DS07-12524-3E

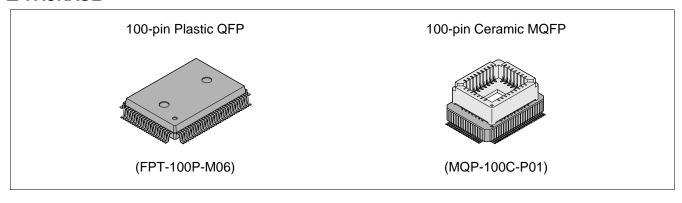
8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89890 Series

MB89898/899/P899/PV890

■ OUTLINE


The MB89890 series is a line of single-chip microcontrollers containing a great variety of peripheral functions such as dual clock control systems, 4-stage operating speed controller, DTMF signal generator, timer, PWM timer, serial interface, modem, A/D converter and external interrupt, as well as compact instruction set.

■ FEATURES

- F2MC-8L family CPU core
- · Dual clock control system
- · Maximum memory size: 64 Kbytes
- Minimum execution time: 0.5 μs at 8 MHz
 Interrupt processing time: 4.5 μs at 8 MHz
- I/O ports: max. 85 ports
- 21-bit time-base counter
- 8-bit PWM timer
- DTMF generator
- 8/16-bit timer
- 8-bit serial I/O
- Serial I/O with 1-byte buffer
- A/D converter
- Modem timer (pulse-width counter)
- · Modem signal output

(Continued)

■ PACKAGE

(Continued)

- External interrupt: 16 channels
- Power-on reset function
- Low-power consumption modes (subclock mode, watch mode, sleep mode, stop mode)
- CMOS technology

■ PRODUCT LINEUP

Part number Item	MB89898	MB89899	MB89P899	MB89PV890		
Classification		ced products // products)	One-time product OTPROM product	Piggyback/ evaluation product (for development)		
ROM size	48 K × 8 bits (internal mask ROM)	60 K × 8 bits (internal mask ROM)	60 K × 8 bits (internal OTPROM)	60 K × 8 bits (external ROM)		
RAM size	1.5 K × 8 bits		2.0 K × 8 bits			
Instruction bit length		8 k	pits			
Instruction length		1 to 3	bytes			
Data bit length		1, 8, 1	l6 bits			
The number of instructions		13	36			
Clock generator	Internal					
Minimum execution time	0.5 μs at 8 MHz to 8 μs at 8 MHz, 61 μs at 32.768 kHz					
Interrupt processing time	4.5 μs	4.5 μs at 8 MHz to 72 μs at 8 MHz, 549.3 μs at 32.768 kHz				
Ports () indicate shared function ports.	General-purpose output ports (N-ch open-drain): 21 (8) General-purpose output ports (CMOS): 8 (0) General-purpose I/O ports (N-ch open-drain): 8 (6) General-purpose I/O ports (CMOS): 48 (29) Total: 85 (43)					
PWM timer		8 bits × 1	channel			
Timer/counter		8 bits × 2 channels of	or 16 bits × 1 channel			
Serial I/O	8-bit serial I/O (with 1-byte buffer) \times 1					
A/D converter	8 bits × 8 channels					
DTMF generator	CCITT all-tone output capable (1 to 0(10), *, #, A to D) Single-tone output capable					
Soft modem receiving timer	5-bit noise reduction circuit + pulse-width measurement timer					

(Continued)

Part number Item	MB89898	MB89899	MB89P899	MB89PV890			
Soft modem transmitting circuit	approximately 1208 bps, approximately 2415 bps modem output						
External interrupt		16					
Time-base timer		21 bits					
Watch prescaler		15 bits					
Standby mode	Wat	Watch mode, subclock mode, sleep mode, stop mode					
Process		CMOS					
Operating voltage*	2.2 V to 6.0 V 2.7 V to 6.0 V						
EPROM for use		MBM27C512-20T\					

^{*:} Varies with conditions such as operating frequencies.

■ PACKAGE AND CORRESPONDING MODELS

Package	MB89898 MB89899 MB89P899	MB89PV890
FPT-100P-M06	0	×
MQP-100C-P01	×	0

○ : Available ×: Not available

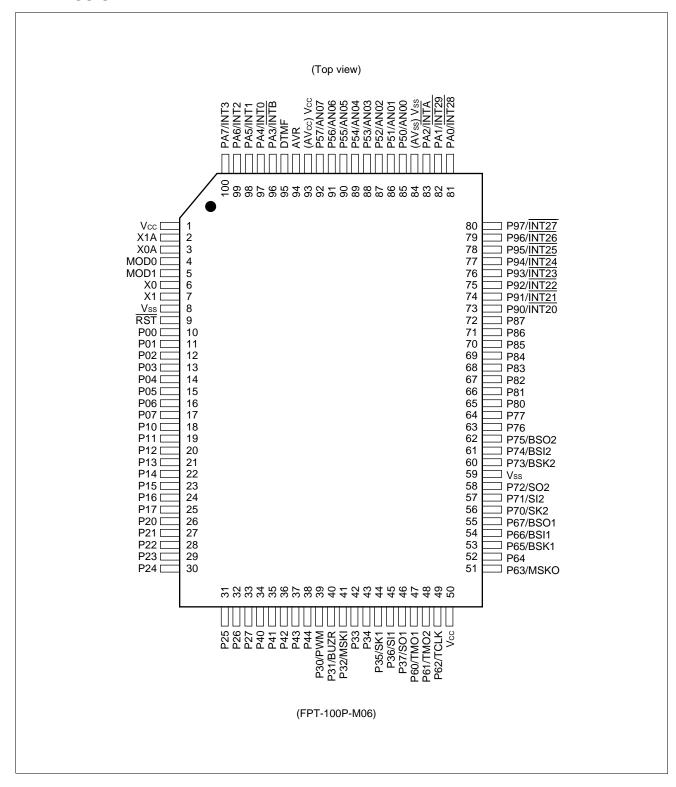
Note: For more information about each package, see "■ External Dimensions".

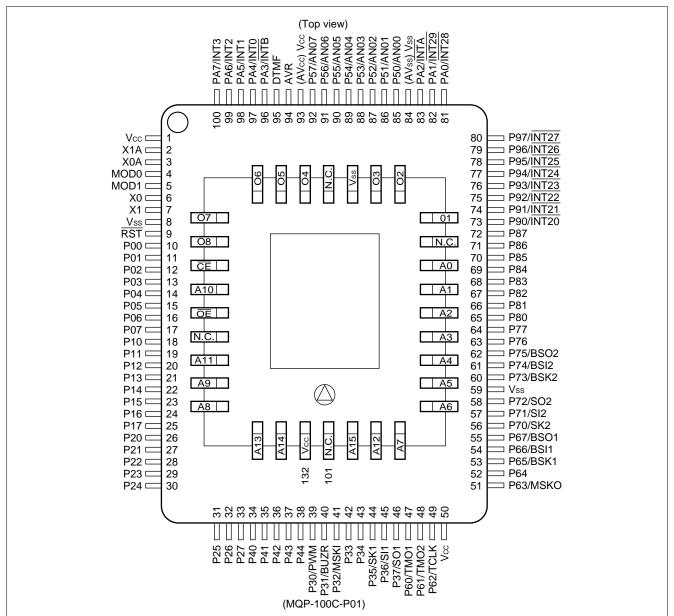
■ DIFFERENCES AMONG MODELS

1. Memory Size

Before evaluating using the piggyback model, verify its difference from the model that will actually be used.

2. Current Consumption


- In the case of the MB89PV890, added is the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed the product with an OTPROM (EPROM) will consume more current than the product with a mask ROM. However, the same is current consumption in sleep/stop mode.


