DS07-12501-4E

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89620 Series

MB89623/T623/V623/625/P625/W625/T625/V625/626/627/P627/W627 MB89PV620

■ DESCRIPTION

The MB89620 series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to the F²MC-8L CPU core which can operate at low voltage but at high speed, the microcontrollers contain a variety of peripheral functions such as timers, serial interfaces, an A/D converter, and an external interrupt.

The MB89620 series is applicable to a wide range of applications from welfare products to industrial equipment, including portable devices.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

Various package options
 Three types of QFP packages (1-mm, 0.65-mm, or 0.5-mm lead pitch)
 SDIP packages

High-speed processing at low voltage
 Minimum execution time: 0.4 μs/3.5 V, 0.8 μs/2.7 V

• F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

Four types of timers

8-bit PWM timer (also usable as a reload timer)

8-bit pulse width count timer (Continuous measurement capable, applicable to remote control, etc.)

16-bit timer/counter

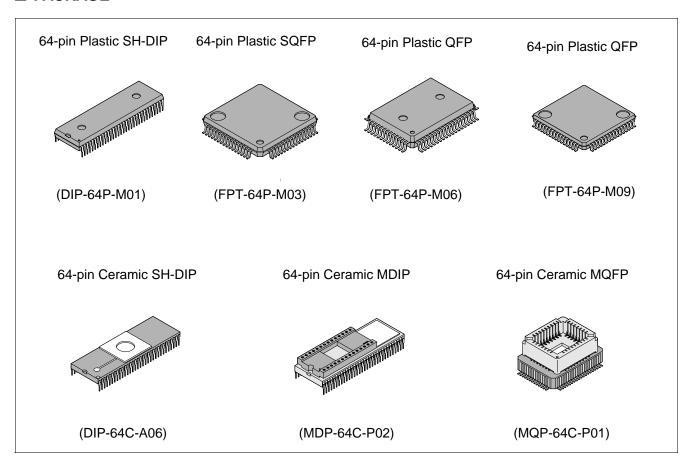
20-bit time-base timer

Two serial interfaces

Switchable transfer direction allows communication with various equipment.

• 8-bit A/D converter

Sense mode function enabling comparison at 5 μs


Activation by an external input capable

(Continued)

(Continued)

- External interrupt: 4 channels
 Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).
- Low-power consumption modes
 Stop mode (Oscillation stops to minimize the current cunsumption.)
 Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
- Bus interface functions
 Including hold and ready functions

■ PACKAGE

■ PRODUCT LINEUP

Part number Parameter	MB89623	MB89625	MB89626	MB89627	MB89P625 MB89W625	MB89P627 MB89W627	MB89T623 MB89V623	MB89T625 MB89V625	MB89PV620	
Classification			ction produ M products		One-time PROM products/EPROM products		External ROM products/For evaluation and development		Piggyback/ evaluation product for evaluation and developmen t	
ROM size	8 K×8 bits (internal mask ROM)	16 K×8 bits (internal mask ROM)	24 K×8 bits (internal mask ROM)	32 K×8 bits (internal mask ROM)	16 K×8 bits (internal PROM, programming with general- purpose EPROM programmer)	32 K × 8 bits (internal PROM, programming with general- purpose EPROM programmer)	External ROM		32 K×8 bits (external ROM)	
RAM size	256 × 8 bits	512 × 8 bits	768 × 8 bits	1 K×8 bits	512 × 8 bits	1 K × 8 bits	256 × 8 bits	512×8 bits	1 K×8 bits	
CPU functions	Insti Insti Data Mini	nber of instruction bit I ruction lenga bit length imum exec rrupt proce	ength: gth: :	:	136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 μs /10 MHz 3.6 μs/10 MHz					
Ports	Out _l I/O _l Out _l	ports (N-ch put ports (CMC ports (CMC			 5 (4 ports also serve as peripherals.) 8 (All also serve as peripherals.) 8 (4 ports also serve as peripherals.) 8 (All also serve as bus control pins.) 24 (All also serve as bus pins or peripherals.) 53 				s.)	
8-bit PWM timer	8-bit rel	load timer o 8-bit re	operation (esolution P	toggled ou WM opera	tput capabl tion (conve	e, operatin	g clock cyd : 102 μs to	cle: 0.4 μs 1 839 ms)	to 3.3 ms)	
8-bit pulse width count timer	8-bit re	eload timei	operation 8-b	(toggled o	ut capable, utput capal dth measur vidth/"L" pul	ole, operation	ng clock cy ration	/cle: 0.4 to	12.8 μs)	
16-bit timer/ counter		16-bit	16-bit tim event coun	ner operati ter operati	on (operatii on (Rising/	ng clock cy falling/both	cle: 0.4 µs edges sele) ectability)		
8-bit serial I/O 1, 8-bit serial I/O 2		8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 μs, 3.2 μs, 12.8 μs)								
8-bit A/D converter		Continuo	5	onversion Sense mod on by an ex	solution × 8 mode (conv le (convers kternal activ rence volta	version time ion time: 5 vation or an	μs)	mer capabl	e	

