with an external 4 MHz clock.

Further more it features 4 channels Output Capture Units and 8 channels Input Capture Units with a 16-bit free running timer. Two UARTs constitute additional functionality for communication purposes.


The external bus interface allows full use to be made of the 16MByte address space.

■ FEATURES

- 16-bit core CPU: 4MHz external clock (16 MHz internal, 62.5 nsec instr. cycle time)
- 32 kHz Subsystem Clock
- New 0.5 μm CMOS Process Technology
- Internal voltage regulator supports 3V MCU core, offering low EMI and low power consumption figures
- FULL-CAN interfaces (MB90540 series : 2 interf., MB90545 series : 1 interf.); conform to Version 2.0 Part A and Part B, flexible message buffering (mailbox and FIFO buffering can be mixed)

(Continued)

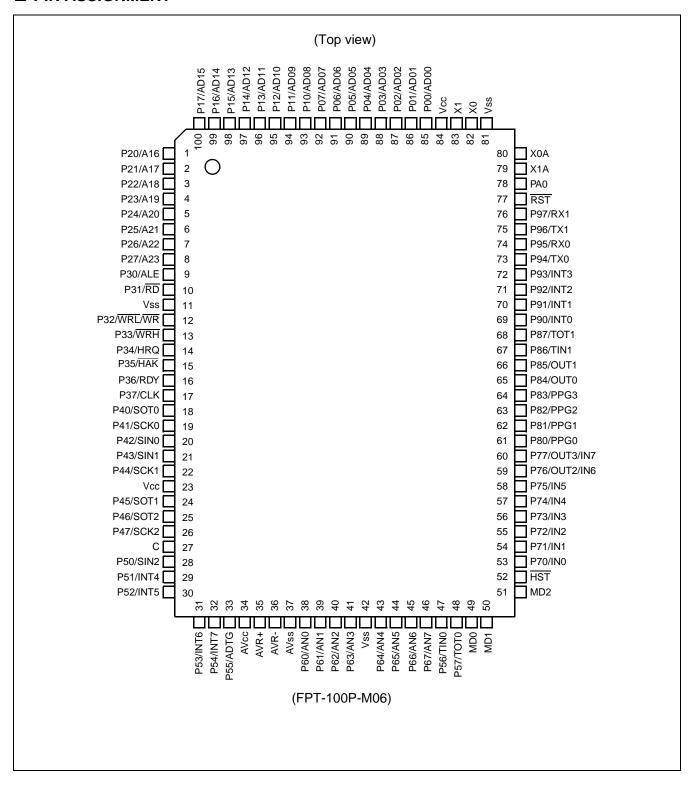
■ PACKAGE

(Continued)

- Powerful interrupt functions (8 progr. priority levels; 8 external interrupts)
- El²OS Automatic transfer function indep.of CPU
- 18-bit Time-base counter
- Watchdog Timer
- 2 full duplex UARTs; UART0 supports 10.4 KBaud (USA standard), UART 1 also for serial transfer with clock (SCI) programmable
- Serial I/O: 1ch for synchronous data transfer
- A/D Converter: 8 ch. analog inputs (Resolution 10 bits or 8 bits)
- 16-bit reload timer * 2ch
- ICU (Input capture) 16bit * 8 ch
- OCU (Output capture) 16bit * 4ch
- 16-bit Programmable Pulse Generator 4ch
- · External bus interface
- Optimized instruction set for controller applications (bit, byte, word and long-word data types; 23 different addressing modes; barrel shift; variety of pointers)
- 4-byte instruction execution queue
- signed multiply (16bit*16bit) and divide (32bit/16bit) instructions available
- Program Patch Function
- · Fast Interrupt processing
- Low Power Consumption 10 different power saving modes: (Sleep, Stop, CPU intermittent mode, Hardware standby,...)
- Package: 100-pin plastic QFP

Controller Area Network (CAN) - License of Robert Bosch GmbH

■ PRODUCT LINEUP


The following table provides a quick outlook of the MB90540/545 Series

Features	MB90V540	MB90F543/F549	MB90543/549			
CPU	F ² MC-16LX CPU					
System clock	On-chip PLL clock multiplier (\times 1, \times 2, \times 3, \times 4, 1/2 when PLL stop) Minimum instruction execution time: 62.5 ns (4 MHz osc. PLL \times 4)					
ROM	External	Boot-block Flash memory 128 K/256 Kbytes	Mask ROM 128 K/256 Kbytes			
RAM	8 Kbytes	6 Kbytes	6 Kbytes			
Technology	0.5 μm CMOS with on- chip voltage regulator for internal power supply	0.5 μm CMOS with on-chip voltage regulator for internal power supply + Flash memory On-chip charge pump for programming voltage	0.5 μm CMOS with on-chip voltage regulator for internal power supply			
Operating voltage range		5 V±10 %				
Temperature range		– 40 to 85 °C				
Package	PGA-256	QFP	100			
UART0	Full duplex double buffer Supports asynchronous/synchronous (with start/stop bit) transfer Baud rate: 4808/5208/9615/10417/19230/38460/62500/500000 bps (asynchronous) 500K/1M/2Mbps (synchronous) at System clock = 16 MHz					
UART1(SCI)	Asynchronous (start-stop Baud rate: 1202/2404/4	Full duplex double buffer Asynchronous (start-stop synchronized) and CLK-synchronous communication Baud rate: 1202/2404/4808/9615/31250 bps (asynchronous) 62.5K/12K/250K/500K/1 Mbps (synchronous) at 6,8,10,12,16 MHz				
Serial IO	Transfer can be started from MSB or LSB Supports internal clock synchronized transfer and external clock synchronized transfer Supports positive-edge and negative-edge clock synchronization Baud rate: 31.25K/62.5K/125K/500K/1Mbps at System clock = 16MHz					
A/D Converter	10-bit or 8-bit resolution 8 input channels Conversion time: 26.3 μs (per one channel)					
16-bit Reload Timer (2 channels)	Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = System clock frequency) Supports External Event Count function					
16-bit IO Timer	Signals an interrupt when overflow Supports Timer Clear when a match with Output Compare(Channel 0) Operation clock freq.: fsys/2², fsys/2⁴, fsys/2⁶, fsys/2⁶ (fsys = System clock freq.)					
16-bit Output Compare (4 channels)	Signals an interrupt when a match with 16-bit IO Timer Four 16-bit compare registers A pair of compare registers can be used to generate an output signal					

Features	MB90V540	MB90F543/F549	MB90543/549			
16-bit Input Capture (8 channels)	Rising edge, falling edge or rising & falling edge sensitive Four 16-bit Capture registers Signals an interrupt upon external event					
8/16-bit Programmable Pulse Generator (4 channels)	Supports 8-bit and 16-bit operation modes Eight 8-bit reload counters Eight 8-bit reload registers for L pulse width Eight 8-bit reload registers for H pulse width A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler plus 8-bit reload counter 4 output pins Operation clock freq.: fsys, fsys/2¹, fsys/2², fsys/2³, fsys/2⁴ or 128µs@fosc=4MHz (fsys = System clock frequency, fosc = Oscillation clock frequency)					
CAN Interface 540 series: 2 channels 545 series: 1 channel	Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps					
32 kHz Subclock	Sub-clock for low power	operation				
External Interrupt (8 channels)	Can be programmed edg	ge sensitive or level sensitive				
IO Ports	All push-pull outputs and	can be used as general purpose IO schmitt trigger inputs is input/output or peripheral signal				
Flash Memory		Supports automatic programming, Embedded Algorithm TM *1 Write/Erase/Erase-Suspend/ Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10,000 times Data retention time: 10 years Flash Writer from Minato Electronics Inc. Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Security Feature: protects the content of the Flash memory				

^{*1:} Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

No.	Pin name	Circuit type	Function		
82 83	X0 X1	A (Oscillation)	High speed oscillator input pins		
80 79	X0A X1A	A (Oscillation)	Low speed oscillator input pins		
77	RST	В	External reset request input		
52	HST	С	Hardware standby input		
85 to 92	P00 to P07	ı	General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
00 10 92	AD00 to AD07	'	I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.		
93 to 100	P10 to P17	ı	General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
93 10 100	AD08 to AD15	ı	I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.		
1 to 8	P20 to P27	Н	General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
1 10 6	A16 to A23	П	Output pins for A16 to A23 of the external address bus. This function is enabled when the external bus is enabled.		
9	P30	ı	General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
9	ALE	ı	Address latch enable output pin. This function is enabled when the external bus is enabled.		
10	P31	ı	General I/O port with programmable pullup. This function is enabled in the single-chip mode.		
10	RD	, I	Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.		
	P32		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the WR/WRL pin output is disabled.		
40	WRL	ı	Write strobe output pin for the data bus. This function is enabled		
12	WR	ı	when both the external bus and the WR/WRL pin output are enabled. WRL is used to write-strobe 8 lower bits of the data bus in 16-bit access while WR is used to write-strobe 8 bits of the data bus in 8-bit access.		
	P33	-	General I/O port with programmable pullup. This function is enabled in the single-chip mode or external bus 8-bit mode or when \overline{WRH} pin output is disabled.		
13	WRH		Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mode is selected, and when the WRH output pin is enabled.		

No.	Pin name	Circuit type	Function		
14	P34		General I/O port with programmable pullup. This function is enabled in the single-chip mode or when hold function is disabled.		
14	HRQ		Hold request input pin. This function is enabled when both the external bus and the hold function are enabled.		
15	P35	1	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when hold function is disabled.		
15	HAK		Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled.		
16	P36	ı	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the external ready function is disabled.		
	RDY		Ready input pin. This function is enabled when both the external bus and the external ready function are enabled.		
17	P37	Н	General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the clock output is disabled.		
17	CLK] ''	CLK output pin. This function is enabled when both the external bus and CLK output are enabled.		
18	P40	G	General I/O port. This function is enabled when UART0 disables serial data output.		
10	SOT0		Serial data output pin for UART0. This function is enabled when UART0 enables serial data output.		
19	P41	G	General I/O port. This function is enabled when UART0 disables clock output.		
19	SCK0		Clock I/O pin for UART0. This function is enabled when UART0 enables clock output.		
	P42		General I/O port. This function is always enabled.		
20	SIN0	G	Serial data input pin for UART0. While UART0 is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.		
	P43		General I/O port. This function is always enabled.		
21	SIN1	G	Serial data input pin for UART1. While UART1 is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.		
22	P44	G	General I/O port. This function is enabled when UART1 disables clock output.		
	SCK1		Clock pulse input/output pin for UART1. This function is enabled when UART1 enables clock output.		
24	P45	G	General I/O port. This function is enabled when UART1 disables serial data output.		
24	SOT1		Serial data output pin for UART1. This function is enabled when UART1 enables serial data output.		

No.	Pin name	Circuit type	Function
25	P46	G	General I/O port. This function is enabled when the Serial IO disables serial data output.
25	SOT2	G	Serial data output pin for the Serial IO. This function is enabled when the Serial IO enables serial data output.
26	P47	G	General I/O port. This function is enabled when the Serial IO disables clock output.
20	SCK2	G	Clock pulse input/output pin for the Serial IO. This function is enabled when the Serial IO enables clock output.
	P50		General I/O port. This function is always enabled.
28	SIN2	D	Serial data input pin for the Serial IO. While the Serial IO is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
	P51 to P54		General I/O port. This function is always enabled.
29 to 32	INT4 to INT7	D	External interrupt request input pins for INT4 to INT7. While external interrupt is allowed, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
	P55		General I/O port. This function is always enabled.
33	ADTG	D	Trigger input pin for the A/D converter. While the A/D converter is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
38 to 41	P60 to P63	E	General I/O port. The function is enabled when the analog input enable register specifies port.
36 (0 41	AN0 to AN3	_	Analog input pins for the A/D converter. This function is enabled when the analog input enable register specifies AD.
43 to 46	P64 to P67	E	General I/O port. The function is enabled when the analog input enable register specifies port.
43 10 40	AN4 to AN7		Analog input pins for the A/D converter. This function is enabled when the analog input enable register specifies AD.
	P56		General I/O port. This function is always enabled.
47	TIN0	D	Event input pin for the reload timers 0. While the reload timer is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
48	P57	D	General I/O port. This function is enabled when the reload timers 0 disables output.
40	ТОТ0	D	Output pin for the reload timers 0. This function is enabled when the reload timers 0 enables output.

No.	Pin name	Circuit type	Function
	P70 to P75		General I/O ports. This function is always enabled.
53 to 58	IN0 to IN5	D	Data sample input pins for input captures ICU0 to ICU5. While the ICU is for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
	P76 to P77		General I/O ports. This function is enabled when the OCU disables waveform output.
59 to 60	OUT2 to OUT3	D	Waveform output pins for output compares OCU2 and OCU3. This function is enabled when the OCU enables waveform output.
	IN6 to IN7		Data sample input pin for input captures ICU6 and ICU7. While the ICU is for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
61 to 64	P80 to P83	D	General I/O ports. This function is enabled when PPG disables waveform output.
011004	PPG0 to PPG3	В	Output pins for PPGs. This function is enabled when PPG enables waveform output.
65 to 66	P84 to P85	D	General I/O ports. This function is enabled when the OCU disables waveform output.
03 10 00	OUT0 to OUT1	D	Waveform output pins for output compares OCU0 and OCU1. This function is enabled when the OCU enables waveform output.
	P86		General I/O port. This function is always enabled.
67	TIN1	D	Event input pin for the reload timers 1. While the reload timer is operating for input, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
68	P87	D	General I/O port. This function is enabled when the reload timers 0 disables output.
00	TOT1	В	Output pin for the reload timers 1 This function is enabled when the reload timers 1 enables output.
	P90 to P93		General I/O port. This function is always enabled.
69 to 72	INT0 to INT3	D	External interrupt request input pins for INT0 to INT3. While external interrupt is allowed, the input of the pin is used as required. Except when the function is intentionally used, output from the other functions must be stopped.
73	P94	D	General I/O port. This function is enabled when CAN0 disables output.
13	TX0	<i></i>	TX Output pin for CAN0. This function is enabled when CAN0 enables output.
	P95		General I/O port. This function is always enabled.
74	RX0	D	RX input pin for CAN0 Interface. When the CAN function is used, output from the other functions must be stopped.