3. Mask Options

Functions that can be selected as options and how to designate these options vary with product. Before using options, check "Mask Options". Take particular care on the following points:

- Options are fixed on the MB89PV890.
- Pull-up resistor options on the MB89P899 are in 2-bit units for P00 to P07, P10 to P17, P60 to P67, P90 to P97, and PA0 to PA7. Options are in 1-bit units for P40 to P44, P70 to P77, P80 to P87.

■ PIN ASSIGNMENT

• Pin assignment on package top (MB89PV890 only)

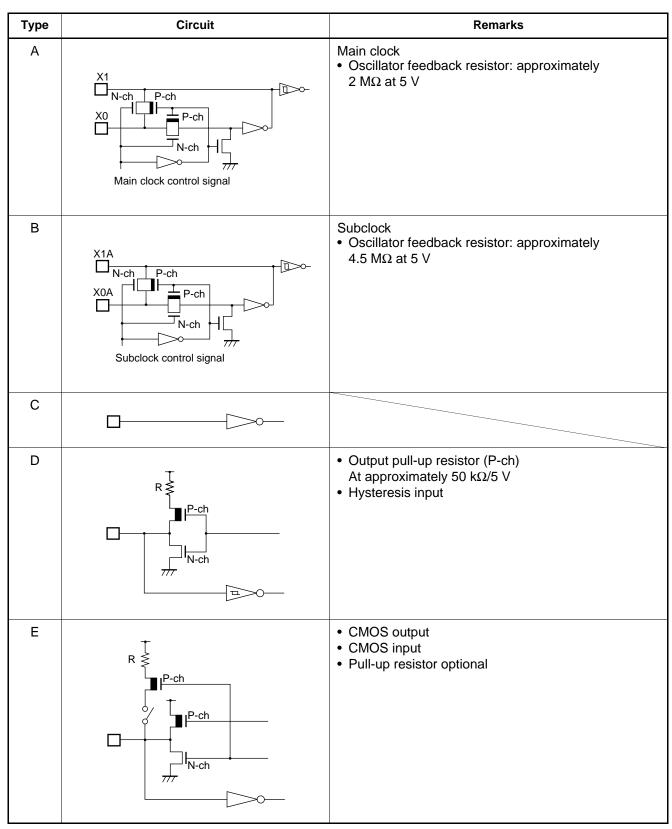
Pin no.	Pin name						
101	N.C.	109	A2	117	N.C.	125	ŌĒ
102	A15	110	A1	118	04	126	N.C.
103	A12	111	A0	119	O5	127	A11
104	A7	112	N.C.	120	O6	128	A9
105	A6	113	01	121	07	129	A8
106	A5	114	O2	122	08	130	A13
107	A4	115	O3	123	CE	131	A14
108	А3	116	Vss	124	A10	132	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function		
6	X0	Α			
7	X1		Crystal oscillator pins (8 MHz)		
3	X0A	В	0		
2	X1A		Crystal oscillator pins (32.768 kHz)		
4	MOD0	С	Operation mode select pins		
5	MOD1		Connect to Vss (GND) when using.		
9	RST	D	Reset input pin		
10 to 17	P00 to P07	E	General-purpose I/O ports		
18 to 25	P10 to P17	E	General-purpose I/O ports		
26 to 33	P20 to P27	G	General-purpose I/O ports		
39	P30/PWM	F	General-purpose I/O port Also serves as an 8-bit PWM.		
40	P31/BUZR	F	General-purpose I/O port Also serves as a buzzer output.		
41	P32/MSKI	F	General-purpose I/O port Also serves as a modem timer.		
42, 43	P33, P34	F	General-purpose I/O ports		
44, 45, 46	P35/SK1, P36/SI1, P37/SO1	F	General-purpose I/O ports Also serve as an 8-bit serial I/O output 1.		
34 to 38	P40 to P44	J	General-purpose I/O ports		
85 to 92	P50/AN00 to P57/AN07	Н	General-purpose output ports Also serve as an analog input.		
47, 48, 49	P60/TMO1, P61/TMO2, P62/TCLK	F	General-purpose I/O ports Also serve as an 8/16-bit timer.		
51	P63/MSKO	F	General-purpose I/O port Also serves as a modem output.		
52	P64	F	General-purpose I/O port		
53, 54, 55	P65/BSK1, P66/BSI1, P67/BSO1	F	General-purpose I/O ports Also serve as a serial I/O output 1 with 1-byte buffer.		
56, 57, 58	P70/SK2, P71/SI2, P72/SO2	I	General-purpose I/O ports Also serve as an 8-bit serial I/O output 2.		

(Continued)


*1: FPT-100P-M06 *2: MQP-100C-P01

(Continued)

Pin no.	Pin name	Circuit type	Function
QFP*1, MQP*2	- Pin name	Circuit type	Function
60, 61, 62	P73/BSK2, P74/BSI2, P75/BSO2	I	General-purpose I/O ports Also serve as a serial I/O output 2 with 1-byte buffer.
63, 64	P76, P77	I	General-purpose I/O ports
65 to 72	P80 to P87	J	General-purpose output ports
73 to 80	P90/INT20 to P97/INT27	F	General-purpose I/O ports External interrupt input is hysteresis input.
81, 82, 83	PA0/ <u>INT28</u> , PA1/ <u>INT2</u> 9, PA2/ <u>INTA</u>	F	General-purpose I/O ports External interrupt input is hysteresis input.
96, 97 to 100	PA3/INTB, PA4/INT0 to PA7/INT3	F	General-purpose I/O ports External interrupt input is hysteresis input.
95	DTMF	K	DTMF signal output pin
1, 50	Vcc	_	Power supply pin
8, 59	Vss	_	Power supply (GND) pin
93	Vcc (AVcc)	_	Power supply pin
84	Vss (AVss)	_	Power supply GND pin
94	AVR	_	A/D converter reference input pin

*1: FPT-100P-M06 *2: MQP-100C-P01

■ I/O CIRCUIT TYPE

(Continued)

Туре	Circuit	Remarks
F	R P-ch	CMOS output Hysteresis input Pull-up resistor optional
G	P-ch N-ch	CMOS output
Н	N-ch Analog input	N-ch open-drain output Analog input
ı	R P-ch	 N-ch open-drain output Hysteresis input Pull-up resistor optional

Туре	Circuit	Remarks
J	R P-ch	 N-ch open-drain output Pull-up resistor optional
К	OPAMP	DTMF analog output

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although operation is assured within the rated range of V_{CC} power supply voltage, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{CC} ripple fluctuations (P-P value) will be less than 10% of the standard V_{CC} value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required for even power-on reset (optional) and release from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P899


The MB89P899 is a one-time PROM version of the MB89890 series.

1. Features

- 60-Kbyte PROM on chip
- Option can be set using the EPROM programmer.
- Equivalency to the MBM27C1001, in EPROM mode (when programmed with the EPROM programmer), supports 4-byte programming mode.

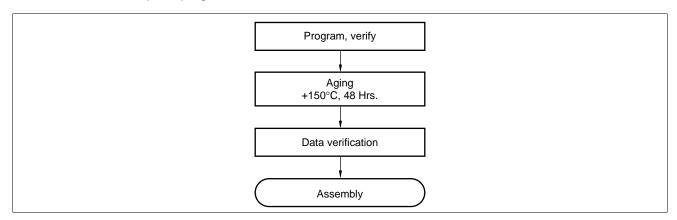
2. Memory Space

Memory space in each mode such as 60-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode the MB89P899 functions equivalent to the MBM27C1001. This allows the EPROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating ROM area for a single chip is 60 Kbytes (01000H to 0FFFFH) the EPROM can be programmed as follows:


• Programming procedure

- (1) Set the EPROM programmer to MBM27C1001.
- (2) Load program data into the EPROM programmer at 01000H to 0FFFFH.