(Continued)

(Continued)

Part number Parameter	MB89623	MB89625	MB89626	MB89627	MB89P625 MB89W625	MB89P627 MB89W627	MB89T623 MB89V623	MB89T625 MB89V625	MB89PV620
External interrupt	Used als	4 independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge selectability sed also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)							
Standby modes		Sleep mode, stop mode							
Process					CMOS				
Operating voltage*		2.2 V to	o 6.0 V		2.7 V to 6.0 V				
EPROM for use		MBM27C2 6A-20							MBM27C25 6A-20

^{*:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89623 MB89625 MB89T623 MB89T625	MB89626 MB89627 MB89P625	MB89P627	MB89W625 MB89W627	MB89V623 MB89V625	MB89PV620
DIP-64P-M01	0	0	0	×	0	×
DIP-64C-A06	×	×	×	0	×	×
FPT-64P-M03	0	×*	×*	×*	×*	×*
FPT-64P-M06	0	0	0	×	×	×
FPT-64P-M09	0	0	×*	×*	×*	×*
MDP-64C-P02	×	×	×	×	×	0
MQP-64C-P01	×	×	×	×	×	0

^{○:} Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."

^{*:} Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available. 64SD-64QF2-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M03 64SD-64SQF-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M09 Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89623, MB89T623, and MB89V623, the upper half of each register bank cannot be used.
- On the MB89P627, the program area starts from address 8006H but on the MB89PV620 and MB89627 starts from 8000H.

(On the MB89P627, addresses 8000_H to 8006_H comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV620 and MB89627, addresses 8000_H to 8006_H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P627A.)

- The stack area, etc., is set at the upper limit of the RAM.
- The external area is used.

2. Current Consumption

- In the case of the MB89PV620, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume
 more current than the product with a mask ROM.

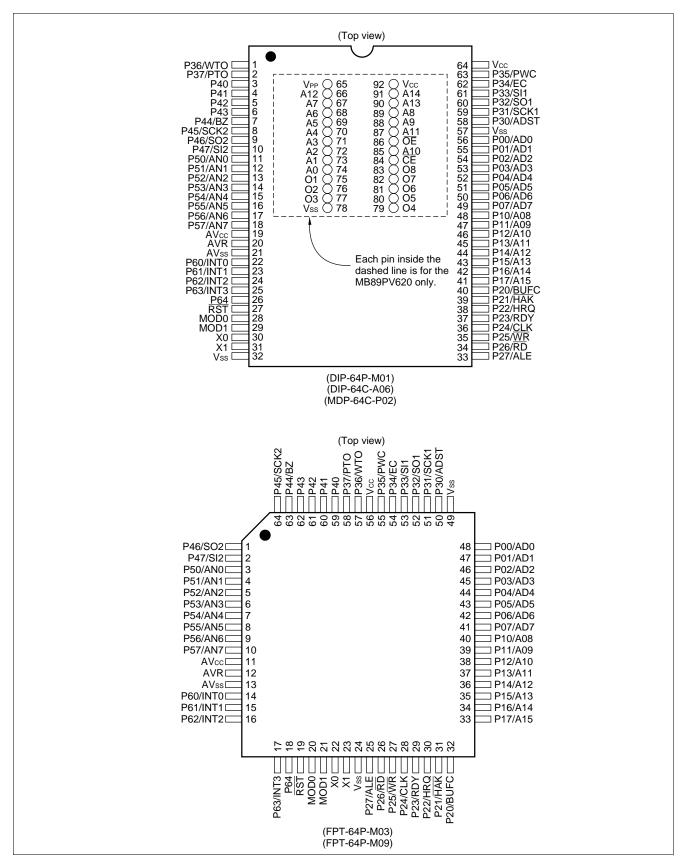
However, the current consumption in sleep/stop modes is the same. (For more information, see section "Electrical Characteristics".)