No.	Pin name	Circuit type	Function		
75	P96		General I/O port. This function is enabled when CAN1 disables output.		
75	TX1	- D	TX Output pin for CAN1. This function is enabled when CAN1 enables output (only MB90540 series).		
	P97		General I/O port. This function is always enabled.		
76	RX1	D	RX input pin for CAN1 Interface. When the CAN function is used, output from the other functions must be stopped (only MB90540 series).		
78	PA0	D	General I/O port. This function is always enabled.		
34	AVCC	Power supply	Power supply for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVcc is applied to Vcc.		
37	AVSS	Power supply	Dedicated ground pin for the A/D Converter		
35	AVR+	Power supply	Reference voltage input for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVR+ is applied to AVcc.		
36	AVR-	Power supply	Lower reference voltage input for the A/D Converter		
49 50	MD0 MD1	С	Input pins for specifying the operating mode. The pins must be directly connected to Vcc or Vss.		
51	MD2	F	Input pin for specifying the operating mode. The pin must be directly connected to Vcc or Vss.		
27	С		This is the power supply stabilization capacitor pin. It should be connected externally to an 0.1 μF ceramic capacitor.		
23; 84	Vcc	Power supply	Power supply for digital circuits		
11; 42 81	Vss	Power supply	Ground for digital circuits		

■ I/O CIRCUIT TYPE

Circuit type	Diagram	Remarks
A	X1 X0 Standby control signal	Oscillation feedback resistor: 1 MΩ approx.
В	R HYS	Hysteresis input with pull-up Resistor: 50 kΩ approx.
С	R HYS	Hysteresis input
D	P-ch N-ch HYS	CMOS output Hysteresis input

Circuit type	Diagram	Remarks
E	Vcc P-ch N-ch Analog input HYS	CMOS output Hysteresis input Analog input
F	R HYS	 Hysteresis input Pull-down Resistor: 50 kΩ approx. (except FLASH devices)
G	P-ch N-ch R HYS R TTL	CMOS output Hysteresis input TTL input (FLASH devices only)

Circuit type	Diagram	Remarks
Н	Vcc CNTL Vcc P-ch N-ch HYS	 CMOS output Hysteresis input Programmable pullup resistor: 50 kΩ approx.
I	R HYS R TTL	 CMOS output Hysteresis input TTL input (FLASH devices only) Programmable pullup resistor: 50 kΩ approx.

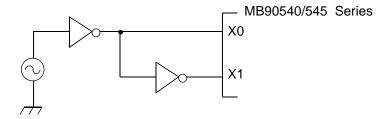
■ HANDLING DEVICES

(1) Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

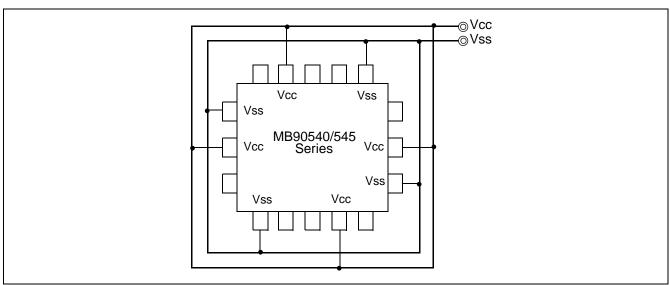
Latch-up may increase the power supply current drastically, causing thermal damage to the device.


(2) Handling unused input pins

Do not leave unused input pins open, as doing so may cause misoperation of the device. Use a pull-up or pull-down resistor.

(3) Using external clock

To use external clock, drive the X0 and X1 pins in reverse phase.


Below is a diagram of how to use external clock.

Using external clock

(4) Power supply pins (Vcc/Vss)

Ensure that all Vcc-level power supply pins are at the same potential. In addition, ensure the same for all Vss-level power supply pins. (See the figure below.) If there are more than one Vcc or Vss system, the device may operate incorrectly even within the guaranteed operating range.

(5) Pull-up/down resistors

The MB90540/545 Series does not support internal pull-up/down resistors (except Port0 - Port3:pull-up resistors). Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply(AVcc, AVR₊, AVR₋) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVR + or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVR + = Vss.

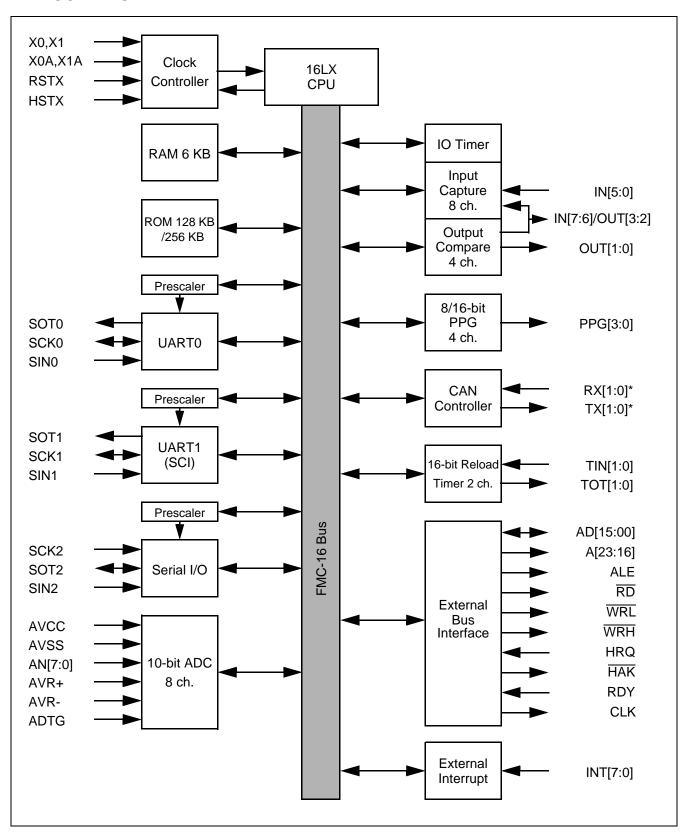
(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more ms (0.2 V to 2.7 V).

(11) Initialization


In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers turning on the power again.

(12) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00h".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are setting other than "00h", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

■ BLOCK DIAGRAM

■ MEMORY SPACE

The memory space of the MB90540/545 Series is shown below

	MB90V540		MB90543/F543		MB90549/F549
FFFFFF _H FF0000 _H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)	FFFFFFн FF0000н	ROM (FF bank)
FEFFFFH FE0000H	ROM (FE bank)	FEFFFFH FE0000H	ROM (FE bank)	FEFFFFн FE0000н	ROM (FE bank)
FDFFFF _H	ROM (FD bank)			FDFFFFн FD0000н	ROM (FD bank)
FCFFFFH FC0000H	ROM (FC bank)		External	FCFFFFH FC0000H	ROM (FC bank)
	External				External
00FFFFн 004000н	ROM (Image of FF bank)	00FFFFн 004000н	ROM (Image of FF bank)	00FFFFн 004000н	ROM (Image of FF bank)
003FFFн 003900н	Peripheral	003FFFн 003900н	Peripheral	003FFFн 003900н	Peripheral
	External	002000н	External	002000н	External
0020FFн 001FF5н 001FF0н	ROM correction	0018FFн		0018FFн	
	RAM 8K		RAM 6K		RAM 6K
000100н	External	000100н	External	000100н	External
0000BFн 000000н	Peripheral	0000BFн 000000н	Peripheral	0000BFн 000000н	Peripheral

Memory space map

The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.

The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00.

The image between FF4000_H and FFFFFH is visible in bank 00, while the image between FF0000_H and FF3FFFH is visible only in bank FF.

■ I/O MAP

Address	Register	Abbreviation	Access	Pripheral	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXXB
0Ан	Port A data register	PDRA	R/W	Port A	Хв
0Вн to 0Fн		Reserve	b		•
10н	Port 0 direction register	DDR0	R/W	Port 0	0 0 0 0 0 0 0 0 _B
11н	Port 1 direction register	DDR1	R/W	Port 1	0 0 0 0 0 0 0 0в
12н	Port 2 direction register	DDR2	R/W	Port 2	0 0 0 0 0 0 0 0в
13н	Port 3 direction register	DDR3	R/W	Port 3	0 0 0 0 0 0 0 0 _B
14н	Port 4 direction register	DDR4	R/W	Port 4	0 0 0 0 0 0 0 0 _B
15н	Port 5 direction register	DDR5	R/W	Port 5	0 0 0 0 0 0 0 0в
16н	Port 6 direction register	DDR6	R/W	Port 6	0 0 0 0 0 0 0 0 _B
17н	Port 7 direction register	DDR7	R/W	Port 7	0 0 0 0 0 0 0 0в
18н	Port 8 direction register	DDR8	R/W	Port 8	0 0 0 0 0 0 0 0в
19н	Port 9 direction register	DDR9	R/W	Port 9	0 0 0 0 0 0 0 0 _B
1Ан	Port A direction register	DDRA	R/W	Port A	Ов
1Вн	Analog Input Enable	ADER	R/W	Port 6, A/D	11111111
1Сн	Port 0 Pullup control register	PUCR0	R/W	Port 0	0 0 0 0 0 0 0 0в
1Dн	Port 1 Pullup control register	PUCR1	R/W	Port 1	0 0 0 0 0 0 0 0в
1Ен	Port 2 Pullup control register	PUCR2	R/W	Port 2	0 0 0 0 0 0 0 0 0
1Fн	Port 3 Pullup control register	PUCR3	R/W	Port 3	0 0 0 0 0 0 0 0 В
20н	Serial Mode Control Register 0	UMC0	R/W		0 0 0 0 0 1 0 0в
21н	Status Register 0	USR0	R/W		0 0 0 1 0 0 0 0в
22н	Input/Output Data Register 0	UIDR0/ UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0 0 0 0 0 0 0X _B

Address	Register	Abbreviation	Access	Peripheral	Initial value
24н	Serial Mode Register 1	SMR1	R/W		0 0 0 0 0 0 0 0в
25н	Serial Control Register 1	SCR1	R/W		0 0 0 0 0 1 0 0в
26н	Input/Output Data Register 1	SIDR1/ SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		0 0 0 0 1_0 0в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01 1 1 1в
29н	Edge Selector	SES1	R/W		Ов
2Ан		Reserved	d		
2Вн	Serial IO Prescaler	SCDCR	R/W		01 1 1 1в
2Сн	Serial Mode Control	SMCS	R/W		0000в
2Dн	Serial Mode Control	SMCS	R/W	Serial IO	0 0 0 0 0 0 1 0в
2Ен	Serial Data	SDR	R/W		XXXXXXXXB
2Fн	Edge Selector	SES2	R/W		Ов
30н	External Interrupt Enable	ENIR	R/W		0 0 0 0 0 0 0 0в
31н	External Interrupt Request	EIRR	R/W	External Interrupt	XXXXXXXXB
32н	External Interrupt Level	ELVR	R/W	- External Interrupt	0 0 0 0 0 0 0 0в
33н	External Interrupt Level	ELVR	R/W		0 0 0 0 0 0 0 0в
34н	A/D Control Status 0	ADCS0	R/W		0 0 0 0 0 0 0 0в
35н	A/D Control Status 1	ADCS1	R/W	A/D Converter	0 0 0 0 0 0 0 0в
36н	A/D Data 0	ADCR0	R	A/D Converter	XXXXXXXX
37н	A/D Data 1	ADCR1	R/W		0 0 0 0 1 _ XX _B
38н	PPG0 operation mode control register	PPGC0	R/W	16-bit Programable	0_0001в
39н	PPG1 operation mode control register	PPGC1	R/W	Pulse	0_00001в
3Ан	PPG0 and PPG1 clock select register	PPG01	R/W	Generator 0/1	000000в
3Вн		Reserved	d		
3Сн	PPG2 operation mode control register	PPGC2	R/W	16-bit Programable	0_0001в
3Dн	PPG3 operation mode control register	PPGC3	R/W	Pulse	0_00001в
3Ен	PPG2 and PPG3 clock select register	PPG23	R/W	Generator 2/3	000000в
3Fн		Reserved	d		
40н	PPG4 operation mode control register	PPGC4	R/W	16-bit Programable	0_0001в
41н	PPG5 operation mode control register	PPGC5	R/W	Pulse	0_00001в
42н	PPG4 and PPG5 clock select register	PPG45	R/W	Generator 4/5	000000в
43н		Reserved	b		
44н	PPG6 operation mode control register	PPGC6	R/W	16-bit Programable	0_0001в
45н	PPG7 operation mode control register	PPGC7	R/W	Pulse	0_00001в
46н	PPG6 and PPG7 clock select register	PPG67	R/W	Generator 6/7	00000в

Address	Register	Abbreviation	Access	Peripheral	Initial value		
47н to 4Вн		Reserved	ed .				
4Сн	Input Capture Control Status 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0в		
4Dн	Input Capture Control Status 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0в		
4 Ен	Input Capture Control Status 4/5	ICS45	R/W	Input Capture 4/5	0 0 0 0 0 0 0 0в		
4 Fн	Input Capture Control Status 6/7	ICS67	R/W	Input Capture 6/7	0 0 0 0 0 0 0 0в		
50н	Timer Control Status 0	TMCSR0	R/W		0 0 0 0 0 0 0 0в		
51н	Timer Control Status 0	TMCSR0	R/W		0000в		
52н	Timer 0/Reload 0	TMR0/ TMRLR0	R/W	16-bit Reload Timer 0	XXXXXXXX		
53н	Timer 0/Reload 0	TMR0/ TMRLR0	R/W		XXXXXXXX		
54 н	Timer Control Status 1	TMCSR1	R/W		0 0 0 0 0 0 0 0в		
55н	Timer Control Status 1	TMCSR1	R/W		0000в		
56н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W	16-bit Reload Timer 1	XXXXXXXX		
57н	Timer 1/Reload 1	TMR1/ TMRLR1	R/W		XXXXXXXX		
58н	Output Compare Control Status 0	OCS0	R/W	Output Compare	0 0 0 0 0 Ов		
59н	Output Compare Control Status 1	OCS1	R/W	0/1	00000		
5Ан	Output Compare Control Status 2	OCS2	R/W	Output Compare	0 0 0 0 0 Ов		
5Вн	Output Compare Control Status 3	OCS3	R/W	2/3	00000		
5Cн to 6Вн		Reserved	k				
6Сн	Timer Data	TCDT	R/W		0 0 0 0 0 0 0 0в		
6Dн	Timer Data	TCDT	R/W	I/O Timer	0 0 0 0 0 0 0 0в		
6Ен	Timer Control	TCCS	R/W		0 0 0 0 0 0 0 0в		
6Fн	ROM Mirror	ROMM	R/W	ROM Mirror	1в		
70н to 7Fн	Reserved for CAN 0 Interf	ace . Refer to "C	CAN Contr	oller Hardware Mar	nual"		
80н to 8F н	Reserved for CAN 1 Interf	ace . Refer to "C	CAN Contr	oller Hardware Mar	nual"		
90н to 9D н		Reserved	k				
9Ен	ROM Correction Control Status	PACSR	R/W	ROM Correction	0 0 0 0 0 0 0 0в		
9Fн	Delayed Interrupt/release	DIRR	R/W	Delayed Interrupt	Ов		
А0н	Low-power Mode	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 Ов		
А1н	Clock Selector	CKSCR	R/W	Low Power Controller	1 1 1 1 1 1 0 Ов		
А2н to А4н		Reserved	k				