 Load option data into addresses 00FE4H to 00FFCH. (For information about each corresponding options, see "7. Setting OTPROM Options.")
- (3) Program to 00FE4_H to 00FFC_H, and 01000_H to 0FFFF_H with the EPROM programmer.

4. Recommended Screening Conditions

High-Temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

Due to its nature, bit programming test can't be conducted as Fujitsu delivery test. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Part number	Package	Compatible socket adapter Sun Hayato Co., Ltd.
MB89P899	QFP-100	ROM-100QF-32DP-8LA

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106

7. Setting OTPROM Options

The programming procedure is the same as that for the program data. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map.

• PROM Option Bitmap

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00FE4н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Single/ double clock 1: 2 clock sytems 0: 1 clcok system	Reset output 1: Yes 0: No	Power-on reset 1: Yes 0: No	Oscillation s time 11 2 ¹⁸ /FcH 01 2 ¹² /FcH	10 2 ¹⁶ /Fсн
00FE8н	P17, P16	P15, P14	P13, P12	P11, P10	P07, P06	P05, P04	P03, P02	P01, P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	1: Yes	1: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00FECн	P67, P66	P65, P64	P63, P62	P61, P60	P37, P36	P35, P34	P33, P32	P31, P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00FF0н	PA7, PA6	PA5, PA4	PA3, PA2	PA1, PA0	P97, P96	P95, P94	P93, P92	P91, P90
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00FF4н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P44 Pull-up 1: No 0: Yes	P43 Pull-up 1: No 0: Yes	P42 Pull-up 1: No 0: Yes	P41 Pull-up 1: No 0: Yes	P40 Pull-up 1: No 0: Yes
00FF8н	P77	P76	P75	P74	P73	P72	P71	P70
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
00FFСн	P87	P86	P85	P84	P83	P82	P81	P80
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes

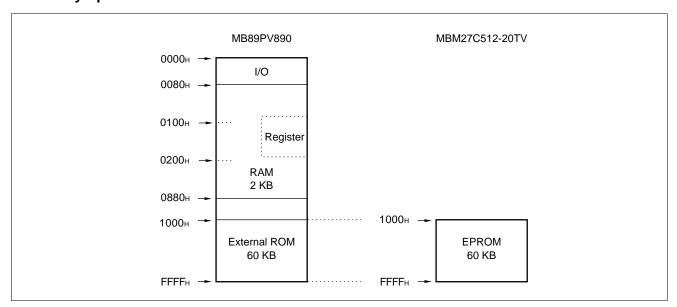
Notes: • Note that option area address values are equivalent to every fourth address to accommodate 4-byte programming mode.

• Each bit is set to '1' as the initialized value, therefore the pull-up option is not selected.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

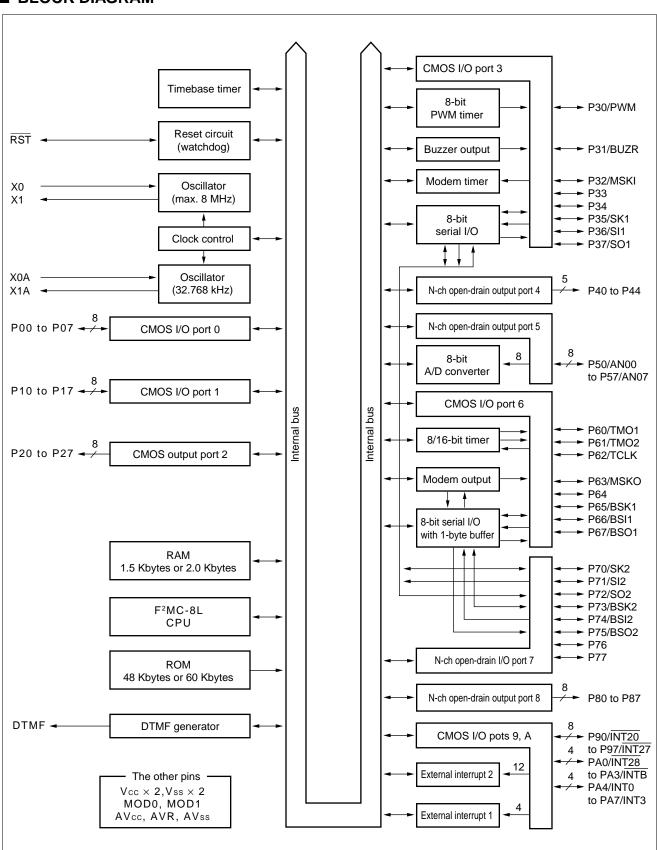
MBM27C512-20TV


2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

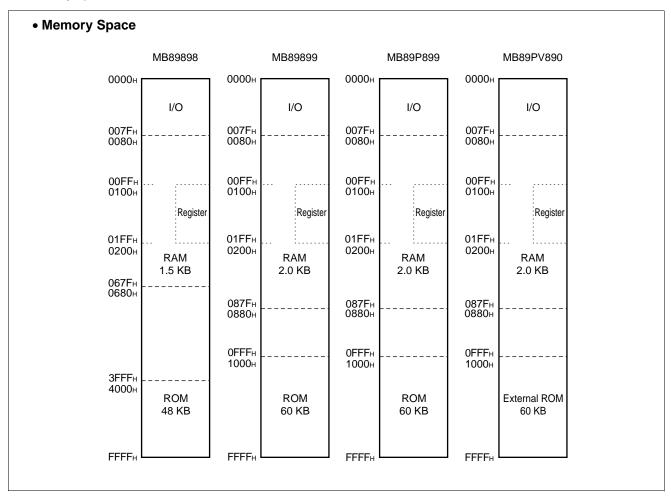
Package	Adapter socket part mumber
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403 FAX (81)-3-5396-9106


3. Memory Space

4. Programming Procedure

- (1) Set the EPROM programmer to MBM27C512-20TV.
- (2) Load program data into the EPROM programmer at 1000_H to FFFF_H.
- (3) Program to 1000_H to FFFF_H with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89890 series offer 64 Kbytes of memory for storing all of I/O, data, and program areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/O area. The data area can be divided into register, stack, and direct areas, according to the application. The program area is allocated from exactly the opposite end, that is, near the highest address. The tables of interrupt reset vectors and vector call instructions are allocated from the highest address within the program area. The memory space of the MB89890 series is structured as illustrated below:

2. Registers

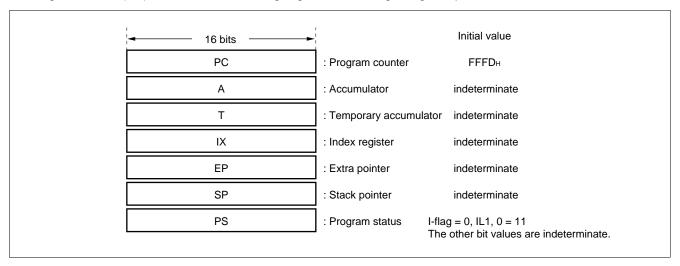
The F²MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose memory registers. The following dedicated registers are provided:

Program counter (PC): A 16-bit-long register for indicating the instruction storage positions

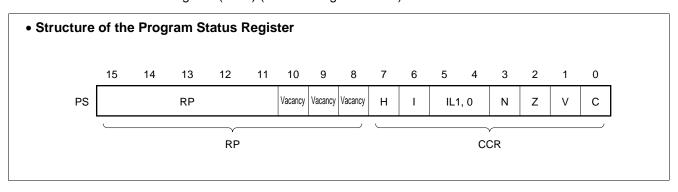
Accumulator (A): A 16-bit-long temporary register for arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit-long register which is used for arithmetic operations with the accumulator

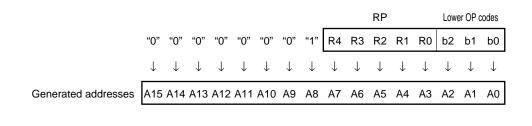

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit-long register for index modification


Extra pointer (EP): A 16-bit-long pointer for indicating a memory address

Stack pointer (SP): A 16-bit-long pointer for indicating a stack area

Program status (PS): A 16-bit-long register for storing a register pointer, a condition code



The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) (see the diagram below).