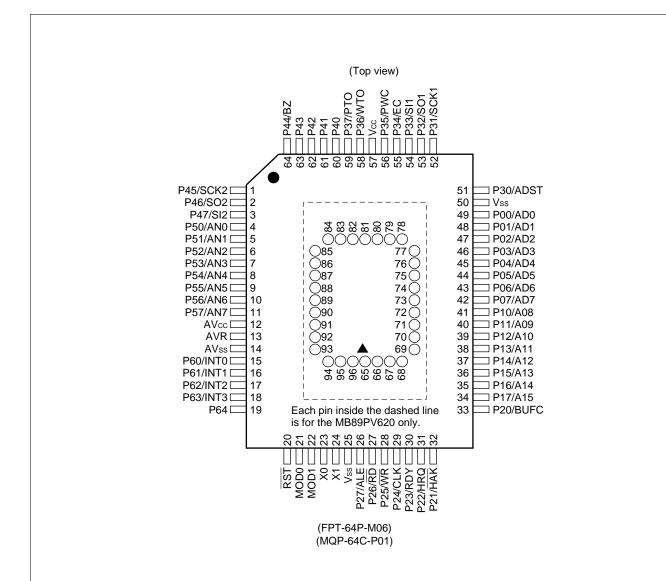
3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

Take particular care on the following points:


- A pull-up resistor cannot be set for P40 to P47 on the MB89P625, MB89W625, MB89P627, and MB89W627.
- A pull-up resistor is not selectable for P50 to P57 when the A/D converter is used.
- Options are fixed on the MB89PV620.


■ CORRESPONDENCE BETWEEN THE MB89620 AND MB89620R SERIES

- The MB89620R series is the reduction version of the MB89620 series. For their differences, refer to the MB89620R series data sheet.
- The MB89620 and MB89620R series consist of the following products:

MB89620 series	MB89623	MB89625	MB89626	MB89P625	MB89P627	MB89W625	MB89W627	MB89PV620
MB89620R series	MB89623R	MB89625R	MB89626R	_	_	_	_	_

■ PIN ASSIGNMENT

• •Pin assignment on package top (MB89PV620 only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
65	N.C.	73	A2	81	N.C.	89	ŌĒ
66	V _{PP}	74	A1	82	04	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	01	85	07	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	CE	95	A14
72	А3	80	Vss	88	A10	96	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

	Pin no.			0::	
SH-DIP*1 MDIP*2	QFP1*3 MQFP*4	SQFP*5 QFP2*6	Pin name	Circuit type	Function
30	23	22	X0	Α	Crystal oscillator pins
31	24	23	X1		
28	21	20	MOD0	В	Operating mode selection pins
29	22	21	MOD1		Connect directly to Vcc or Vss.
27	20	19	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
56 to 49	49 to 42	48 to 41	P00/AD0 to P07/AD7	D	General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O.
48 to 41	41 to 34	40 to 33	P10/A08 to P17/A15	D	General-purpose I/O ports When an external bus is used, these ports function as upper address output.
40	33	32	P20/BUFC	F	General-purpose output-only port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR.
39	32	31	P21/HAK	F	General-purpose output-only port When an external bus is used, this port can also be used as a hold acknowledge output by setting the BCTR.
38	31	30	P22/HRQ	D	General-purpose output-only port When an external bus is used, this port can also be used as a hold request input by setting the BCTR.
37	30	29	P23/RDY	D	General-purpose output-only port When an external bus is used, this port functions as a ready input.
36	29	28	P24/CLK	F	General-purpose output-only port When an external bus is used, this port functions as a clock output.
35	28	27	P25/WR	F	General-purpose output-only port When an external bus is used, this port functions as a write signal output.
34	27	26	P26/RD	F	General-purpose output-only port When an external bus is used, this port functions as a read signal output.
33	26	25	P27/ALE	F	General-purpose output-only port When an external bus is used, this port functions as an address latch signal output.