Address	Register	Abbreviation	Access	Peripheral	Initial value
А5 н	Automatic ready function select reg.	ARSR	W		0 0 1 1 0 Ов
А6н	External address output control reg.	HACR	W	External Memory Access	0 0 0 0 0 0 0 0 В
А7н	Bus control signal select register	ECSR	W	7.00000	000000_в
А8н	Watchdog Control	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control	TBTC	R/W	Time Base Timer	1 0 0 1 0 Ов
ААн	Watch timer control register	WTC	R/W	Watch Timer	1 X 0 0 0 0 0 0 _B
ABн to ADн		Reserved	d		
АЕн	Flash Control Status (Flash only, otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 Х 0 Ов
АГн		Reserved	t		
В0н	Interrupt control register 00	ICR00	R/W		00000111в
В1н	Interrupt control register 01	ICR01	R/W		00000111в
В2н	Interrupt control register 02	ICR02	R/W		00000111в
ВЗн	Interrupt control register 03	ICR03	R/W		00000111в
В4н	Interrupt control register 04	ICR04	R/W		00000111в
В5н	Interrupt control register 05	ICR05	R/W		00000111в
В6н	Interrupt control register 06	ICR06	R/W		00000111в
В7н	Interrupt control register 07	ICR07	R/W	Interrupt	00000111в
В8н	Interrupt control register 08	ICR08	R/W	controller	00000111в
В9н	Interrupt control register 09	ICR09	R/W		00000111в
ВАн	Interrupt control register 10	ICR10	R/W		00000111в
ВВн	Interrupt control register 11	ICR11	R/W		00000111в
ВСн	Interrupt control register 12	ICR12	R/W		00000111в
ВDн	Interrupt control register 13	ICR13	R/W		00000111в
ВЕн	Interrupt control register 14	ICR14	R/W		00000111в
ВГн	Interrupt control register 15	ICR15	R/W		00000111в
COн to FF н		External			

Address	Register	Abbreviation	Access	Peripheral	Initial value
1FF0н	ROM Correction Address 0	PADR0	R/W		XXXXXXXXB
1FF1н	ROM Correction Address 1	PADR0	R/W		XXXXXXXXB
1FF2н	ROM Correction Address 2	PADR0	R/W	ROM Correction	XXXXXXXXB
1FF3н	ROM Correction Address 3	PADR1	R/W	ROW Correction	XXXXXXXXB
1FF4н	ROM Correction Address 4	PADR1	R/W		XXXXXXXXB
1FF5н	ROM Correction Address 5	PADR1	R/W		XXXXXXXXB

Address	Register	Abbreviation	Access	Peripheral	Initial value
3900н	Reload L	PRLL0	R/W		XXXXXXXXB
3901н	Reload H	PRLH0	R/W	16-bit Program-	XXXXXXXXB
3902н	Reload L	PRLL1	R/W	able Pulse Generator 0/1	XXXXXXXXB
3903н	Reload H	PRLH1	R/W		XXXXXXXXB
3904н	Reload L	PRLL2	R/W		XXXXXXXXB
3905н	Reload H	PRLH2	R/W	16-bit Program-	XXXXXXXXB
3906н	Reload L	PRLL3	R/W	able Pulse Generator 2/3	XXXXXXXXB
3907н	Reload H	PRLH3	R/W		XXXXXXXX
3908н	Reload L	PRLL4	R/W		XXXXXXXXB
3909н	Reload H	PRLH4	R/W	16-bit Program-	XXXXXXXXB
390Ан	Reload L	PRLL5	R/W	able Pulse Generator 4/5	XXXXXXXX
390Вн	Reload H	PRLH5	R/W		XXXXXXXXB
390Сн	Reload L	PRLL6	R/W		XXXXXXXXB
390Dн	Reload H	PRLH6	R/W	16-bit Program-	XXXXXXXXB
390Ен	Reload L	PRLL7	R/W	able Pulse Generator 6/7	XXXXXXXXB
390Fн	Reload H	PRLH7	R/W		XXXXXXXXB
3910н to 3917н		Reser	ved		
3918н	Input Capture 0	IPCP0	R		XXXXXXXXB
3919н	Input Capture 0	IPCP0	R	Innut Contus 0/4	XXXXXXXXB
391Ан	Input Capture 1	IPCP1	R	Input Captue 0/1	XXXXXXXXB
391Вн	Input Capture 1	IPCP1	R		XXXXXXXXB
391Сн	Input Capture 2	IPCP2	R		XXXXXXXXB
391Dн	Input Capture 2	IPCP2	R	Innut Contus 2/2	XXXXXXXXB
391Ен	Input Capture 3	IPCP3	R	Input Captue 2/3	XXXXXXXXB
391Fн	Input Capture 3	IPCP3	R		XXXXXXXX
3920н	Input Capture 4	IPCP4	R		XXXXXXXXB
3921н	Input Capture 4	IPCP4	R	January Canada a 4/5	XXXXXXXXB
3922н	Input Capture 5	IPCP5	R	Input Captue 4/5	XXXXXXXXB
3923н	Input Capture 5	IPCP5	R		XXXXXXXX
3924н	Input Capture 6	IPCP6	R		XXXXXXXXB
3925н	Input Capture 6	IPCP6	R	Innut Castus 0/7	XXXXXXXXB
3926н	Input Capture 7	IPCP7	R	Input Captue 6/7	XXXXXXXX
3927н	Input Capture 7	IPCP7	R		XXXXXXXX

(Continued)

Address	Register	Abbreviation	Access	Peripheral	Initial value		
3928н	Output Compare 0	OCCP0	R/W		XXXXXXXXB		
3929н	Output Compare 0	OCCP0	R/W	Output Compare	XXXXXXXXB		
392Ан	Output Compare 1	OCCP1	R/W	0/1	XXXXXXXXB		
392Вн	Output Compare 1	OCCP1	R/W		XXXXXXXXB		
392Сн	Output Compare 2	OCCP2	R/W		XXXXXXXXB		
392Dн	Output Compare 2	OCCP2	R/W	Output Compare	XXXXXXXXB		
392Ен	Output Compare 3	OCCP3	R/W	2/3	XXXXXXXXB		
392Fн	Output Compare 3	OCCP3	R/W		XXXXXXXXB		
3930н to 39FFн		Reserv	/ed				
3A00н to 3AFFн	Reserved for CAN 0 In	nterface. Refer to	"CAN Co	ntroller Hardware M	anual"		
3B00н to 3BFFн	Reserved for CAN 0 In	nterface. Refer to	"CAN Co	ntroller Hardware M	anual"		
3C00н to 3CFFн	Reserved for CAN 1 Interface. Refer to "CAN Controller Hardware Manual"						
3D00н to 3DFFн	Reserved for CAN 1 Interface. Refer to "CAN Controller Hardware Manual"						
3E00н to 3FFFн		Reserv	ved				

Note Initial value of "_" represents unused bit, "X" represents unknown value.

Addresses in the range 0000H to 00FFH, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results reading "X" and any write access should not be performed.

■ CAN CONTROLLER

The MB90540 series contains two CAN controller (CAN0 and CAN1), the MB90545 series contains only one (CAN0). The Evaluation Chip MB90V540 also has two CAN controller.

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as 1D acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbits/s to 1 Mbits/s (when input clock is at 16 MHz)

List of Control Registers

Address		Dogiotor	Abbreviation	Access	Initial Value	
CAN0	CAN1	Register	Abbreviation	Access	illitiai value	
000070н	000080н	Message buffer valid register	BVALR	R/W	00000000 00000000	
000071н	000081н	Wessage buller valid register	DVALK	17/77	0000000 00000000	
000072н	000082н	Transmit request register	TREQR	R/W	00000000 00000000	
000073н	000083н	Transmit request register	INLON	17/77	000000000000000000000000000000000000000	
000074н	000084н	Transmit cancel register	TCANR	W	00000000 00000000	
000075н	000085н	Transmit cancer register	TOANK	VV		
000076н	000086н	Transmit complete register	TCR	R/W	00000000 00000000	
000077н	000087н	Transmit complete register	TOR	17/77	33333333333333333333333333333333333333	
000078н	000088н	Receive complete register	RCR	R/W	00000000 00000000	
000079н	000089н	Treceive complete register	KOK	17/77	000000000000000000000000000000000000000	
00007Ан	00008Ан	Remote request receiving register	RRTRR	R/W	00000000 00000000	
00007Вн	00008Вн	Tremote request receiving register	KKTKK	IX/VV	0000000 0000000B	
00007Сн	00008Сн	Receive overrun register	ROVRR	R/W	00000000 00000000	
00007Dн	00008Dн	Treceive overruit register	NOVIKI	I V V V	0000000 0000000B	
00007Ен	00008Ен	Receive interrupt enable register	RIER	R/W	00000000 00000000	
00007Fн	00008Fн	Treceive interrupt eriable register	IXILIX	I V/ VV	0000000 0000000B	

List of Control Registers

Address		Dominton Althousieti		A	Initial Value
CAN0	CAN1	Register	Abbreviation	Access	Initial Value
003В00н	003D00н	Control atatus register	CSR	D/M/ D	00 000 0 0 1-
003В01н	003D01н	Control status register	CSR	R/W, R	00000 00-1в
003В02н	003D02н	Last event indicator register	LEIR	R/W	000-000в
003В03н	003D03н	Last event indicator register	LLIIX	IX/VV	000-000в
003В04н	003D04н	Receive/transmit error counter	RTEC	R	0000000 00000000
003В05н	003D05н	Receive/transmit error counter	KIEC	K	0000000 0000000в
003В06н	003D06н	Bit timing register	BTR	R/W	-1111111 11111111в
003В07н	003D07н	bit tilling register	BIK	IN/ V V	-1111111 111111111111111111111111111111
003В08н	003D08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX
003В09н	003D09н	IDL register	IDLK	IX/VV	XXXXXXX XXXXXXX
003В0Ан	003D0Ан	Transmit DTD register	TRTRR	R/W	0000000 00000000
003В0Вн	003D0Вн	Transmit RTR register	ININ	IN/VV	0000000 0000000в
003В0Сн	003D0Сн	Remote frame receive waiting	RFWTR	R/W	XXXXXXXX XXXXXXX
003В0Дн	003D0Dн	register	KEWIK	IX/VV	XXXXXXX XXXXXXX
003В0Ен	003D0Ен	Transmit interrupt enable reg-	TIER	R/W	0000000 00000000
003В0Гн	003D0Fн	ister	HEIX	17,77	0000000 0000000
003В10н	003D10н				XXXXXXXX XXXXXXX
003В11н	003D11н	Acceptance mask select regis-	AMSR	R/W	VVVVVVV VVVVVV
003В12н	003D12н	ter	AIVISK	IX/VV	XXXXXXXX XXXXXXXX
003В13н	003D13н				VVVVVVV VVVVVV
003В14н	003D14н				XXXXXXXX XXXXXXXX
003В15н	003D15н	Acceptance mask register 0	AMR0	R/W	XXXXXXX XXXXXXX
003В16н	003D16н	Acceptance mask register o	AIVINO	IN/ V V	XXXXX XXXXXXXX
003В17н	003D17н		_		VVVVV VVVVVVVR
003В18н	003D18н				XXXXXXXX XXXXXXXX
003В19н	003D19н	Acceptance mask register 1	AMR1	R/W	AAAAAAAA AAAAAAAAB
003В1Ан	003D1Ан	Acceptance mask register 1	MIVIT I	IT/VV	XXXXX XXXXXXXX
003В1Вн	003D1Вн				^^^^^

List of Message Buffers (ID Registers) (1)

Address		List of Message Buffe		, , ,	1 20 1 37 1			
CAN0	CAN1	- Register	Abbreviation	Access	Initial Value			
003A00н to 003A1Fн	003С00н to 003С1Fн	General-purpose RAM	_	R/W	XXXXXXXB to XXXXXXXXB			
003А20н	003С20н				XXXXXXXX XXXXXXXX			
003А21н	003С21н	ID register 0	IDR0	R/W	VVVVVVV VVVVVV			
003А22н	003С22н	Tib register o	IDIXO	IX/VV	XXXXX XXXXXXXX			
003А23н	003С23н				VVVV VVVVVVVR			
003А24н	003С24н				XXXXXXXX XXXXXXXX			
003А25н	003С25н	ID register 1	IDD1	R/W	XXXXXXX XXXXXXX			
003А26н	003С26н	Tib register i	IDR1	IN/ VV	XXXXX XXXXXXXX			
003А27н	003С27н				XXXX XXXXXXX			
003А28н	003С28н						XXXXXXXX XXXXXXXX	
003А29н	003С29н	ID register 2	IDR2	R/W				
003А2Ан	003С2Ан	1D register 2	IDRZ		XXXXX XXXXXXXX			
003А2Вн	003С2Вн				700000 70000000			
003А2Сн	003С2Сн			R/W	XXXXXXXX XXXXXXXX			
003А2Dн	003С2Dн	ID register 3	IDR3		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
003А2Ен	003С2Ен	To register o	IDINO		XXXXX XXXXXXXX			
003А2Fн	003С2Гн							
003А30н	003С30н				XXXXXXXX XXXXXXXX			
003А31н	003С31н	ID register 4	IDR4	R/W	70000000 700000000			
003А32н	003С32н	To register 4	IDIX4	17,77	XXXXX XXXXXXXX			
003А33н	003С33н				XXXXX XXXXXXXX			
003А34н	003С34н				XXXXXXXX XXXXXXXX			
003А35н	003С35н	ID register 5	IDR5	R/W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
003А36н	003С36н	To register o	IDINO	10,00	XXXXX XXXXXXXX			
003А37н	003С37н				777077 77707000B			
003А38н	003С38н				XXXXXXXX XXXXXXXX			
003А39н	003С39н	ID register 6	IDR6	R/W	AAAAAAAAAAAAAAAAAA			
003А3Ан	003С3Ан	Togistor o	IDIO	17,44	XXXXX XXXXXXXX _B			
003А3Вн	003С3Вн				WWW WWWWW			

List of Message Buffers (ID Registers) (2)