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

• Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to '1' when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. This flag is for decimal adjustment instructions.

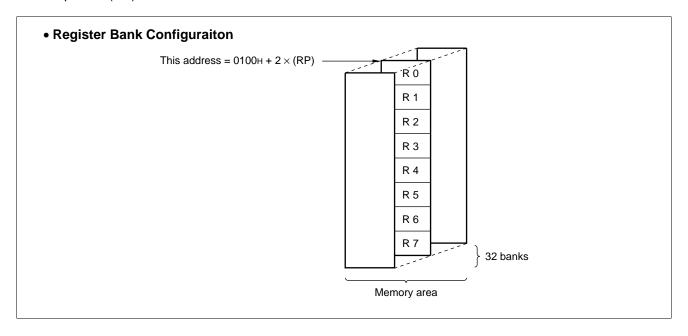
I-flag: Interrupt is enabled when this flag is set to '1'. Interrupt is disabled when the flag is cleared to '0'. Cleared to '0' at the reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	0	High
0	1	1	†
1	0	2	
1	1	3	Low

N-flag: Set to '1' if the highest bit becomes '1' as the result of an arithmetic operation. Cleared to '0' otherwise.

Z-flag: Set to '1' when an arithmetic operation results in '0'. Cleared to '0' otherwise.


V-flag: Set to '1' if the complement on '2' overflows as a result of an arithmetic operation. Cleared to '0' if the overflow does not occur.

C-flag: Set to '1' when a carry or borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to '0' otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit-long register for storing data

The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used. The bank currently in use is indicated by the register bank pointer (RP).

■ I/O MAP

Address	Write/read	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05н			Vacancy
06н			Vacancy
07н	(R/W)	SCC	System clock control register
08н	(R/W)	SMC	Standby control register
09н	(R/W)	WDTC	Watchdog control register
ОАн	(R/W)	TBTC	Time-base timer control register
0Вн	(R/W)	WPCR	Watch prescaler control register
0Сн	(R/W)	PDR3	Port 3 data register
0Dн	(R/W)	DDR3	Port 3 data direction register
0Ен	(R/W)	PDR4	Port 4 data register
0F _H	(R/W)	BZCR	Buzzer register
10н	(R/W)	PDR5	Port 5 data register
11н			Vacancy
12н	(R/W)	PDR6	Port 6 data register
13н	(R/W)	DDR6	Port 6 direction register
14н	(R/W)	PDR7	Port 7 data register
15н			Vacancy
16н	(R/W)	PDR8	Port 8 data register
17н			Vacancy
18н	(R/W)	PDR9	Port 9 data register
19н	(R/W)	DDR9	Port 9 data direction register
1Ан	(R/W)	PDRA	Port A data register
1Вн	(R/W)	DDRA	Port A data direction register
1Сн	(R/W)	SMR	Serial mode register
1Dн	(R/W)	SDR	Serial data register
1Ен	(R/W)	CNTR	PWM control register
1F _H	(W)	COMR	PWM compare register

(Continued)

Address	Write/read	Register name	Register description
20н	(R/W)	DTMC	DTMF control register
21н	(R/W)	DTMD	DTMF data register
22н	(R/W)	SBMR	Serial mode register with1-byte buffer
23н	(R/W)	SBFR	Serial flag register with1-byte buffer
24н	(W)	SBUFW	Serial write register with1-byte buffer
2 4 H	(R)	SBUFR	Serial read register with1-byte buffer
25н	(R)	SBDR	Serial data register with1-byte buffer
26н	(R/W)	T2CR	Timer 2 control register
27н	(R/W)	T1CR	Timer 1 control register
28н	(R/W)	T2DR	Timer 2 data register
29н	(R/W)	T1DR	Timer 1 data register
2Ан	(R/W)	MODC	Modem output control register
2Вн	(R/W)	MODA	Modem output data register
2Сн			Vacancy
2Dн	(R/W)	ADC1	A/D converter control register 1
2Ен	(R/W)	ADC2	A/D converter control register 2
2Fн	(R/W)	ADCD	A/D converter data register
30н	(R/W)	EIE1	External interrupt 1 enable register
31н	(R/W)	EIF1	External interrupt 1 flag register
32н	(R/W)	EIE2	External interrupt 2 enable register
33н	(R/W)	EIF2	External interrupt 2 flag register
34н	(R/W)	MDC1	Modem timer control 1 register
35н	(R/W)	MDC2	Modem timer control 2 register
36н	(R/W)	MLDH	Modem timer "H" level data register
37н	(R/W)	MLDL	Modem timer "L" level data register
38н			Vacancy
39н			Vacancy
ЗАн			Vacancy
3Вн			Vacancy
3Сн			Vacancy
3Dн	(R/W)	SSEL	Serial I/O port switching register
3Ен		1	Vacancy
3Fн			Vacancy

(Continued)

Address	Write/read	Register name	Register description			
40н to 7Вн		Vacancy				
7Сн	(W)	ILR1 Interrupt level register 1				
7Dн	(W)	ILR2	Interrupt level register 2			
7Ен	(W)	ILR3 Interrupt level register 3				
7Fн		Vacancy				

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

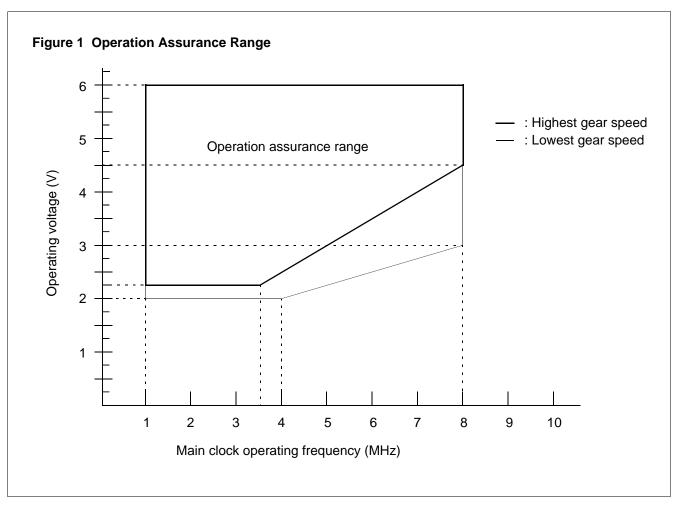
1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Donomoton	Cumb al	Va	lue	I Imit	Domonko
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss-0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss-0.3	Vss + 7.0	V	Set Vcc = AVcc*
Transfer supply tollage	AVR	Vss-0.3	Vss + 7.0	V	AVR must not exceed "AVcc + 0.3 V".
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	Except P40 to P44, P70 to P77, P80 to P87
input voitage	VI	Vss - 0.3	Vss + 7.0	V	P40 to P44, P70 to P77, P80 to P87
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	
"L" level maximum output current	Іоь		20	mA	Peak value
"L" level average output current	lolav	_	10	mA	Specified by the average value of 1 hour.
"L" level total maximum output current	∑lo∟		120	mA	Peak value
"L" level total average output current	Σ lolav	_	40	mA	Specified by the average value of 1 hour.
"H" level maximum output current	Іон		-20	mA	Peak value
"H" level average output current	Іонач	_	-10	mA	Specified by the average value of 1 hour.
"H" level total maximum output current	∑Іон	_	-60	mA	Peak value
"H" level total average output current	∑Iohav	_	-20	mA	Specified by the average value of 1 hour.
Power consumption	PD	_	200	mW	
Operating temperature	TA	-20	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*:} Use AVcc and Vcc set to the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks	
Farameter	Syllibol	Min.	Max.	Ullit	Remarks	
	Vcc	2.2*	6.0	V	See Figure 1.	
Power supply voltage	AVcc	1.5	6.0	V	Retains the RAM state in the stop mode	
	AVR	2.0	AVcc	V		
Operating temperature	TA	-20	+85	°C		