(Continued)

*5: FPT-64P-M03

*3: FPT-64P-M06

*4: MQP-64C-P01

*6: FPT-64P-M09

(Continued)

	Pin no.			Circuit	
SH-DIP*1 MDIP*2	QFP1*3 MQFP*4	SQFP*5 QFP2*6	Pin name	Circuit type	Function
58	51	50	P30/ADST	E	General-purpose I/O port Also serves as an A/D converter external activation. This port is a hysteresis input type.
59	52	51	P31/SCK1	E	General-purpose I/O port Also serves as the clock I/O for the 8-bit serial I/O 1. This port is a hysteresis input type.
60	53	52	P32/SO1	E	General-purpose I/O port Also serves as the data output for the 8-bit serial I/O 1. This port is a hysteresis input type.
61	54	53	P33/SI1	E	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O 1. This port is a hysteresis input type.
62	55	54	P34/EC	E	General-purpose I/O port Also serves as the external clock input for the 16-bit timer/counter. This port is a hysteresis input type.
63	56	55	P35/PWC	Е	General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width count timer. This port is a hysteresis input type.
1	58	57	P36/WTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width count timer. This port is a hysteresis input type.
2	59	58	P37/PTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. This port is a hysteresis input type.
3 to 6	60 to 63	59 to 62	P40 to P43	G	N-ch open-drain I/O ports These ports are a hysteresis input type.
7	64	63	P40/BZ	G	N-ch open-drain I/O port Also serves as a buzzer output. This port is a hysteresis input type.
8	1	64	P45/SCK2	G	N-ch open-drain I/O port Also serves as the clock I/O for the 8-bit serial I/O 2. This port is a hysteresis input type.
9	2	1	P46/SO2	G	N-ch open-drain I/O port Also serves as the data output for the 8-bit serial I/O 2. This port is a hysteresis input type.
10	3	2	P47/SI2	G	N-ch open-drain I/O port Also serves as the data input for the 8-bit serial I/O 2. This port is a hysteresis input type.

(Continued)

(Continued)

	Pin no.			Cincuit	
SH-DIP*1 MDIP*2	QFP1*3 MQFP*4	SQFP*5 QFP2*6	Pin name	Circuit type	Function
11 to 18	4 to 11	3 to 10	P50/AN0 to P57/AN7	Н	N-ch open-drain output-only ports Also serve as the analog input for the A/D converter.
22 to 25	15 to 18	14 to 17	P60/INT0 to P63/INT3	I	General-purpose input-only ports Also serve as an external interrupt input. These ports are a hysteresis input type.
26	19	18	P64	I	General-purpose input-only port This port is a hysteresis input type.
64	57	56	Vcc	_	Power supply pin
32, 57	25, 50	24, 49	Vss	_	Power supply (GND) pins
19	12	11	AVcc	_	A/D converter power supply pin
20	13	12	AVR	_	A/D converter reference voltage input pin
21	14	13	AVss	_	A/D converter power supply (GND) pin Use this pin at the same voltage as Vss.

*1: DIP-64P-M01, DIP-64C-A06

*2: MDP-64C-P02

*3: FPT-64P-M06

*4: MQP-64C-P01

*5: FPT-64P-M03

*6: FPT-64P-M09

• External EPROM pins (MB89PV620 only)

Pin	no.	D'	1/0	F
MDIP*1	MQFP*2	Pin name	I/O	Function
65	66	V _{PP}	0	"H" level output pin
66 67 68 69 70 71 72 73 74	67 68 69 70 71 72 73 74 75	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
75 76 77	77 78 79	O1 O2 O3	I	Data input pins
78	80	Vss	0	Power supply (GND) pin
79 80 81 82 83	82 83 84 85 86	O4 O5 O6 O7 O8	I	Data input pins
84	87	CE	0	ROM chip enable pin Outputs "H" during standby.
85	88	A10	0	Address output pin
86	89	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
87 88 89	91 92 93	A11 A9 A8	0	Address output pins
90	94	A13	0	
91	95	A14	0	
92	96	Vcc	0	EPROM power supply pin
_	65 76 81 90	N.C.	_	Internally connected pins Be sure to leave them open.