Add	ress	List of Message Buffe		1 22 137 1			
CAN0	CAN1	Register	Abbreviation	Access	Initial Value		
003А3Сн	003С3Сн				VVVVVVV VVVVVVV-		
003А3Дн	003С3Дн	ID register 7	IDR7	R/W	XXXXXXXX XXXXXXXXB		
003А3Ен	003С3Ен	Tib register /	IDK/	IN/ VV	XXXXX XXXXXXXX _B		
003А3Гн	003С3Гн				VVVV VVVVVVV		
003А40н	003С40н				XXXXXXXX XXXXXXXX		
003А41н	003С41н	ID register 8	IDR8	R/W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
003А42н	003С42н	TD register o	IDIXO	17,77	XXXXX XXXXXXXX _B		
003А43н	003С43н				//////		
003А44н	003С44н				XXXXXXXX XXXXXXXX		
003А45н	003С45н	ID register 9	IDR9	R/W	XXXXXXX XXXXXXX		
003А46н	003С46н	TD register 9	IDK9	IDIO	17,77	XXXXX XXXXXXXX	
003А47н	003С47н						//////
003А48н	003С48н				XXXXXXXX XXXXXXXX		
003А49н	003С49н	ID register 10	IDR10	R/W	7000000 700000000		
003А4Ан	003С4Ан	Tib register to	IBICIO	10,00	XXXXX XXXXXXXX _B		
003А4Вн	003С4Вн				777077 77707770NB		
003А4Сн	003С4Сн			R/W -	XXXXXXXX XXXXXXXX		
003А4Dн	003С4Dн	ID register 11	IDR11		700000000000000000000000000000000000000		
003А4Ен	003С4Ен	To register 11	IBIXII		XXXXX XXXXXXXX _B		
003А4Гн	003С4Гн				700000 70000000		
003А50н	003С50н				XXXXXXXX XXXXXXXX		
003А51н	003С51н	ID register 12	IDR12	R/W	700000000000000000000000000000000000000		
003А52н	003С52н	12 Togictor 12	.52		1000	XXXXX XXXXXXXX _B	
003А53н	003С53н				700000		
003А54н	003С54н				XXXXXXXX XXXXXXXX		
003А55н	003С55н	ID register 13	IDR13	R/W			
003А56н	003С56н			•	XXXXX XXXXXXXX _B		
003А57н	003С57н						
003А58н	003С58н				XXXXXXXX XXXXXXXX		
003А59н	003С59н	ID register 14	IDR14	R/W			
003А5Ан	003С5Ан	1.5 1.09.0001 1 1		10,00	XXXXX XXXXXXXX _B		
003А5Вн	003С5Вн						
003А5Сн	003С5Сн				XXXXXXXX XXXXXXXXB		
003А5Дн	003С5Dн	ID register 15	IDR15 R/V	IDR15	IDR15	IDR15 R/W	
003А5Ен	003С5Ен			17/ / /	XXXXX XXXXXXXX		
003А5Гн	003С5Гн				-		

List of Message Buffers (DLC Registers and Data Registers) (1)

Add	ress	Register	Abbreviation	Access	Initial Value
CAN0	CAN1	Register	Appleviation Access		ililiai valu e
003А60н	003С60н	DLC register 0	DLCR0	R/W	XXXX _B
003А61н	003С61н	DLC register 0	DLCKU	IX/VV	VVVR
003А62н	003С62н	DLC register 1	DLCR1	R/W	XXXX _B
003А63н	003С63н	DLC register i	DLCKT	IX/VV	VVVR
003А64н	003С64н	DLC register 2	DLCR2	R/W	XXXX _B
003А65н	003С65н	DLC register 2	DLCR2	IX/VV	VVVR
003А66н	003С66н	DLC register 3	DLCR3	R/W	XXXX _B
003А67н	003С67н	DLC register 3	DLCKS		/////D
003А68н	003С68н	DLC register 4	DLCR4	R/W	XXXX _B
003А69н	003С69н	DLC register 4			XXXXB
003А6Ан	003С6Ан	DLC register 5	DLCR5	R/W	XXXX _B
003А6Вн	003С6Вн	DLC register 5	DLCRS	IX/VV	VVVR
003А6Сн	003С6Сн	DLC register 6	DLCR6	R/W	XXXX _B
003А6Дн	003С6Dн	DLC register o	DLCRO	FK/VV	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
003А6Ен	003С6Ен	DLC register 7	DLCR7	R/W	XXXX _B
003А6Гн	003С6Гн	DEO register /	DLORI		VVVR

List of Message Buffers (DLC Registers and Data Registers) (2)

List of Message Buffers (DLC Registers and Data Registers) (2) Address								
		Register	Abbreviation	Access	Initial Value			
CAN0	CAN1							
003А70н	003С70н	DLC register 8	DLCR8	R/W	XXXX			
003А71н	003С71н	DEO register o	BEONO	10,00	70001			
003А72н	003С72н	- DLC register 9	DLCR9	R/W	XXXX _B			
003А73н	003С73н	DEO register 9	DECKS	10,00	//////			
003А74н	003С74н	DLC register 40	DI CD40	DAM	VVVV			
003А75н	003С75н	-DLC register 10	DLCR10	R/W	XXXX _B			
003А76н	003С76н	DI O assistanti	DI OD44	D // //	VVVV			
003А77н	003С77н	- DLC register 11	DLCR11	R/W	XXXX _B			
003А78н	003С78н	DI 0 1 1 10	DI 00 10	5.44	2000/			
003А79н	003С79н	- DLC register 12	DLCR12	R/W	XXXX _B			
003А7Ан	003С7Ан	DLC register 13	DLCR13	R/W	XXXX _B			
003А7Вн	003С7Вн	DLG register 13	DLCK13	IN/ V V	XXXXB			
003А7Сн	003С7Сн	DI C register 4.4	DI CD44	DAM	VVVV			
003А7Dн	003С7Dн	- DLC register 14	DLCR14	R/W	XXXX _B			
003А7Ен	003С7Ен	DLO no nieto n 45	DI CD45	DAM	VVVV			
003А7Гн	003С7Гн	- DLC register 15	DLCR15	R/W	XXXX _B			
003А80н	003С80н				XXXXXXXXB			
to	to 003С87н	Data register 0 (8 bytes)	DTR0	R/W	to XXXXXXXB			
003А87н								
003A88н to	003C88н to	Data register 1 (8 bytes)	DTR1	DTR1	DTR1	DTR1	R/W	XXXXXXX _B to
003А8Гн	003С8Fн				XXXXXXX			
003А90н	003С90н				XXXXXXXXB			
to 003А97н	to 003С97н	Data register 2 (8 bytes)	DTR2	R/W	to XXXXXXXB			
003A97н 003A98н	003С97н 003С98н				XXXXXXXXB			
to	to	Data register 3 (8 bytes)	DTR3	R/W	to			
003А9Гн	003С9Гн				XXXXXXX			
003АА0н	003СА0н				XXXXXXXXB			
to 003AA7н	to 003СА7н	Data register 4 (8 bytes)	DTR4	R/W	to XXXXXXXB			
003AA7н 003AA8н	003CA7н 003CA8н				XXXXXXXXB			
to	to	Data register 5 (8 bytes)	DTR5	R/W	to			
003ААГн	003САҒн				XXXXXXX			
003АВ0н	003СВ0н				XXXXXXXXB			
to 003AB7н	to 003СВ7н	Data register 6 (8 bytes)	DTR6	R/W	to XXXXXXXB			
UUJAD/H	UU3CD/H				VVVVVVV			

List of Message Buffers (DLC Registers and Data Registers) (3)

Address		Desister			, , ,	
CAN0	CAN1	Register	Abbreviation Access		Initial Value	
003AB8н to 003ABFн	003CB8н to 003CBFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXB to XXXXXXXXB	
003AC0н to 003AC7н	003СС0н to 003СС7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXB to XXXXXXXXB	
003AC8н to 003ACFн	003СС8н to 003ССFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXXB	
003AD0н to 003AD7н	003CD0н to 003CD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXXB	
003AD8н to 003ADFн	003CD8н to 003CDFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXXB	
003AE0н to 003AE7н	003СЕОн to 003СЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXB to XXXXXXXXB	
003AE8н to 003AEFн	003CE8н to 003CEFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXB to XXXXXXXXB	
003AF0н to 003AF7н	003CF0н to 003CF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXB to XXXXXXXXB	
003AF8н to 003AFFн	003CF8н to 003CFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXX _B to XXXXXXXX _B	

■ INTERRUPT MAP

Intermed acres	I ² OS	Interru	pt vector	Interrupt control register		
Interrupt cause	clear	Number	Address	Number	Address	
Reset	N/A	#08	FFFFDCH	_	_	
INT9 instruction	N/A	#09	FFFFD8 _H	_	_	
Exception	N/A	#10	FFFFD4 _H	_	_	
CAN 0 RX	N/A	#11	FFFFD0 _H	ICDOO	000000	
CAN 0 TX/NS	N/A	#12	FFFFCCH	ICR00	0000В0н	
CAN 1 RX	N/A	#13	FFFFC8 _H	ICD04	0000В1н	
CAN 1 TX/NS	N/A	#14	FFFFC4 _H	ICR01		
External Interrupt INT0/INT1	*1	#15	FFFFC0 _H	ICDOO	000000	
Time Base Timer	N/A	#16	FFFFBCH	ICR02	0000В2н	
16-bit Reload Timer 0	*1	#17	FFFFB8 _H	IODOO	0000ВЗн	
A/D Converter	*1	#18	FFFFB4 _H	ICR03		
I/O Timer	N/A	#19	FFFFB0 _H	ICD04	0000В4н	
External Interrupt INT2/INT3	*1	#20	FFFFACH	ICR04		
Serial I/O	*1	#21	FFFFA8 _H	IODOE	0000В5н	
PPG 0/1	N/A	#22	FFFFA4 _H	ICR05		
Input Capture 0	*1	#23	FFFFA0 _H	IODOG	0000В6н	
External Interrupt INT4/INT5	*1	#24	FFFF9C _H	ICR06		
Input Capture 1	*1	#25	FFFF98⊦	ICR07	0000В7н	
PPG 2/3	N/A	#26	FFFF94 _H	ICRU/		
External Interrupt INT6/INT7	*1	#27	FFFF90⊦	ICDOO	0000В8н	
Watch Timer	N/A	#28	FFFF8C _H	ICR08		
PPG 4/5	N/A	#29	FFFF88 _H	ICDOO	0000В9н	
Input Capture 2/3	*1	#30	FFFF84 _H	ICR09		
PPG 6/7	N/A	#31	FFFF80 _H	ICR10	0000BA	
Output Compare 0	*1	#32	FFFF7C _H	ICKIU	0000ВАн	
Output Compare 1	*1	#33	FFFF78⊦	ICD44	000000	
Input Capture 4/5	*1	#34	FFFF74 _H	ICR11	0000ВВн	
Output Compare 2/3 - Input Capture 6/7	*1	#35	FFFF70 _H	IOD40	0000ВСн	
16-bit Reload Timer 1	*1	#36	FFFF6C _H	ICR12		
UART 0 RX		#37	FFFF68 _H	ICD40	000000	
UART 0 TX		#38	FFFF64 _H	ICR13	0000ВДн	
UART 1 RX		#39	FFFF60 _H	ICD4.4	000005	
UART 1 TX	*1	#40	FFFF5C _H	ICR14	0000ВЕн	
Flash Memory	N/A	#41	FFFF58 _H	IOD45	00005-	
Delayed interrupt	N/A	#42	FFFF54 _H	ICR15	0000ВFн	

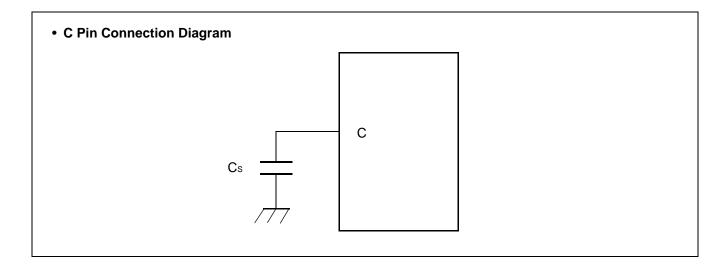
- *1: The interrupt request flag is cleared by the I2OS interrupt clear signal.
- *2: The interrupt request flag is cleared by the I²OS interrupt clear signal. A stop request is available.
- N/A:The interrupt request flag is not cleared by the I²OS interrupt clear signal.
- Note: For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the I²OS interrupt clear signal.
- Note: At the end of I²OS, the I²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the I²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the I²OS clear signal caused by the first event. So it is recommended not to use the I²OS for this interrupt number.
- Note: If I²OS is enabled, I²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same I²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the I²OS, the other interrupt should be disabled.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0V)

Parameter	Cumbal	Value		Units	Remarks		
Parameter	Symbol	Min.	Max.	Units	Neiliai ko		
	Vcc	Vss - 0.3	Vss + 6.0	V			
Power supply voltage	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1		
	AVR±	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR ±, AVR+ ≥ AVR-		
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	*2		
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*2		
Clamp Current	I CLAMP	- 2.0	2.0	mA			
"L" level max. output current	lol	_	15	mA			
"L" level avg. output current	lolav	_	4	mA	Average value over a period of 100ms		
"L" level max. overall output current	∑lo∟	_	100	mA			
"L" level avg. overall output current	Σ lolav	_	50	mA	Average value over a period of 100ms		
"H" level max. output current	Іон	_	-15	mA			
"H" level avg. output current	lohav	_	-4	mA	Average value over a period of 100ms		
"H" level max. overall output current	∑Іон	_	-100	mA			
"H" level avg. overall output current	\sum lohav	_	-50	mA	Average value over a period of 100ms		
Dower consumption	r.	_	500	mW	MB90F543/F549		
Power consumption	P _D	_	400	mW	MB90543/549		
Operating temperature	TA	-40	+85	°C			
Storage temperature	Тѕтс	-55	+150	°C			


^{*1:} Set AVcc and Vcc to the same voltage. Make sure that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.

^{*2:} V_I and V_O should not exceed V_{CC} + 0.3V. V_I should not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the I_I rating supercedes the V_I rating.

2. Recommended Conditions

(Vss = AVss = 0V)

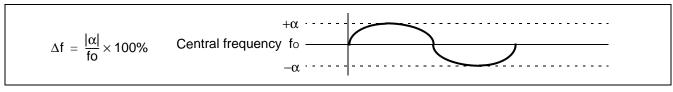
Parameter	Symbol	Value			Units	Remarks		
Farameter	Syllibol	Min.	Тур.	Max.	Ullits	Kemarks		
Power supply voltage	Vcc	4.5	5.0	5.5	V			
Input H voltage	Vihs	0.8 Vcc		Vcc + 0.3	V	CMOS hysteresis input pin		
Imput ri voltage	Vінм	Vcc - 0.3		Vcc + 0.3	V	MD input pin		
Input L voltage	VILS	Vss - 0.3		0.2 Vcc	V	CMOS hysteresis input pin		
Input L voltage	VILM	Vss - 0.3		Vss + 0.3	V	MD input pin		
Smooth capacitor	Cs	0.022	0.1	1.0	μF	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the Vcc should be greater than this capacitor.		
Operating temperature	TA	-40		+85	°C			

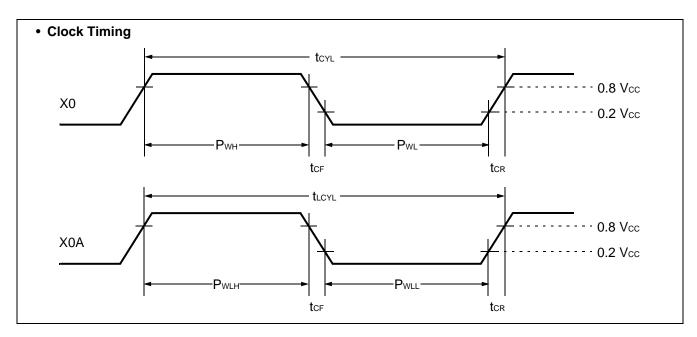
3. DC Characteristics

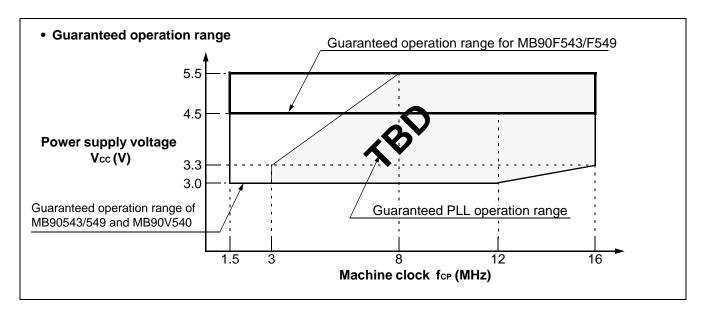
 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0V, T_A = -40 °C to +85 °C)$