^{*:} This value varies with the DTMF generator assurance range.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, T_A = -20°C to $+85^{\circ}\text{C}$)

Devementes	Comp. al	Din			Value			Domorko
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	VIH	P00 to P07, P10 to P17	_	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	Vihs	P30 to P37, P60 to P67, P90 to P97, PA0 to PA7, RST, MOD0, MOD1, X0, X0A	_	0.8 Vcc	_	Vcc+0.3	V	
	VIL	P00 to P07, P10 to P17	_	Vss-0.3	_	0.3 Vcc	V	
"L" level input voltage	VILS	P30 to P37, P60 to P67, P90 to P97, PA0 to PA7, RST, MOD0, MOD1, X0, X0A	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin	Vp	P40 to P47, P70 to P77, P80 to P87	_	Vss-0.3	_	Vss + 7.0	V	N-ch open- drain
applied voltage	VD	P50 to P57	_	Vss-0.3	_	Vcc + 0.3	V	N-ch open- drain
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67, P90 to P97, PA0 to PA7	Iон = −2.0 mA	2.4	_	_	V	
"L" level output	Vol1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P60 to P67, P90 to P97, PA0 to PA7	IoL = 4.0 mA	_	_	0.4	V	
voltage	V _{OL2}	RST	IoL = 4.0 mA	_	_	0.4	V	
	V _{OL3}	P40 to P44, P70 to P77, P80 to P87	IoL = 8.0 mA	_	_	0.6	V	
Input leakage current (Hi-z output leakage current)	lu	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P44, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA7, MOD0, MOD1	0.45 V < V _I < V _{CC}	_	_	±5	μΑ	

(Continued)

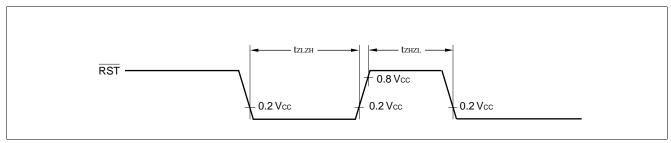
(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, TA = -20°C to $+85^{\circ}\text{C}$)

Donom oton	0	Di-		Avec = vec = s		Value			Domorko
Parameter	Symbol	Pin		Condition	Min.	Тур.	Max.	Unit	Remarks
				FcH = 4 MHz Vcc = 5.0 V in the main clock operation	_	6	9	mA	Highest gear speed
Power supply current	Icc			F _{CH} = 4 MHz V _{CC} = 3.0 V in the main clock operation	_	1.2	1.8	mA	Lowest gear speed
		Mhen DTMF operation is stopped	pedd	FcH = 8 MHz Vcc = 5.0 V in the main clock operation	_	13	26	mA	Highest gear speed
			peration is sto	$F_{\text{CH}} = 8 \text{ MHz}$ $V_{\text{CC}} = 3.0 \text{ V}$ in the main clock operation	_	3	5	mA	Lowest gear speed
Current	Iccs ₁		en DTMF o	$F_{CH} = 4 \text{ MHz}$ $V_{CC} = 5.0 \text{ V}$ in the main sleep mode	_	2.5	4	mA	Highest gear speed
	ICCS1		Whe	$F_{CH} = 8 \text{ MHz}$ $V_{CC} = 5.0 \text{ V}$ in the main sleep mode	_	4	8	mA	Highest gear speed
	Iccs2		FcL = 32.768 kHz Vcc = 3.0 V in the subclock sleep mode	_	15	2.5	μА		
	Іссн1			T _A = +25°C Vcc = 3.0 V in the subclock stop mode	_	_	1	μΑ	

(Continued)

 $(AVcc = Vcc = 5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -20^{\circ}C to +85^{\circ}C)$

		D:		Avcc = vcc = ;	0.0 (=.0)	Value	0.0 1,		
Parameter	Symbol	Pin	C	ondition	Min.	Тур.	Max.	Unit	Remarks
	Іссн2		stopped	TA = +85°C Vcc = 3.0 V in the subclock stop mode		1	10	μА	
	Ісѕв		When DTMF operation is	FcL = 32.768 kHz Vcc = 3.0 V in the subclock operation		50	75	μА	
	Ісст		When D	FcL = 32.768 kHz Vcc = 3.0 V in the watch mode	l	_	15	μΑ	
		Vcc	During DTMF operation	$F_{CH} = 4 \text{ MHz}$ $V_{CC} = 5.0 \text{ V}$ in the main clock operation	-	8	12	mA	Highest gear speed
Power supply current				FcH = 4 MHz Vcc = 3.0 V in the main clock operation	_	2.3	3.4	mA	Lowest gear speed
	Іссь			During DTM	FcH = 8 MHz Vcc = 5.0 V in the main clock operation	_	17	31	mA
				FcH = 8 MHz Vcc = 3.0 V in the main clock operation	_	6	11	mA	Lowest gear speed
	IA				_	1.5	3.5	mA	When A/D conversion is operating
	AVcc I _{AH}	AVcc	Fсн	= 8 MHz		1	5	μА	When A/D conversion is not operating
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss		_	_	10	_	pF	

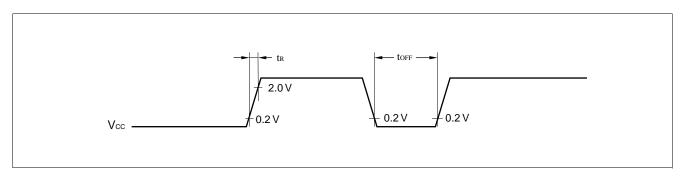

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 V\pm 10\%, Vss = 0.0 V, TA = -20^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ue	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Ollic	Kemarks
RST "L" pulse width	t zlzh		48 txcyl	_	ns	
RST "H" pulse width	t zhzL	_	24 txcyL	_	ns	

Note: txcyL is the oscillation cycle input to the X0.