*1: MDP-64C-P02

*2: MQP-64C-P01

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X0 X0 X0 XIX XIX XIX XIX XIX XIX XIX XIX	• At an oscillation feedback resistor of approximately 1 M Ω /5.0 V
В		
С	R R N-ch	 At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V
D	R P-ch N-ch	CMOS output CMOS input Pull-up resistor optional (except P22 and P23)
E	R P-ch N-ch	 CMOS output Hysteresis input Pull-up resistor optional
F	P-ch N-ch	CMOS output

(Continued)

(Continued)

Туре	Circuit	Remarks
G	P-ch P-ch N-ch	 N-ch open-drain output Hysteresis input Pull-up resistor optional (MB89623, MB89625, MB89626, and MB89627 only)
Н	P-ch N-ch Analog input	 N-ch open-drain output Analog input Pull-up resistor optional
I	R R	Hysteresis input Pull-up resistor optional

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

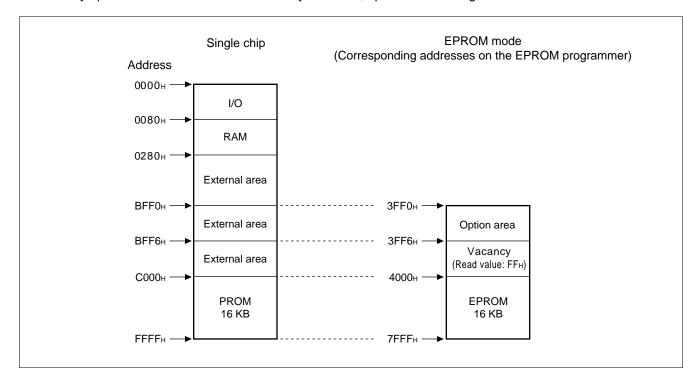
5. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P625


The MB89P625 is an OTPROM version of the MB89620 series.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P625 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating ROM area for a single chip is 16 Kbytes (C000_H to FFFF_H) the PROM can be programmed as follows:

• Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH while operating as a single chip assign to 4000H to 7FFFH in EPROM mode).

 Load option data into addresses 3FF0H to 3FF6H of the EPROM programmer. (For information about each corresponding option, see "4. Setting OTPROM Options.")
- (3) Program to 3FF0_H to 7FFF_H with the EPROM programmer.

4. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map.

The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map (MB89P625)

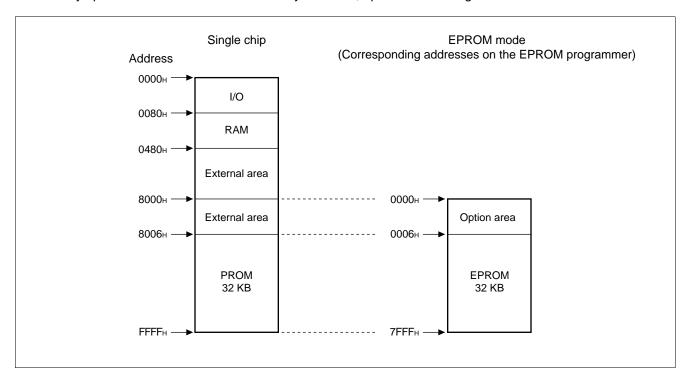
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FF0н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Reset pin output 1: Yes 0: No	Oscillation stabilizationti me 1: Crystal 0: Ceramic	Power-on reset 1: Yes 0: No
3FF1н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF2н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF3н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF4н	P57	P56	P55	P54	P53	P52	P51	P50
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
3FF5н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes

Notes: • Set each bit to 1 to erase.

• Do not write 0 to the vacant bit.

The read value of the vacant bit is 1, unless 0 is written to it.

■ PROGRAMMING TO THE EPROM ON THE MB89P627


The MB89P627 is an OTPROM version of the MB89620 series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P627 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating ROM area for a single chip is 32 Kbytes (8006_H to FFFF_H) the PROM can be programmed as follows:

• Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0006_H to 7FFF_H (note that addresses 8006_H to FFFF_H while operating as a single chip assign to 0006_H to 7FFF_H in EPROM mode).

 Load option data into addresses 0000_H to 0005_H of the EPROM programmer. (For information about each corresponding option, see "4. Setting OTPROM Options.")
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

4. Setting OTPROM Options

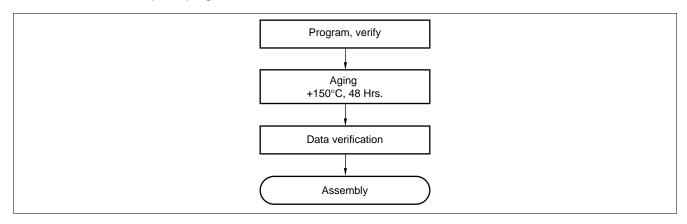
The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map.