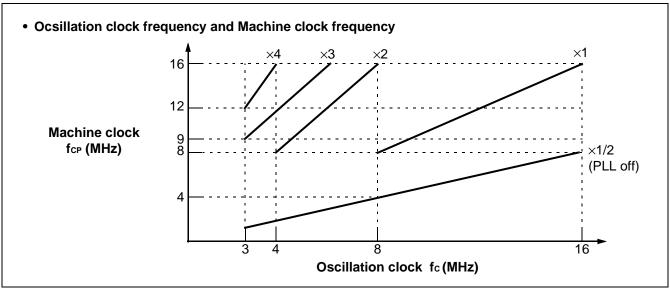
Deversates	Councile of	D'			Value			Remarks
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Units	
Output H voltage	Vон	All output pins	Vcc = 4.5V, Іон = -4.0mA	Vcc - 0.5	_	_	V	
Output L voltage	Vol	All output pins	Vcc = 4.5V, IoL = 4.0mA	_	_	0.4	V	
Input leak current	Iι∟		Vcc = 5.5V, Vss < Vı < Vcc	-5	_	5	μА	
			Vcc = 5.0 V±10%,	_	TBD	TBD	mA	MB90543/549
	l cc		Internal frequency: 16 MHz, At normal operating	_	45	60	mA	MB90F543/F549
			$Vcc = 5.0V\pm10\%$,	_	TBD	TBD	mA	MB90543/549
	Iccs		Internal frequency: 16 MHz, At sleep	_	13	22	mA	MB90F543/F549
	Iccl		Vcc = 5.0V,	_	TBD	TBD	mA	MB90543/549
			Internal frequency: 8 kHz, At sub operation	_	0.2	1	mA	MB90F543/F549
Power supply	Iccls	Vcc	Vcc = 5.0V,	_	TBD	TBD	μΑ	MB90543/549
current*		CT CH1	Internal frequency: 8 kHz, At sub sleep	_	10	50	μΑ	MB90F543/F549
	Ісст		Vcc = 5.0V,	_	TBD	TBD	μΑ	MB90543/549
			Internal frequency: 8 kHz, At watch mode	_	10	50	μΑ	MB90F543/F549
	Іссн1		Vcc = 5.0 V±10%,	_	TBD	TBD	μΑ	MB90543/549
			At stop, $T_A = 25^{\circ}C$	_	5	20	μΑ	MB90F543/F549
	Іссн2		$Vcc = 5.0 V \pm 10\%,$		TBD	TBD	μΑ	MB90543/549
			At hardware standby mode, $T_A = 25^{\circ}C$	_	50	100	μΑ	MB90F543/F549
Input capacity	Cin	Other than AVcc, AVss, AVR+, AVR-, C, Vcc, Vss	_	_	10	80	pF	

^{*:} Current values are tentative. They are subject to change without notice according to improvements in the characteristics. The power supply current testing conditions are when using the external clock.

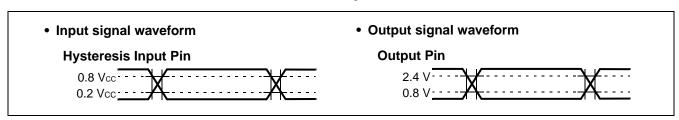

4. AC Characteristics

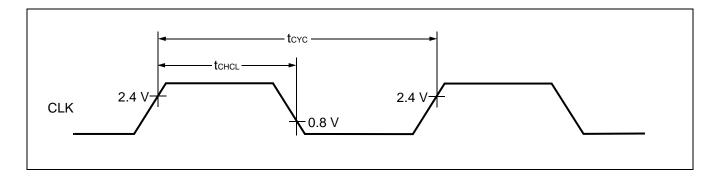

(1) Clock Timing


 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0 V, T_A = -40 °C to +85 °C)$


Parameter	Symbol	Pin	Value			Units	Remarks	
raiailletei	Syllibol	FIII	Min.	Тур.	Max.	Ullits	Kemarks	
Oscillation frequency	fc	X0, X1	3	_	16	MHz		
Oscillation frequency	fcL	X0A, X1A	_	32.768		kHz		
Oscillation cycle time	t cyL	X0, X1	62.5	_	333	ns		
Oscillation cycle time	t LCYL	X0A, X1A	_	30.5	_	μs		
Frequency deviation with PLL *	Δf	_	_	_	5	%		
Input clock pulse width	Pwh, PwL	X0	10	_	_	ns	Duty ratio is about 30 to 70%.	
Input clock pulse width	Pwlh,Pwll	X0A	_	15.2		μs	Duty fatio is about 50 to 70 %.	
Input clock rise and fall time	tcr, tcf	X0		_	5	ns	When using external clock	
Machine clock frequency	fсР	_	1.5	_	16	MHz	When using main clock	
Machine Clock frequency	fLCP	_	_	8.192	_	kHz	When using sub-clock	
Machine clock cycle time	t cp	_	62.5	_	666	ns	When using main clock	
Machine Clock Cycle time	t LCP	_		122.1		μs	When using sub-clock	

^{*:} Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

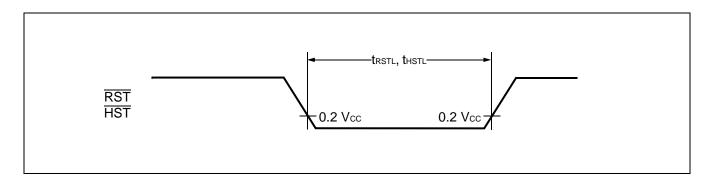



AC characteristics are set to the measured reference voltage values below.

(2) Clock Output Timing

(Vcc = 5.0 V $\pm 10\%$, Vss = AVss = 0.0 V, TA = -40 °C to +85 °C)

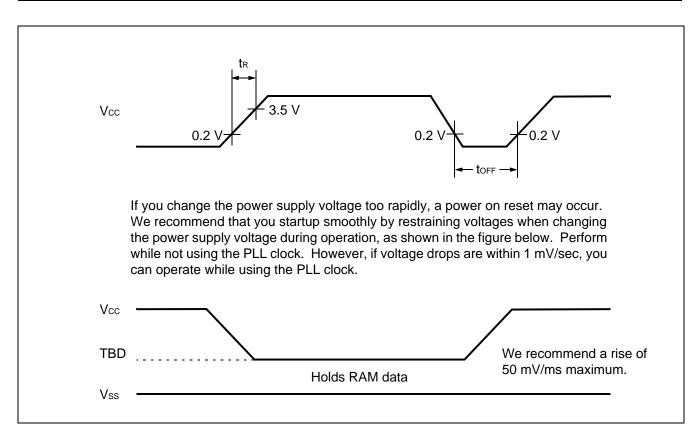
Parameter	Symbol	Pin	Condition	Value		Units	Remarks
	Syllibol Fil	r.III	Condition	Min.	Max.	Units	Remarks
Cycle time	t cyc	CLK	Vcc = 5 V±10%	62.5	_	ns	
CLK↑ ⇒ CLK↓	t chcl		VCC - 3 V±10/6	20	_	ns	


(3) Reset and Hardware Standby Input

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to} +85 ^{\circ}\text{C})$

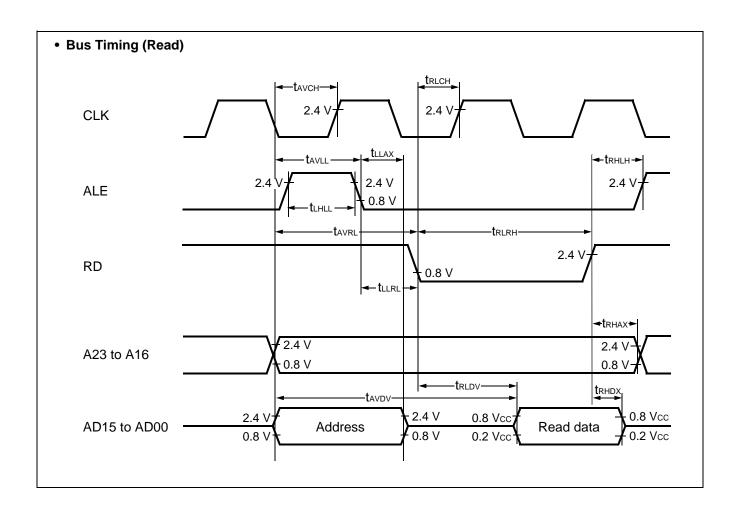
Parameter	Symbol Pin —		Value		Units	Remarks
			Min.	Max.	Offics	Remarks
Reset input time	t RSTL	RST	16 tcp	_	ns	
Hardware standby input time	t HSTL	HST	16 tcp	_	ns	

[&]quot;tcp" represents one cycle time of the machine clock.


Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.

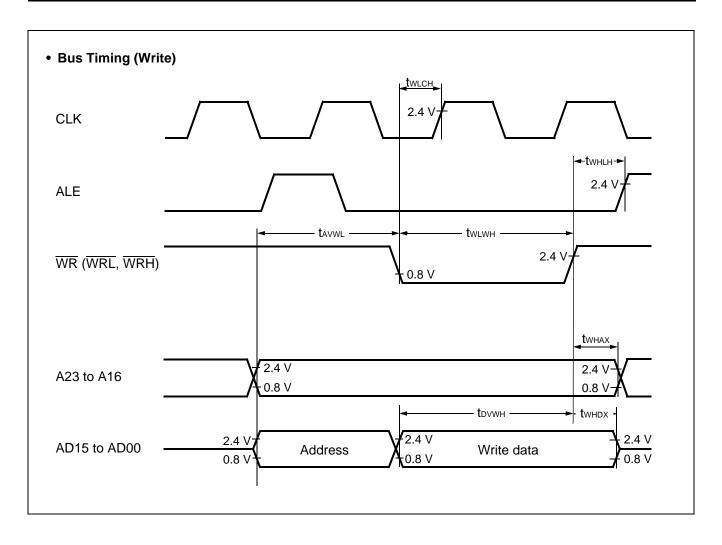
(4) Power On Reset

(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, TA = -40 °C to +85 °C)


Parameter	Symbol	Pin	Condition	Va	lue	Units	Remarks
Farameter	Syllibol	FIII	Condition	Min. Max.		Ullits	Remarks
Power on rise time	t R	Vcc		0.05	30	ms	
Power off time	t off	Vcc	_	50	_	ms	Due to repetitive operation

(5) Bus Timing (Read)

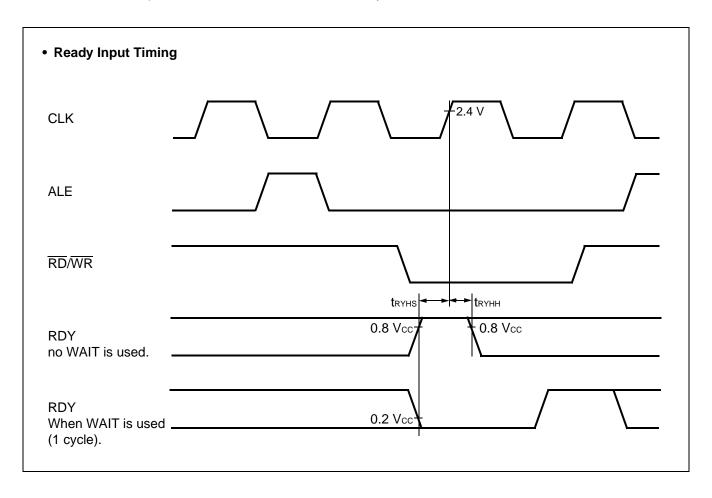
 $(Vcc = 4.5 V to 5.5 V, Vss = 0 V, T_A = -40 °C to +85 °C)$


Parameter	Symbol	Pin	Condition		lue	Units	Remarks
raiailletei	Syllibol	FIII	Condition	Min.	Max.	Ullits	Remarks
ALE pulse width	t LHLL	ALE		tcp/2 - 20		ns	
Valid address ⇒ ALE ↓ time	t avll	ALE, A23 to A16, AD15 to AD00		tcp/2 - 20		ns	
ALE ↓ ⇒ Address valid time	tLLAX	ALE, AD15 to AD00		tcp/2 - 15	_	ns	
Valid address $\Rightarrow \overline{RD} \downarrow time$	t avrl	A23 toA16, AD15 to AD00, RD		tcp - 15	_	ns	
Valid address ⇒ Valid data input	t avdv	A23 to A16, AD15 to AD00		_	5 tcp/2 - 60	ns	
RD pulse width	t rlrh	RD	_	3 tcp/2 - 20	_	ns	
$\overline{RD} \downarrow \Rightarrow Valid \; data \; input$	t RLDV	RD, AD15 to AD00		_	3 tcp/2 - 60	ns	
RD ↑ ⇒ Data hold time	t RHDX	RD, AD15 to AD00		0	_	ns	
RD ↓ ⇒ ALE ↑ time	t RHLH	RD, ALE		tcp/2 - 15	_	ns	
$\overline{RD}\!\uparrow\RightarrowAddressvalidtime$	t rhax	RD, A23 to A16		tcp/2 - 10	_	ns	
Valid address ⇒ CLK ↑ time	t avch	A23 to A16, AD15 to AD00, CLK		tcp/2 - 20	_	ns	
$\overline{RD} \downarrow \Rightarrow CLK \uparrow time$	t RLCH	RD, CLK		tcp/2 - 20	_	ns	_
$ALE \downarrow \Rightarrow \overline{RD} \downarrow time$	t llrl	ALE, RD		tcp/2 - 15	_	ns	

(6) Bus Timing (Write)

 $(Vcc = 4.5 V to 5.5 V, Vss = 0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Pin	Condition	Valu	е	Units	Remarks
Farameter	Oymbor 1 m		Condition	Min.	Max.	Ullits	Remarks
Valid address \Rightarrow WR ↓ time	tavwl	A23 to A16, AD15 to AD00, WR		tcp — 15	_	ns	
WR pulse width	twlwh	WR		3 tcp/2 - 20		ns	
Valid data output ⇒ WR ↑ time	t dvwh	AD15 to AD00, WR		3 tcp/2 - 20	_	ns	
$\overline{\mathrm{WR}}\!\uparrow\Rightarrow$ Data hold time	t whdx	AD15 to AD00, WR	_	20	_	ns	
WR ↑ ⇒ Address valid time	twhax	A23 to A16, WR		tcp/2 - 10	_	ns	
$\overline{WR}\!\uparrow \Rightarrow ALE\!\uparrow time$	twhlh	WR, ALE		tcp/2 - 15		ns	_
$\overline{WR} \downarrow \Rightarrow CLK \uparrow time$	t wlch	WR, CLK		tcp/2 - 20	_	ns	

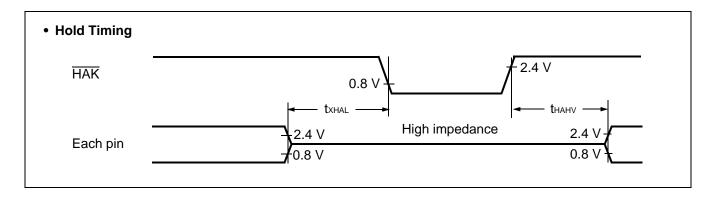


(7) Ready Input Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol Pin		Condition	Val	ue	Units	Remarks
	Symbol		Condition	Min.	Max.	Offics	Remarks
RDY setup time	t RYHS	RDY	_	45	_	ns	
RDY hold time	t RYHH	RDY	_	0		ns	

Note: If the RDY setup time is insufficient, use the auto-ready function.