(2) Power-on Reset

 $(Vss = 0.0 V, T_A = -20^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Value		Value		Unit	Remarks
rarameter	Syllibol	Condition	Min.	Max.	Oilit	iveillai ka		
Power supply rising time	t R		_	50	ms	Power-on reset function only		
Power supply cut-off time	toff		1	_	ms	Due to repeated operations		

Note: Make sure that power supply rises within the selected oscillation stabilization time selected. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

(Vcc = +5.0 V \pm 10%, Vss = 0.0 V, T_A = -20°C to +85°C)

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farameter	Symbol	Fili lialile	Condition	Min.	Тур.	Max.	Oilit	Nemarks
Clock frequency	Fсн	X0, X1		1	_	8	MHz	Main clock
Clock frequency	FcL	X0A, X1A		_	32.768	_	kHz	Subclock
Clock evole time	t HCYL	X0, X1		125	_	1000	ns	Main clock
Clock cycle time	t LCYL	X0A, X1A		_	30.5		μs	Subclock
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	_	ns	External clock
Input clock pulse width	Pwlh Pwll	X0A		1	15.2	_	μs	External clock
Input clock rising/falling time	tcr1 tcr1	X0				24	ns	External clock
	tcr2 tcr2	X0A		_		200	ns	External clock

*X0 and X1 Timing and Conditions of Applied Voltage

 *X0

 *X0

 *X0

 *X0

 *X0

 *X0

 *X0

 *X0

 *X1

 *X1

 *X1

 *X1

 *X2

 *X1

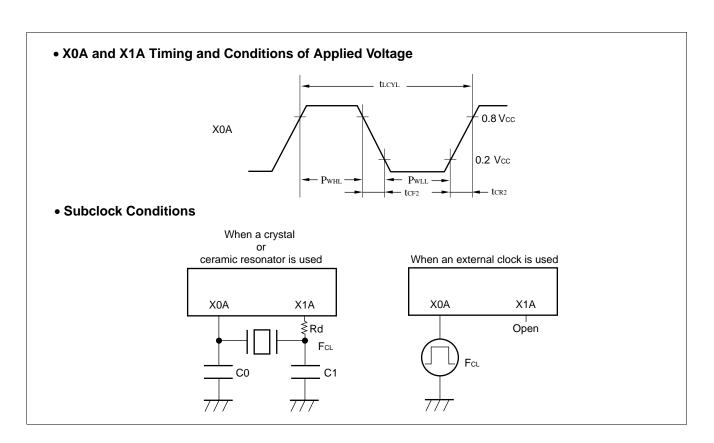
 *X2

 *X3

 *X1

 *X3

 *X1

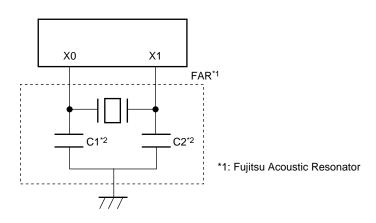

 *X3

 *X1

 *X3

 *X4

 *X4

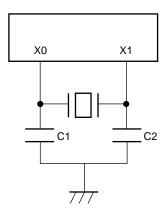

(4) Instruction Cycle

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle	t	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	μs	(4/FcH) $t_{inst} = 0.5 \mu s$ when operating at FcH = 8 MHz
(minimum execution time)	Tinst	2/FcL	μs	$t_{\text{inst}} = 61.036 \ \mu \text{s}$ when operating at $F_{\text{CL}} = 32.768 \ \text{kHz}$

^{*1:} When operating at the main clock, t_{inst} varies with the execution time (gear) setting, within the following range: Min. = 4/FcH, Max. = 64/FcH.

(5) Recommended Resonator Manufacturers

• Sample Application of Piezoelectric Resonator (FAR Series)



FAR part number (built-in capacitor type)	Frequency (MHz)	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)	Loading capacitors*2
FAR-C4□A-03580-□01	3.58	±0.5%	±0.5%	Built-in
FAR-C4_G-1000005	10.00	±0.5%	±0.5%	Dulit-III

Inquiry: FUJITSU LIMITED

^{*2:} When operating at the subclock, $t_{inst} = 2/F_{CL}$.

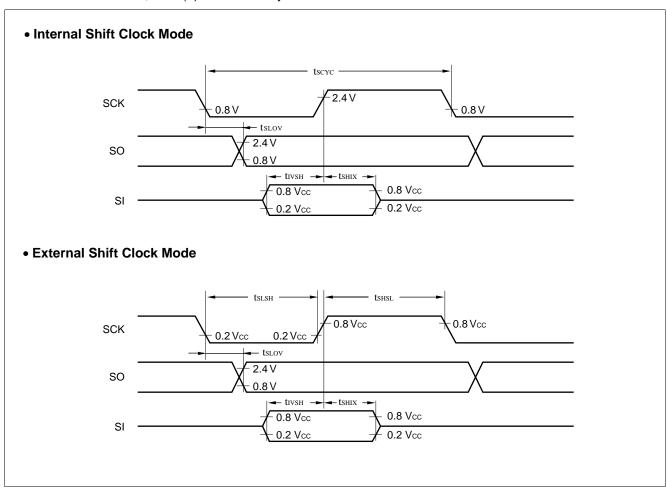
• Sample Application of Ceramic Resonator

• Mask ROM products

Resonator manufacturer	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.00	30	30	Not required
	CST8.00MTW	0.00	Built-in	Built-in	Not required

Inquiry: Murata Mfg. Co., Ltd

• Murata Electronics North America. Inc.: TEL 1-404-436-1300

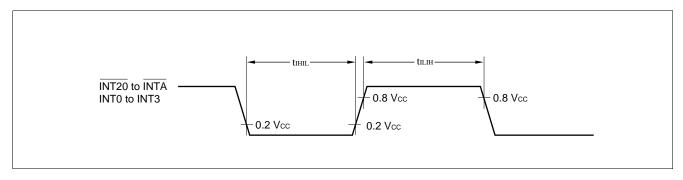

- Murata Europe Mnagement GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

(6) Serial I/O Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -20^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
rarameter			Condition	Min.	Max.	Ollit	Remarks
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs	
$SCK \downarrow \to SO$ time	tslov	SCK, SO	Internal shift	-200	200	ns	
Valid SI \rightarrow SCK $↑$	tıvsh	SI, SCK	clock mode	200	_	ns	
$SCK \uparrow \to valid \; SI \; hold \; time$	tsнıx	SCK, SI		200	_	ns	
Serial clock "H" pulse width	tshsl	SCK	External shift clock mode	1 tinst*	_	μs	
Serial clock "L" pulse width	t slsh	SUN		1 tinst*	_	μs	
$SCK \downarrow \rightarrow SO$ time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK $↑$	tıvsh	SI, SCK		200	_	ns	2 × txcyL
$SCK \uparrow \rightarrow valid SI hold time$	tshix	SCK, SI		200		ns	$2 \times t$ XCYL

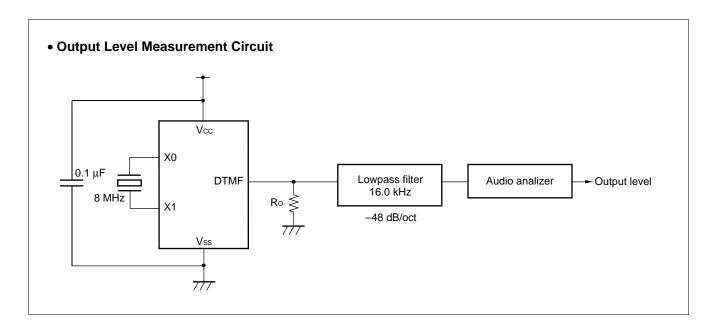
^{*:} For information on tinst, see "(4) Instruction Cycle."



(7) Peripheral Input Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -20^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Va		Unit	Remarks
Faranietei	Syllibol	FIII	Min.	Max.	Onit	iveillai ks
Peripheral input "H" level pulse width	tıшн	INT20 to INTA INT0 to INT3	2 tinst*	_	μs	
Peripheral input "L" level pulse width	t ıHIL	INT20 to INTA INT0 to INT3	2 tinst*	_	μs	

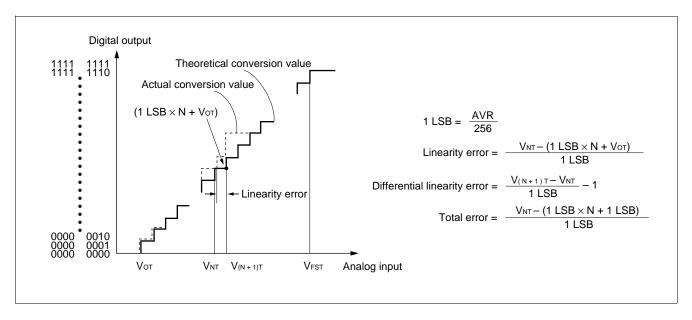

*: For information on tinst, see "(4) Instruction Cycle."