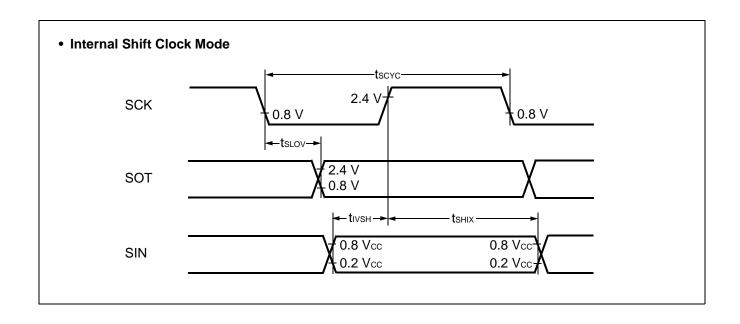


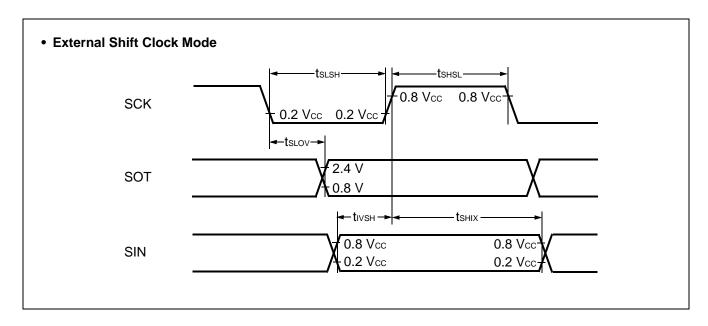
(8) Hold Timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_A = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Va	lue	Units	Remarks
	Syllibol	r III	Condition	Min.	Max.	Units	Nemarks
Pin floating $\Rightarrow \overline{HAK} \downarrow time$	t xhal	HAK		30	t cp	ns	
HAK ↑ time ⇒ Pin valid time	t hahv	HAK	_	t CP	2 tcp	ns	

Note: There is more than 1 cycle from when HRQ reads in until the HAK is changed.

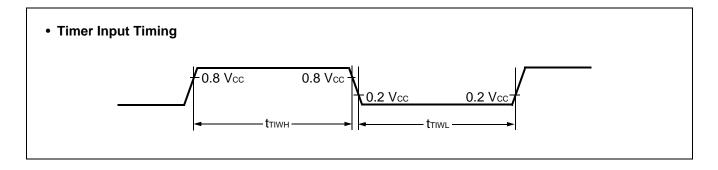

(9) UART0/1, Serial I/O Timing


(Vcc = 4.5 V to 5.5 V, Vss = 0 V, $T_A = -40$ °C to +85 °C)

Parameter	Symbol	Pin Symbol	Condition	Va	lue	Linite	Remarks
raiailletei	Syllibol	Fill Syllibol	Condition	Min.	Max.	Ullits	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	Internal clock opera-	-80	80	ns	
Valid SIN ⇒ SCK ↑	tıvsн	SCK0 to SCK2, SIN0 to SIN2	tion output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	100	_	ns	
SCK ↑ ⇒ Valid SIN hold time	t sнıx	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK2		4 tcp	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK2		4 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tsLov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are		150	ns	
Valid SIN ⇒ SCK ↑	t ıvsh	SCK0 to SCK2, SIN0 to SIN2	C _L = 80 pF + 1 TTL.	60	_	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	t sнıx	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

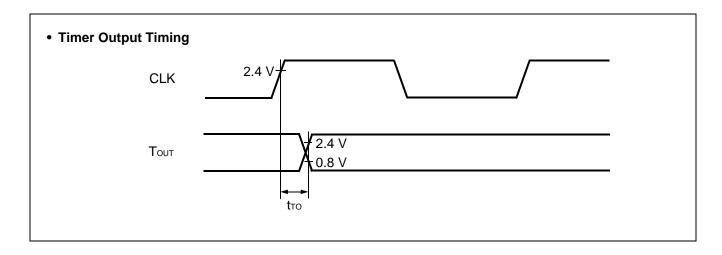
Note:

- 1. AC characteristic in CLK synchronized mode.
- 2. C_L is load capacity value of pins when testing.
- 3. tcp is the machine cycle (Unit: ns).



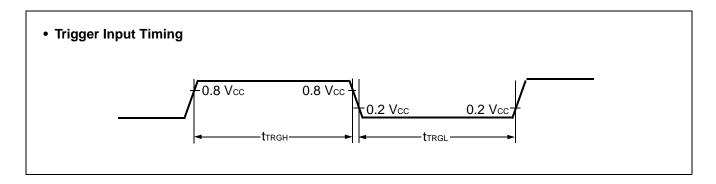
(10) Timer Related Resource Input Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0 V, T_A = -40 °C to +85 °C)$


Parameter	Symbol	Pin	Condition	Val	lue	Units	Remarks
	Symbol Fin	F		Min.	Max.	Units	iveillai ks
Input pulso width	t тıwн	TIN0, TIN1		4 tcp	_	nc	
Input pulse width	t TIWL	IN0 to IN7	_	4 ICP	_	ns	

(11) Timer Related Resource Output Timing

 $(Vcc = 4.5 V to 5.5 V, Vss = 0 V, T_A = -40 °C to +85 °C)$


Parameter	Symbol Pin		Condition	Value		Units	Remarks
Parameter	Syllibol	FIII	Condition	Min.	Max.	Ullits	Neillai KS
CLK ↑ ⇒ Touт change time	t TO	TOT0 to TOT1, PPG0 to PPG3		30	_	ns	

(12) Trigger Input Timing

 $(Vcc = 4.5 \text{ to } 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

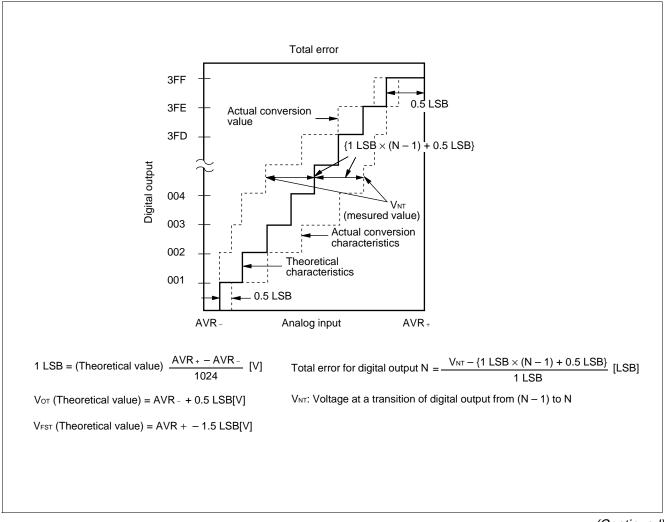
Parameter	Symbol	Pin	Condition	Va	lue	Units	Remarks
rarameter Sym	Symbol Fill		Condition	Min.	Max.	Units	iveillai ka
Input pulse width	ttrgh ttrgl	INT0 to INT7, ADTG	_	5 tcp		ns	

5. A/D Converter

($Vcc = AVcc = 5.0 \text{ V} \pm 10\%$, $Vss = AVss = 0 \text{ V}, 3.0 \text{ V} \le AVR_+ - AVR_-$, $T_A = -40 \, ^{\circ}C$ to $+85 \, ^{\circ}C$)

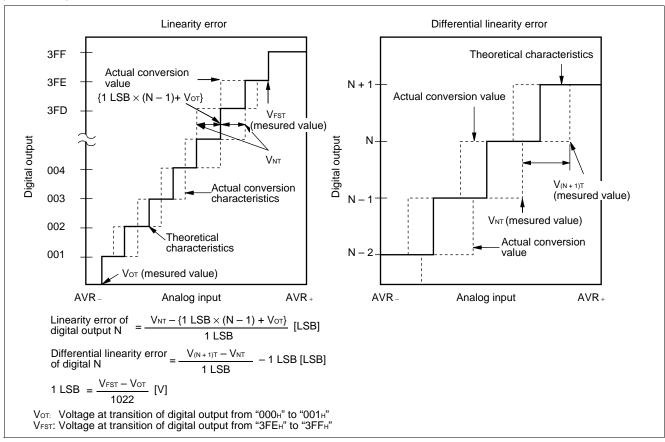
Doromotor	Cumbal	Pin		Rated Value	!	Units	Domorko
Parameter	Symbol	PIN	Min.	Тур.	Max.	Units	Remarks
Resolution	_	_	_		10	bit	
Conversion error	_	_	_	_	±5.0	LSB	
Nonlinearity error	_	_	_	_	±2.5	LSB	
Differential nonlinearity error	_	_	_	_	±1.9	LSB	
Zero reading voltage	Vот	AN0 to AN7	AVR 3.5	AVR-+0.5	AVR-+4.5	mV	
Full scale reading voltage	V _{FST}	AN0 to AN7	AVR+ - 6.5	AVR+ - 1.5	AVR+ + 1.5	mV	
Conversion time	_	_	_	352tcp	_	ns	
Sampling time	_	_	_	64t cp	_	ns	
Analog port input current	IAIN	AN0 to AN7	-10	_	10	μΑ	
Analog input voltage range	Vain	AN0 to AN7	AVR-	_	AVR+	V	
Poforonoo voltogo rongo	_	AVR+	AVR- + 2.7	_	AVcc	V	
Reference voltage range	_	AVR-	0	_	AVR+ - 2.7	V	
Dower aupply aurrent	lΑ	AVcc	_	5	_	mA	
Power supply current	Іан	AVcc	_	_	5	μΑ	*1
Poforonco voltogo gurront	IR	AVR+	200	400	600	μΑ	
Reference voltage current	IRH	AVR+	_	_	5	μΑ	*1
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

^{*1:} When not operating A/D converter, this is the current ($Vcc = AVcc = AVR_{+} = 5.0 \text{ V}$) when the CPU is stopped.


6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

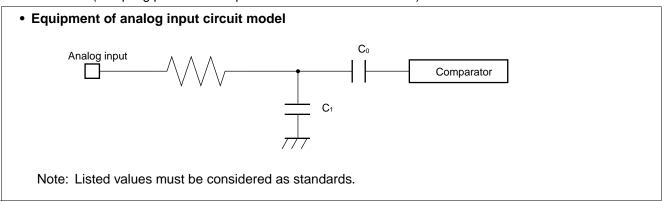
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

(Continued)



7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 15 k Ω or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \, \mu s$ @machine clock of $16 \, MHz$).

• Error

The smaller the $|AVR_+ - AVR_-|$, the greater the error would become relatively.

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S : Set by execution of instruction. R : Reset by execution of instruction.
Z	
V	
C	Indicates whather the instruction is a road modify write instruction. (a single instruction that
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. — : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16-bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.

For each byte of the instruction being executed, a program on a memory connected to an 8-bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done × the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL and AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code		Notation	1	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	_
08 09 0A 0B	@R' @R' @R' @R'	W1 W2		Register indirect	0
0C 0D 0E 0F	@R' @R'	W0 + W1 + W2 + W3 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@ R' @ R' @ R' @ R' @ R'	W0 + dis W1 + dis W2 + dis W3 + dis W4 + dis W5 + dis W6 + dis W7 + dis	p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@R' @R'	W0 + dis W1 + dis W2 + dis W3 + dis	p16 p16	Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@R\	W0 + RW W1 + RW C + disp1 r16	<i>l</i> 7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register accesses
Code	Operand	Number of execution cycles for each type of addressing	Number of register accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E	@RW0 + RW7 @RW1 + RW7 @PC + disp16	4 4 2	2 2 0
1F	addr16	1	0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b)	byte	(c) v	vord	(d) I	ong
Operand	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

N	/Inemonic	#	~	RG	В	Operation	LH	АН	1	s	Т	N	z	٧	С	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, Ri	1	2	1	`o´	byte $(A) \leftarrow (Ri)$	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	0	byte (A) ← (ear)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z Z	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	0	byte (A) \leftarrow imm8	Z	*	_	_	_	*	*	_	_	_
MOV	A, @A	2	3	Ö	(b)	byte (A) \leftarrow ((A))	Z	_	_	_	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	Z	*	_	_	_	*	*	_	_	_
MOVN	A, #imm4	1	1	0	0	byte (A) \leftarrow imm4	Z	*	_	_	_	R	*	l _	_	_
IVIOVIA	73, 77111111-4	'		Ü		byte (rt) < mm+	_					'`				
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (Ri)	Χ	*	_	_	_	*	*	—	_	_
MOVX	A, ear	2	2	1	0	byte (A) ← (ear)	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	Χ	*	_	_	_	*	*	—	_	_
MOVX	A, io	2	3	0	(b)	byte $(A) \leftarrow (io)$	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, #imm8	2	2	0	O	byte (A) ← imm8	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow ((A))$	Χ	_	_	_	_	*	*	_	_	_
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(A) \leftarrow ((RWi) + disp8)$	Χ	*	_	_	_	*	*	_	_	_
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow ((RLi)+disp8)$	Χ	*	_	-	_	*	*	_	-	_
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	Ō	(b)	byte (addr16) ← (A)	_	_	_	_	_	*	*	l _	_	_
MOV	Ri, A	1	2	1	0	byte (Ri) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	ear, A	2	2	1	ő	byte (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	eam, A	2+	3+ (a)	0	(b)	byte (eam) \leftarrow (A)	_	_	_	_	_	*	*	l _	_	_
MOV	io, A	2	3	Ö	(b)	byte (io) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	Ri, ear	2	3	2	0	byte (Ri) ← (ear)	_	_	_	_	_	*	*	l _	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) ← (eam)	_	l _	_	_	_	*	*	l _	_	_
MOV	ear, Ri	2	4 (a)	2	0	byte (ear) ← (Ri)	_	l _	_	_	_	*	*	l _	_	_
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	_	l _	_	_	_	*	*	l _	_	_
MOV	Ri, #imm8	2	2	1	0	byte (earr) ← (Ri) byte (Ri) ← imm8	_	_	_	_	_	*	*		_	_
MOV	io, #imm8	3	5	0	(b)	byte (io) \leftarrow imm8	_		_	_	l _	l _	l _		_	
MOV	dir, #imm8	3	5	0	(b)	byte (dir) ← imm8				_					_	
MOV		3	2	1	(0)		_	-	_	_	_	*	*	-	_	
MOV	ear, #imm8				_	byte (ear) ← imm8	_	_	_	_	-			-	_	_
	eam, #imm8	3+	4+ (a)	0	(b)	byte (eam) ← imm8	_	_	_	_	-	-	_	-	_	_
MOV	@AL, AH	2	_	0	/b\	byte ((A)) ((ALI)						*	*			
/MOV	@A, T	2	3	0	(b)	byte $((A)) \leftarrow (AH)$	_	_	_	_	_			_	_	_
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	Z	_	_	_	_	_	_	_	_	_
XCH	A, eam	2+	5+ (a)	0	2× (b)	byte (A) \leftrightarrow (eam)	Ζ	—	_	-	_	-	—	—	_	_
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	_	—	_	_	-	-	-	-	_	_
XCH	Ri, eam	2+	9+ (a)	2	2× (b)	byte (Ri) \leftrightarrow (eam)	-	-	_	-	-	-	-	-	-	_

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	_	*	_	_	_	*	*	_	_	_
MOVW A, addr16	3	4	0	(c)	word (A) \leftarrow (addr16)	_	*	_	_	_	*	*	_	-	_
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	_	*	_	_	_	*	*	_	-	_
MOVW A, RWi	1	2	1	0	word (A) \leftarrow (RWi)	_	*	_	_	_	*	*	_	-	_
MOVW A, ear	2	2	1	0	word (A) \leftarrow (ear)	_	*	_	_	_	*	*	_	_	_
MOVW A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	_	*	_	_	_	*	*	_		_
MOVW A, io MOVW A, @A	2	3	0	(c)	word (A) \leftarrow (io) word (A) \leftarrow ((A))	_		_	_	_	*	*	_	_	_
MOVW A, WA	3	2	0	0	word (A) \leftarrow ((A)) word (A) \leftarrow imm16	_	*	_	_		*	*			
MOVW A, #IIIIIIII	2	5	1	(c)	word (A) \leftarrow ((RWi) +disp8)	_	*	_	_	_	*	*		_	_
MOVW A, @RLi+disp8	3	10	2	(c)	word (A) \leftarrow ((RLi) +disp8)	_	*	_	_	_	*	*	_	_	_
INOVVV A, WILLITUISPO	3	10	_	(0)	word (/t) \ \ \((\lambda(\text{TLI}) \text{ raispo})										
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A)	-	_	_	_	_	*	*	_	-	_
MOVW addr16, A	3	4	0	(c)	word (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOVW SP, A	1	1 2	0	0	word (SP) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOVW RWi, A MOVW ear, A	1 2	2	1	0	word (RWi) \leftarrow (A) word (ear) \leftarrow (A)	_	_		_	_	*	*	_	_	_
MOVW ean, A	2+	3+ (a)	0	(c)	word (ear) \leftarrow (A) word (eam) \leftarrow (A)	_	_	_	_		*	*			
MOVW earn, A	2	3	0	(c)	word (io) \leftarrow (A)	_	_	_	_		*	*			_
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) \leftarrow (A)	_		_	_	_	*	*	_	_	_
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) ← (eam)	_	_	_	_	_	*	*	_	_	_
MOVW ear, RWi	2	4	2	O	word (ear) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) ← (RWi)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, #imm16	3	2 ′	1)O´	word (RWi) ← imm16	_	_	_	_	_	*	*	_	_	_
MOVW io, #imm16	4	5	0	(c)	word (io) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW ear, #imm16	4	2	1	0	word (ear) ← imm16	_	_	_	_	_	*	*	_	–	_
MOVW eam, #imm16	4+	4+ (a)	0	(c)	word (eam) ← imm16	_	_	_	_	_	_	_	_	_	_
MOVW @AL, AH															
/MOVW@A, T	2	3	0	(c)	word $((A)) \leftarrow (AH)$	-	_	_	_	_	*	*	_	_	_
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0	2× (c)		_	_	_	_	-	_	_	_	_	_
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	word (RWi) ↔ (eam)	-	_	-	-	_	_	_	_	_	_
MOVL A, ear	2	4	2	0	long (A) ← (ear)	-	1	1	1	-	*	*	_	-	_
MOVL A, eam	2+	5+ (a)	0	(d)	$long(A) \leftarrow (eam)$	_	_	_	_	-	*	*	_	-	_
MOVL A, #imm32	5	3	0	0	long (A) ← imm32	_	-	-	-	_	,	,	_	_	_
MOVL ear, A	2	4	2	0	long (ear) ← (A)	_	_	_	_	_	*	*	_	_	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) ← (A)	-	_	_	-	_	*	*	_	_	_

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
ADD	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) + (dir)$	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, ear	2	3	1	0	byte (A) \leftarrow (A) +(ear)	Ζ	_	_	_	_	*	*	*	*	_
ADD	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) +(eam)	Ζ	_	_	_	_	*	*	*	*	_
ADD	ear, A	2	3	2	O O	byte (ear) ← (ear) + (A)	_	_	_	_	_	*	*	*	*	_
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) ← (eam) + (A)	Ζ	_	_	_	_	*	*	*	*	*
ADDC	Α	1	2	0	0	byte (A) \leftarrow (AH) + (AL) + (C)	Ζ	_	_	_	_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte (A) \leftarrow (A) + (ear) + (C)	Ζ	_	_	_	_	*	*	*	*	_
ADDC	A, eam	2+	4+ (a)	0	(b)	byte (A) ← (A) + (eam) + (C)	Ζ	_	_	_	_	*	*	*	*	_
ADDDC	Α	1	3	0	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, #imm8	2	2	0	0	byte (A) \leftarrow (A) $-imm8$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) - (dir)$	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, ear	2	3	1	0	byte (A) \leftarrow (A) $-$ (ear)	Ζ	_	_	_	_	*	*	*	*	_
SUB	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $-$ (eam)	Ζ	_	_	_	_	*	*	*	*	_
SUB	ear, A	2	3	2	O O	byte (ear) ← (ear) – (A)	_	_	_	_	_	*	*	*	*	_
SUB	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) $-$ (A)	_	_	_	 	_	*	*	*	*	*
SUBC	Α	1	2 ′	0	0 ′	byte $(A) \leftarrow (AH) - (AL) - (C)$	Ζ	_	_	 	_	*	*	*	*	_
SUBC	A, ear	2	3	1	0	byte $(A) \leftarrow (A) - (ear) - (C)$	Ζ	_	_	_	_	*	*	*	*	_
SUBC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $-$ (eam) $-$ (C)	Ζ	_	_	 	_	*	*	*	*	_
SUBDC	Α	1	3	0	`O´	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C) (decimal)	Z	-	-	_	-	*	*	*	*	_
ADDW	Α	1	2	0	0	word (A) \leftarrow (AH) + (AL)	-	-	_	_	_	*	*	*	*	_
ADDW	A, ear	2	3	1	0	word (A) \leftarrow (A) +(ear)	_	_	_	-	_	*	*	*	*	_
ADDW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) +(eam)	_	_	_	—	_	*	*	*	*	_
ADDW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) +imm16	_	_	_	_	_	*	*	*	*	_
ADDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) + (A)	_	_	_	-	_	*	*	*	*	_
ADDW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) + (A)	_	_	_	_	_	*	*	*	*	*
ADDCW		2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	_	_	_	_	_	*	*	*	*	_
ADDCW	•	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	_	_	_	_	_	*	*	*	*	_
SUBW	Α	1	2	0	0	word (A) \leftarrow (AH) $-$ (AL)	_	_	_	_	_	*	*	*	*	_
SUBW	A, ear	2	3	1	0	word (A) \leftarrow (A) $-$ (ear)	_	_	_	_	_	*	*	*	*	_
SUBW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow (A) - (eam)$	_	_	_	_	_	*	*	*	*	_
	A, #imm16	3	2	0	0	word (A) \leftarrow (A) $-imm16$	_	_	_	-	_	*	*	*	*	_
SUBW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) $-$ (A)	_	_	_	_	_	*	*	*	*	_
SUBW	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) $-$ (A)	_	_	_	_	_	*	*	*	*	*
SUBCW		2	3	1	0	word (A) \leftarrow (A) $-$ (ear) $-$ (C)	_	_	_	_	_	*	*	*	*	_
SUBCW	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (eam) $-$ (C)	-	_	_	_	_	*	*	*	*	_
ADDL	A, ear	2	6	2	0	$long(A) \leftarrow (A) + (ear)$	_	-	_	-	_	*	*	*	*	_
ADDL	A, eam	2+	7+ (a)	0	(d)	long (A) \leftarrow (A) + (eam)	_	-	_	_	-	*	*	*	*	-
ADDL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) +imm32	-	_	_	_	_	*	*	*	*	-
SUBL	A, ear	2	6	2	0	$long (A) \leftarrow (A) - (ear)$	_	_	_	_	-	*	*	*	*	-
SUBL	A, eam	2+	7+ (a)	0	(d)	$long (A) \leftarrow (A) - (eam)$	-	_	_	_	_	*	*	*	*	-
SUBL	A, #imm32	5	4	0	0	long (A) \leftarrow (A) $-imm32$	_	_	_	-	-	*	*	*	*	-

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	<u>-</u>	_	_	_ _	_	*	*	*	_	*
DEC DEC	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	_	<u>-</u>	_ _	_ _	_ _	*	*	*	<u>-</u>	- *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	-	_	_ _	_ _	*	*	*	_	*
DECW DECW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) -1 word (eam) \leftarrow (eam) -1	_ _	1 1	_ _	1 1	_ _	*	*	*	1 1	*
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1		1 1	_	1 1	_	*	*	*	1 1	*
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	 -	_ _	_ _	_ _	_ _	*	*	*	_ _	- *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
CMP	Α	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	_	_	_	_	_	*	*	*	*	_
CMP	A, #imm8	2	2 ′	0	Ò	byte (A) ← imm8	_	_	_	_	_	*	*	*	*	_
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPW	A, eam	2+	3+ (a)	0	(c)	word $(A) \leftarrow (eam)$	_	_	_	_	_	*	*	*	*	_
CMPW	A, #imm16	3	2	0	0	word $(A) \leftarrow imm16$	_	_	_	_	_	*	*	*	*	_
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) \leftarrow (eam)	_	_	-	_	_	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	_	_	_	_	_	*	*	*	*	_

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	~	RG	В	Operation	LH	АН	Ι	s	T	N	Z	٧	С	RMW
DIVU	Α	1	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	_	-	_	1	-	-	-	*	*	_
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	_	-	-	-	-	-	_	*	*	_
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	_	-	-	-	-	-	_	*	*	_
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	_	-	-	-	-	-	_	*	*	_
DIVUW	A, eam	2+	*5	0	*7	$\begin{array}{l} \text{long (A)/word (eam)} \\ \text{Quotient} \rightarrow \text{word (A) Remainder} \rightarrow \text{word (ear)} \end{array}$	_	_	_	ı	_	-	_	*	*	_
MULU	Α	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	_	_	-	_	_	_	_	-	-	-
MULUW	Α	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	_	_	-	_	_	_	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	_	-	-	_	_	_	_	-	-	_

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnen	nonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
DIV	A	2	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	Z	-	-	-	-	-	-	*	*	_
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient → byte (A) Remainder → byte (ear)	Z	-	1	1	1	_	-	*	*	-
DIV	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient → byte (A) Remainder → byte (eam)	Z	_	ı	1	ı	_	_	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient → word (A) Remainder → word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient → word (A) Remainder → word (eam)	-	1	1	1	1	-	1	*	*	_
MULU	A	2	*8	0	0	byte (AH) *byte (AL) → word (A)	-	-	-	-	-	_	-	-	_	_
MULU MULU	A, ear	2 2 +	*9 *10	1 0	0 (b)	byte (A) *byte (ear) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULUW	A, eam Δ	2 +	*10 *11	0	(b)	byte (A) *byte (eam) \rightarrow word (A) word (AH) *word (AL) \rightarrow long (A)	_		_	_	_		_		_	
MULUW		2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW		2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	_

- *1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
- *2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
- *3: Set to 4 + (a) when the division-by-0, 11 + (a) or 22 + (a) for an overflow, and 23 + (a) for normal operation.
- *4: Positive dividend: Set to 4 when the division-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
- *5: Positive dividend: Set to 4 + (a) when the division-by-0, 11 + (a) or 30 + (a) for an overflow, and 31 + (a) for normal operation.

Negative dividend: Set to 4 + (a) when the division-by-0, 12 + (a) or 31 + (a) for an overflow, and 32 + (a) for normal operation.

- *6: When the division-by-0, (b) for an overflow, and $2 \times$ (b) for normal operation.
- *7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
- *8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
- *10: Set to 4 + (a) when byte (eam) is zero, 13 + (a) when the result is positive, and 14 + (a) when the result is negative.
- *11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
- *12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
- *13: Set to 4 + (a) when word (eam) is zero, 17 + (a) when the result is positive, and 20 + (a) when the result is negative.
- Notes: When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.
 - When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
 - For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	s	т	N	z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)				- - - -		* * * * *	* * * * *	R R R R R		- - - *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)		- - - -	1 1 1 1	- - - -	- - - -	* * * *	* * * * *	R R R R R		- - - *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+ 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)		1 1 1 1		_ _ _ _	1 1 1 1	* * * * *	* * * * *	R R R R R		- - - *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- -	- -		_ _ _	- -	* *	* *	R R R	- - -	_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)		11111			11111	* * * *	* * * * * *	R R R R R R		*
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	_ _ _ _	11111	_ _ _ _ _	- - - -	11111	* * * * * *	* * * * * *	RRRRR	_ _ _ _	- - - - *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	_ _ _ _	11111	_ _ _ _ _	- - - -	11111	* * * * *	* * * * * *	RRRRRR	_ _ _ _	- - - - *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	- -	- - -	_ _ _	- -	* * *	* * *	R R R	_ _ _	_ _ *

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	v	С	RMW
	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	_	_	_	_	*	*	R R		-
ORL ORL	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)	_ _	_ _	_ _	_ _	_ _	*	*	R R		_ _
	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	_ _	_ _	_ _	_ _	_ _	*	*	R R		_ _

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	s	T	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	-	1	-	_	*	*	*	*	-
NEG NEG	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	_ _	_	_ _	_ _	*	*	*	*	*
NEGW	Α	1	2	0	0	word (A) \leftarrow 0 – (A)	_	-	ı	-	-	*	*	*	*	-
NEGW NEGW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	-			_ _	*	*	*	*	*

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	Ι	s	Т	N	Z	٧	O	RMW
NRML A, R0	2	*1	1		$\begin{array}{l} \text{long (A)} \leftarrow \text{Shift until first digit is "1"} \\ \text{byte (R0)} \leftarrow \text{Current shift count} \end{array}$	-	-	1	ı	1	1	*	1	-	-