(8) Electrical Characteristics of DTMF Generator

 $(AVss = Vss = 0.0 V, T_A = -20^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Value			Unit	Remarks	
	Syllibol	Condition	Min.	Тур.	Max.	Oilit	Remarks	
Operating voltage range	_	_	2.5	5.0	6.0	V		
Output load requirements	Ro	Vcc = 2.5 V to 6.0 V	20	_	_	kΩ	Defined when the DTMF pin is connected to a pull-down resistor.	
DTMF output offset voltage (at signal output)	Vмоғ	Vcc = 5.0 V	_	0.4	_	V		
DTMF output amplitude (ROW single tone)	VMFOR	Vcc = 5.0 V	-16.3	-14.0	-12.5	dBm	When the DTMF pin is	
Difference between COLUMN and ROW levels	RMF	_	1.6	2.0	2.4	dB	open. Ro = 200 k Ω	
Distortion ratio	_	_	_	_	7	%		

5. A/D Converter Electrical Characteristics

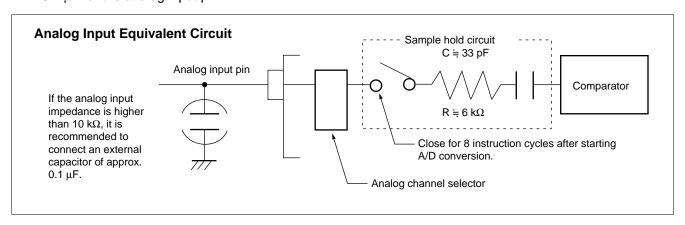

 $(AVcc = Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -20^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition			Unit	3 3 3 4 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
Parameter	Oyinbor		name Condition Mi		Тур.	Max.	Unit	Remarks	
Resolution				_	_	8	bit		
Total error				_	_	±1.5	LSB		
Linearity error	_			_	_	±1.0	LSB		
Differential linearity error			AVR =	_	_	±0.9	LSB		
Zero transition voltage	Vот	_	AVcc = 5.0 V	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 1.5 LSB	mV		
Full-scale transition voltage	VFST			AVR – 1.5 LSB	AVR – 1.5 LSB	AVR + 1.5 LSB	mV		
Interchannel disparity				_	_	0.5	LSB		
A/D mode conversion time	_	_			_	44 tinst*	_	μs	
Sense mode conversion time				_	12 tinst*	_	μs		
Analog port input current	IAIN	AN0 to	_	_	_	10	μА		
Analog input voltage	_	AINI		0.0	_	AVR	V		
Reference voltage	_			0.0	_	AVcc	V		
Reference voltage supply current	lR	AVR	AVR =	_	100	300	μА	When starting A/D conversion	
	lгн		AVcc = 5.0 V	_	_	1	μΑ	When starting A/D conversion	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

6. A/D Converter Glossary

- Resolution
 - Analog changes that are identifiable by the A/D converter When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.
- Linearity error (unit: LSB)
 - The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics
- Differential linearity error (unit: LSB)
 - The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error (unit: LSB)
 - The difference between theoretical and actual conversion values


7. Notes on Using A/D Converter

• Input impedance of the analog input pins

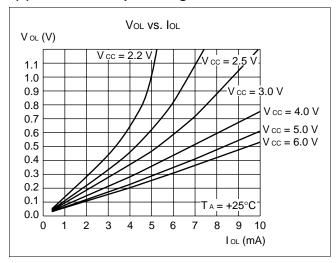
The A/D converter used for the MB89890 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \text{ k}\Omega$).

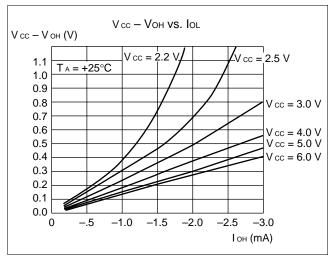
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx. 0.1 μ F for the analog input pin.

Error

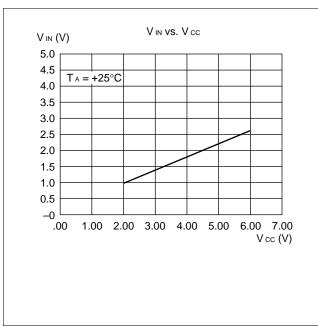
The smaller the | AVR – AVss |, the greater the error would become relatively.

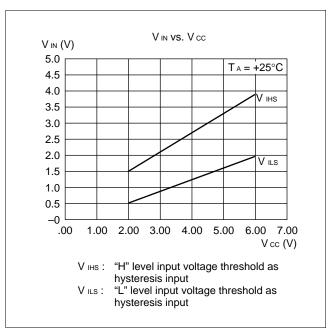

Order of turning on A/D converter and analog input

Make sure to turn on the digital power supply (Vcc) before or at the same time with turning on the A/D converter power supply (AVcc, AVss) and application of AN00 to AN07.

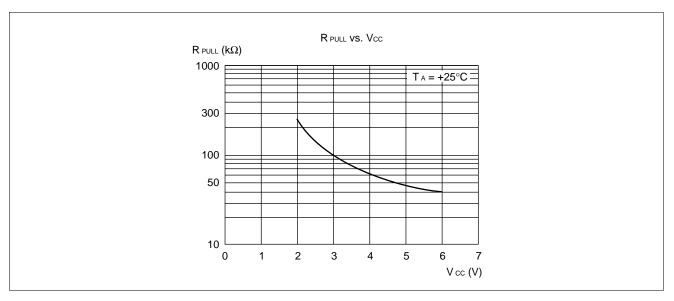

To turn off the power, turn off the A/D converter power supply (AVcc, AVss) and stop the analog input (AN00 to AN07) before or at the same time with turning off the digital power supply (Vcc).

■ ELECTRICAL CHARACTERISTICS


(1) "L" Level Output Voltage


(2) "H" Level Output Voltage


(CMOS Input)


(3) "H" Level Input Voltage/"L" Level Input Voltage (4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

■ INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
АН	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: The number of instructions

#: The number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

• AL and AH must become the contents of AL and AH prior to the instruction executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	-	-	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	-	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	-	_	_		48 to 4F
MOV A,#d8	2	2	$(A) \leftarrow d8$	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	(A) ← ((EP))	AL	_	_	++	07
MOV A,Ri	3	1	(A) ← (Ri)	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	$(dir) \leftarrow d8$	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	$(Ri) \leftarrow d8$	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
NACY (1.4.	_	_	$((IX) + off + 1) \leftarrow (AL)$					5.4
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	-11.1		E3
MOVW A,#d16	3	3	$(A) \leftarrow d16$	AL	ΑH	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	ΑH	dH	++	C5
MOVW A,@IX +off	5		$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
MOVAV A oxt	_	3	$(AL) \leftarrow ((IX) + off + 1)$	AL	АН	dH		C4
MOVW A,ext MOVW A,@A	5 4	1	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АП	dH	++	93
	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1$	AL	АП	dH	++	93 C7
MOVW A,@EP MOVW A,EP	2	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL —	А П	dH	++	F3
MOVW A,EP	3	3	(A) ← (EP) (EP) ← d16	_	_	u -		E7
MOVW LF,#d10	2	1	$(IX) \leftarrow (A)$	_				E2
MOVW A,IX	2	1	$(IX) \leftarrow (X)$ $(A) \leftarrow (IX)$		_	dH		F2
MOVW A,IA	2	1	$(A) \leftarrow (A)$ $(SP) \leftarrow (A)$		_	_		E1
MOVW A,SP	2	1	$(A) \leftarrow (A)$ $(A) \leftarrow (SP)$		_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (B)$	_	_	_		82
MOV @A,T	4	1	$(A) \leftarrow (T)$ $(A) \leftarrow (TH), (A) + 1 \leftarrow (TL)$	_	_	_		83
MOVW 1X,#d16	3	3	$(IX) \leftarrow d16$	_	_	_		E6
MOVW A,PS	2	1	(A) ← (PS)	_	_	dH		70
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	$(dir): b \leftarrow 1$	_	_			A8 to AF
CLRB dir: b	4	2	(dir): $b \leftarrow 0$	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	АН	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	$(A) \leftarrow (PC)$	_	_	dH		F0

Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	-	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	<u> </u>	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	-	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	-	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	-11.1	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	-	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
INCW EP	3	1	$(EP) \leftarrow (EP) + 1$	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	~ -		C2
INCW A DEC Ri	4	1	$(A) \leftarrow (A) + 1$	_	-	dH	++	C0 D8 to DF
DEC KI	3	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	
DECW EP	3	1	$(EP) \leftarrow (EP) - 1$	_	_	_		D3 D2
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$ $(A) \leftarrow (A) - 1$	_	-	dH	++	D2 D0
MULU A	19	1	$(A) \leftarrow (A) - 1$ $(A) \leftarrow (AL) \times (TL)$	_	_	dH	++	01
DIVU A	21	1	$(A) \leftarrow (AL) \times (TL)$ $(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (1) \land (AL), MOD \rightarrow (1)$ $(A) \leftarrow (A) \land (T)$	uL _	-	dH	++R-	63
ORW A	3	1	$(A) \leftarrow (A) \land (1)$ $(A) \leftarrow (A) \lor (T)$			dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \lor (T)$ $(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	53
CMP A	2	1	(TL) – (AL)	_	_	_	++++	12
CMPW A	3	1	(T) (A)	_	_	_	++++	13
RORC A	2	1	$C \rightarrow A -$	_	_	_	++-+	03
		-						
ROLC A	2	1	$C \leftarrow A \leftarrow$	-	-	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	-	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	+ + R –	52
XOR A,#d8	2	2	(A) ← (AL) ∀ d8	_	_	_	+ + R –	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	+ + R –	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ (\ (EP) \)$	-	_	_	+ + R -	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (\ (IX) + off)$	-	_	_	+ + R -	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	-	_	_	++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \wedge (TL)$	-	_	_	+ + R -	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	-	_	_	++R-	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	-	_	_	+ + R –	65

(Continued)

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	-	_	++R-	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R –	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R –	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R –	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R –	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R –	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R –	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

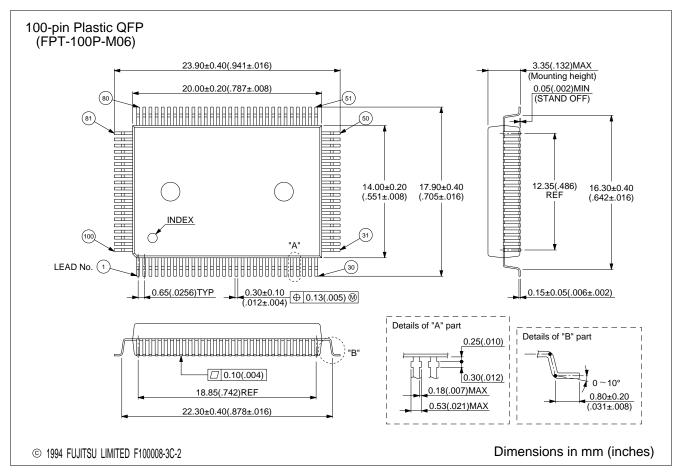
Mnemonic	2	#	Operation	TL	TH	АН	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	-	-		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If $(dir: b) = 1$ then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

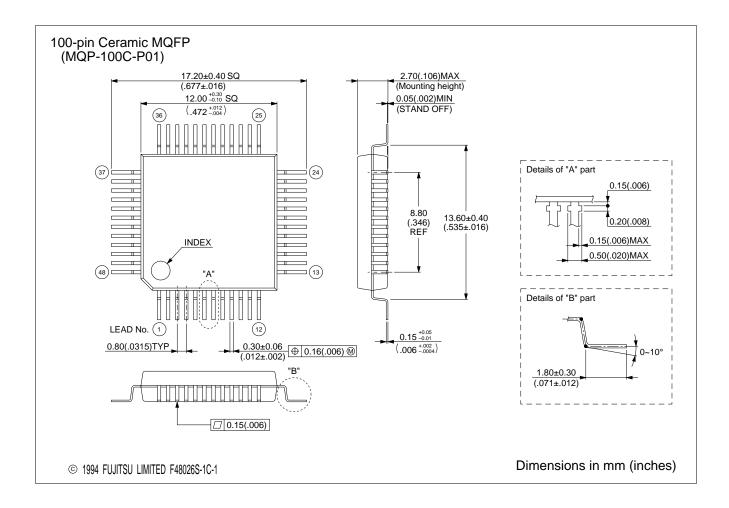
Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

	INSTRUCTION MAP															
ч	MOVW A,PC	MOVW A,SP	MOVW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	BP rel	BN ē	BNZ rel	BZ rel	BGE rel	BLT rel
Е	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW A	DECW SP	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
C	INCW A	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
٧	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND A	ANDW	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
2	POPW A	POPW IX	XOR	XORW	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @ IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC A	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC A	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
1	SWAP	DIVU A	CMP	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	NOP	MULU A	ROLC A	RORC	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
LH	0	-	2	3	4	5	9	7	80	6	4	a	ပ	۵	ш	ш


■ MASK OPTIONS


	Part number	М	B8989	8/9	ľ	ИВ89Р	899	MB89PV890	
No.	Specifying procedure	Sp orde	ecify w ring ma	hen Isking	Spec	ify with rogram	EPROM mer	Specifying not possible	
1	Pull-up resistors	P10P30P40P60P70P80P90	to P07 to P17 to P37 to P44 to P67 to P77 to P87 to P97	7	• P10 • P30 • P60 • P90 • PA0 Select) to P07) to P07) to P17)	7 7 7 7 7 7 le pin 4 7	Fixed to no pull-up resistor	
2	Power-on reset (POR) • Power-on reset provided • No power-on reset	Selecta	ble		Selecta	ıble		Fixed to power-on reset optional	
3	Selection of the oscillation stabilization time (OSC) The oscillation stabilization time initial value can be set with WTM1 bit and WTM0 bit.	Selecta WTM1 0 0 1		2 ³ /Fсн 2 ¹² /Fсн 2 ¹⁶ /Fсн 2 ¹⁸ /Fсн	Selecta WTM1 0 0 1		2 ³ /Fсн 2 ¹² /Fсн 2 ¹⁶ /Fсн 2 ¹⁸ /Fсн	Fixed to oscillator stabilization 2 ¹⁸ /FcH	
4	Reset pin output (RST) • Reset output provided • No reset output	Selectable			Selecta	able		Fixed to reset output optional	
5	Selection of clock mode (CLK) • Double clock mode • Single clock mode	Selectable			Selecta	able		Fixed to double clock mode	

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89898PF MB89899PF MB89P899PF	100-pin Plastic QFP (FPT-100P-M06)	
MB89PV890CF	100-pin Ceramic MQFP (MQP-100C-P01)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED

Corporate Global Business Support Division

Electronic Devices

KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.

Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center

Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH

Am Siebenstein 6-10

D-63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD

#05-08, 151 Lorong Chuan

New Tech Park Singapore 556741

Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9711

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.