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	z	٧	С	RMW
RORC A	2	2	0	0	byte (A) \leftarrow Right rotation with carry	_	_	-	_	_	*	*	_	*	_
ROLC A	2	2	0	0	byte (A) ← Left rotation with carry	_	_	_	_	_	*	*	_	*	_
RORC ear	2	3	2	0	byte (ear) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	_
RORC eam	2+	5+ (a)	0	2× (b)	byte (eam) ← Right rotation with carry	_	_	_	_	_	*	*	_	*	*
ROLC ear	2	3	2	0	byte (ear) ← Left rotation with carry	_	_	-	_	_	*	*	_	*	_
ROLC eam	2+	5+ (a)	0	2× (b)	byte (eam) ← Left rotation with carry	-	_	-	-	-	*	*	_	*	*
ASR A, R0	2	*1	1	0	byte (A) ← Arithmetic right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSR A, R0	2	*1	1	0	byte (A) ← Logical right barrel shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSL A, R0	2	*1	1	0	byte (A) ← Logical left barrel shift (A, R0)	-	_	-	-	-	*	*	_	*	_
ASRW A	1	2	0	0	word (A) ← Arithmetic right shift (A, 1 bit)	_	_	_	_	*	*	*	_	*	_
LSRW A/SHRW A	1	2	0	0	word (A) ← Logical right shift (A, 1 bit)	_	_	_	_	*	R	*	_	*	_
LSLW A/SHLW A	1	2	0	0	word (A) ← Logical left shift (A, 1 bit)	_	_	-	-	-	*	*	_	*	_
ASRW A, R0	2	*1	1	0	word (A) ← Arithmetic right barrel shift (A,	_	_	_	_	*	*	*	_	*	_
LSRW A, R0	2	*1	1	0	R0)	_	_	_	_	*	*	*	_	*	_
LSLW A, R0	2	*1	1	0	word (A) ← Logical right barrel shift (A, R0)	_	_	_	_	_	*	*	_	*	_
					word (A) ← Logical left barrel shift (A, R0)										
ASRL A, R0	2	*2	1	0	long (A) ← Arithmetic right shift (A, R0)	_	_	_	_	*	*	*	_	*	_
LSRL A, R0	2	*2	1	0	long (A) ← Logical right barrel shift (A, R0)	_	-	_	_	*	*	*	-	*	_
LSLL A, R0	2	*2	1	0	long (A) ← Logical left barrel shift (A, R0)	_	_	_	_	_	*	*	_	*	_

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 19 Branch 1 Instructions [31 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	Z	٧	С	RMW
BZ/BEC	Q rel	2	*1	0	0	Branch when (Z) = 1	_	_	_	_	_	_	_	_	_	_
BNZ/BN	NE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLC) rel	2	*1	0	0	Branch when (C) = 1	_	_	_	_	_	_	_	_	_	_
BNC/BH	HS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	l —	_	_	_	_
BLT	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE	rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	0	Branch when $((V) \times (N)) \times (Z) = 1$	_	_	_	_	_	l —	_	_	_	_
BGT	rel	2	*1	0	0	Branch when $((V) xor (N)) or (Z) = 0$	_	_	_	_	_	l —	_	_	_	_
BLS	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI	rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_	_	_	l —	_	_	_	_
BRA	rel	2	*1	0	0	Branch unconditionally	_	_	_	_	_	l —	_	_	_	_
						•										
JMP	@A	1	2	0	0	word (PC) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
JMP	addr16	3	3	0	0	word (PC) ← àddr16	_	_	_	_	_	_	_	_	_	_
JMP	@ear	2	3	1	0	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
JMP	@eam	2+	4+ (a)	0	(c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
JMPP	@ear *3	2	5 ′	2)O	word (PC) \leftarrow (ear), (PCB) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
JMPP	@eam *3	2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP	addr24	4	4	0	Ô	word (PC) ← ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
						(PCB) ← ad24 16 to 23										
CALL	@ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
CALL	@eam *4	2+	7+ (a)	0	2× (c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
CALL	addr16 *5	3	6 ′	0	(c) ´	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
		1	7	0	2× (c)	Vector call instruction	_	_	_	_	_	_	_	_	_	_
	@ear *6	2	10	2	2× (c)	word (PC) \leftarrow (ear) 0 to 15,	_	_	_	_	_	_	_	_	_	_
J , , L L I	Godi				` '	(PCB) ← (ear) 16 to 23										
CALLP	@eam *6	2+	11+ (a)	0	*2	word (PC) \leftarrow (eam) 0 to 15,	_	_	_	_	_	_	_	_	_	_
] , ,	<u> </u>		\			(PCB) ← (eam) 16 to 23										
CALLP	addr24 *7	4	10	0	2× (c)	word (PC) ← addr0 to 15,	_	_	_	_	_	_	_	_	_	_
					. ,	(PCB) ← addr16 to 23										

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 20 Branch 2 Instructions [19 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	т	N	z	٧	С	RMW
CBNE A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CWBNE A, #imm16, rel	4	*1	Ö	0	Branch when word (A) ≠ imm16	_	_	_	_	_	*	*	*	*	_
CBNE ear, #imm8, rel	4	*2	1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE eam, #imm8, rel*10	4+	*3	0	(b)	Branch when byte (eam) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CWBNE ear, #imm16, rel	5	*4	1	O O	Branch when word (ear) ≠ imm16	_	_	_	_	_	*	*	*	*	_
CWBNE eam, #imm16, rel*1	5+	*3	0	(c)	Branch when word (eam) ≠ imm16	_	_	_	-	-	*	*	*	*	_
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	_	_	*	*	*	_	_
DBNZ eam, rel	3+	*6	2	2× (b)		_	_	_	_	_	*	*	*	_	*
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) = (ear) – 1, and (ear) ≠ 0	_	_	_	_	_	*	*	*	_	_
DWBNZ eam, rel	3+	*6	2	2× (c)	Branch when word (eam) = (eam) – 1, and (eam) ≠ 0	_	_	_	_	_	*	*	*	_	*
INT #vct8	2	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT addr16	3	16	ő	6× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INTP addr24	4	17	Ō	6× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT9	1	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
RETI	1	15	0	*7 ′	Return from interrupt	_	_	*	*	*	*	*	*	*	_
LINK #local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	_	_	_	_	_	_	ı	_	_	-
UNLINK	1	5	0	(c)	allocate local pointer area At constant entry, retrieve old frame pointer from stack.	_	_	_	_	_	_	_	_	_	_
RET *8 RETP *9	1	4 6	0	(c) (d)	Return from subroutine Return from subroutine	_ _	_ _	_ _	_ _	_ _	_ _	-	_ _	_ _	_ _

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Set to $3 \times$ (b) + $2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.

^{*8:} Retrieve (word) from stack

^{*9:} Retrieve (long word) from stack

^{*10:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 21 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	т	N	z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rist	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	$\begin{aligned} & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ & \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ & (\text{SP}) \leftarrow (\text{SP}) - 2\text{n}, ((\text{SP})) \leftarrow (\text{rlst}) \end{aligned}$		1 1 1 1	1 1 1 1		1 1 1 1		1 1 1 1			- - -
POPW A POPW AH POPW PS POPW rlst	1 1 1 2	3 3 4 *2	0 0 0 *5	(c) (c) (c) *4	$\begin{aligned} & \text{word (A)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (AH)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{word (PS)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2 \\ & \text{(rlst)} \leftarrow ((\text{SP})), (\text{SP}) \leftarrow (\text{SP}) + 2n \end{aligned}$	- - -	*	- - * -	- * -	- * -	- * -	- - * -	- * -	- * -	- - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8	2 2	3 3	0	0 0	byte (CCR) \leftarrow (CCR) and imm8 byte (CCR) \leftarrow (CCR) or imm8	_		*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_ _	_	_		_			-		_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	_ _ _	_ _ * *	1 1 1 1		1 1 1 1		1 1 1 1	_ _ _		- - -
ADDSP #imm8 ADDSP #imm16	2	3 3	0	0 0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16	_ _				-			–		_ _
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	-	1 1	_	*	*	<u> </u>		_ _
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank		111111	111111		111111		111111			- - - -

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 + (}push count) $-3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	T	N	z	٧	С	RMW
MOVB A, dir:bp MOVB A, addr16:bp MOVB A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *	1 1 1	1 1 1	1 1 1	* *	* *		- -	- - -
MOVB dir:bp, A MOVB addr16:bp, A MOVB io:bp, A	3 4 3	7 7 6	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	- -		1 1 1	1 1 1	1 1 1	* *	* *	_ _ _	- -	* * *
SETB dir:bp SETB addr16:bp SETB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	<u> </u>	1 1 1	1 1 1	1 1 1	1 1 1		<u> </u>	<u> </u>	<u> </u>	* *
CLRB dir:bp CLRB addr16:bp CLRB io:bp	3 4 3	7 7 7	0 0 0	2× (b) 2× (b) 2× (b)	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ 	1 1 1	1 1 1	1 1 1	1 1 1				- -	* *
BBC dir:bp, rel BBC addr16:bp, rel BBC io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	_ _ _		1 1 1	1 1 1	1 1 1		* *	_ _ _	_ _ _	- - -
BBS dir:bp, rel BBS addr16:bp, rel BBS io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	_ _ _	1 1 1	1 1 1	1 1 1	1 1 1		* *	_ 	_ 	- - -
SBBS addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	-	_	_	-	*	_	_	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	_
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	-	_	_	_	_	_	_	_	_	_

^{*1: 8} when branching, 7 when not branching

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	s	Т	N	z	٧	С	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	-	-	-	-	-	-	-	-	-	_
SWAPW	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Х	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Х	_	_	_	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ	-	_	_	-	R	*	-	_	_
ZEXTW	1	1	0	0	word zero extension	_	Z	_	_	_	R	*	_	_	_

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

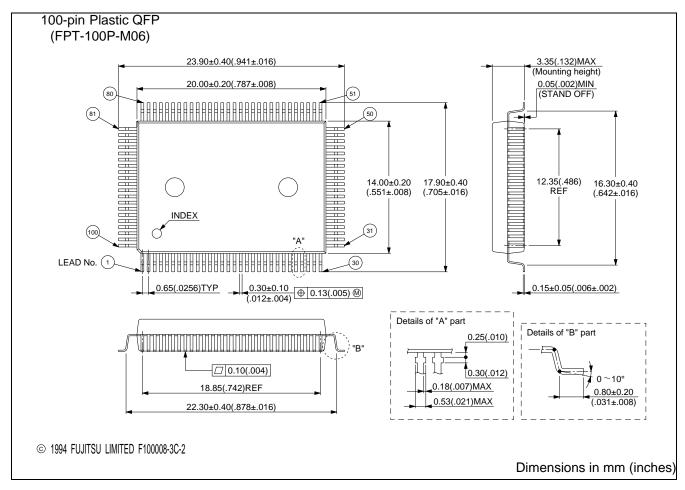
^{*4:} Undefined count

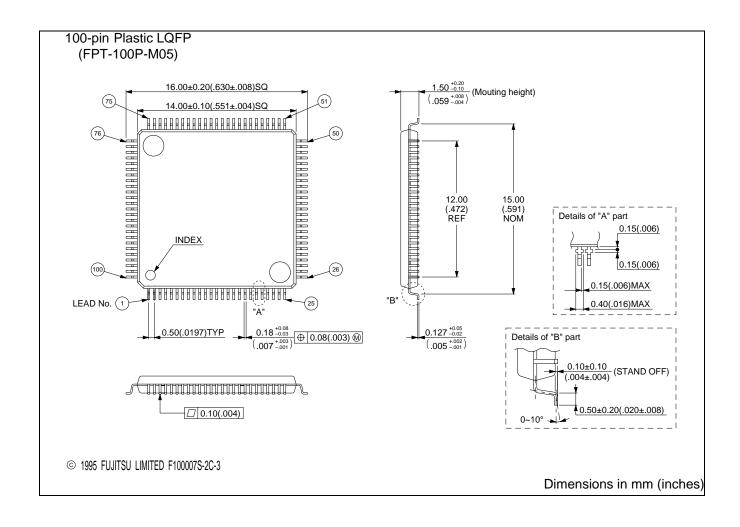
^{*5:} Until condition is satisfied

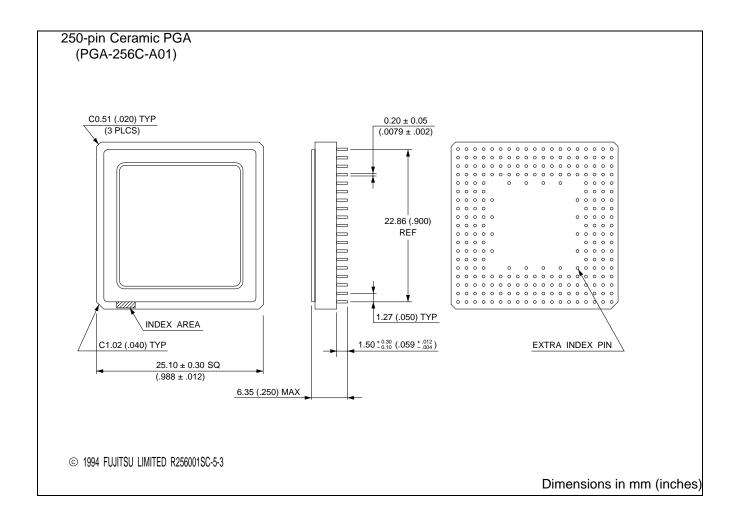
Table 24 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	s	Т	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	-	-	1	1	ı	1	ı	-	-	_
MOVSD	2	*2	*5	*3	Byte transfer @AH– ← @AL–, counter = RW0	-	_	_	_	_	_	_	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH–) – AL, counter = RW0	-	-	-	-	_	*	*	*	*	-
FISL/FILSI	2	6m +6	*5	*3	Byte filling @AH+ ← AL, counter = RW0	ı	ı	ı	ı	ı	*	*	-	ı	_
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSWD	2	*2	*8	*6	Word transfer $@AH-\leftarrow @AL-$, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH–) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	-
FILSW/FILSWI	2	6m +6	*8	*6	Word filling @AH+ ← AL, counter = RW0	-	-	-	-	-	*	*	-	-	_

m: RW0 value (counter value)


n: Loop count


- *1: 5 when RW0 is 0, $4 + 7 \times (RW0)$ for count out, and $7 \times n + 5$ when match occurs
- *2: 5 when RW0 is 0, $4 + 8 \times (RW0)$ in any other case
- *3: (b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.
- *4: (b) \times n
- *5: 2 × (RW0)
- *6: (c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.
- *7: (c) × n
- *8: 2 × (RW0)


■ ORDERING INFORMATION

Part number	Package	Remarks
MB90543PF MB90F543PF MB90548PF MB90F548PF	100-pin Plastic QFP (FPT-100P-M06)	
MB90543PFF MB90F543PFF MB90548PFF MB90F548PFF	100-pin Plastic LQFP (FPT-100P-M05)	
MB90V540CR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan

Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag

D-63303 Dreieich-Buchschlag Germany

T i (aa (aa

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9909

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.