The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map (MB89P627)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000н	Vacancy Readable and writable	Vacancy Readable and writable	Reset pin output 1: Yes 0: No	Oscillation stabilization time 1: Crystal 0: Ceramic	Power-on reset 1: Yes 0: No			
0001н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0002н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0003н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0004н	P57	P56	P55	P54	P53	P52	P51	P50
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No	1: No	1: No	1: No	1: No
	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes	0: Yes
0005н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes
0006н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable			

Notes: • Set each bit to 1 to erase.


• Do not write 0 to the vacant bit.

The read value of the vacant bit is 1, unless 0 is written to it.

■ HANDLING THE MB89P625/P627

1. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

2. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

3. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W-seconds/cm² is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000 μ W/cm² for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000Å. Although erasure time will be much longer than with UV source at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

4. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
DIP-64C-M01	ROM-64SD-28DP-8L
FPT-64P-M06	ROM-64QF-28DP-8L
FPT-64P-M09	ROM-64QF2-28DP-8L

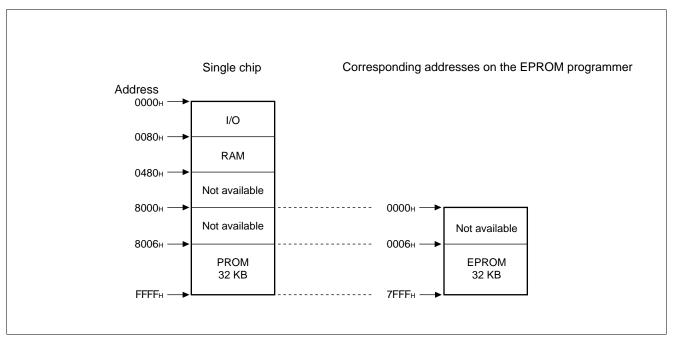
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

■ PROGRAMMING TO THE EPROM PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV, MBM27C256A-20CZ

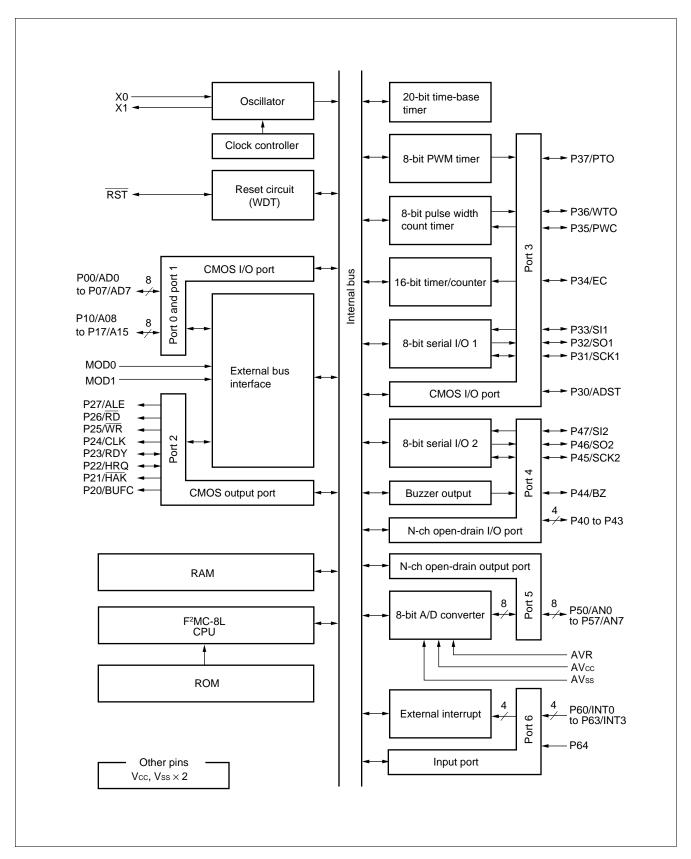
2. Programming Socket Adapter


To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG
LCC-32 (Square)	ROM-32LC-28DP-2

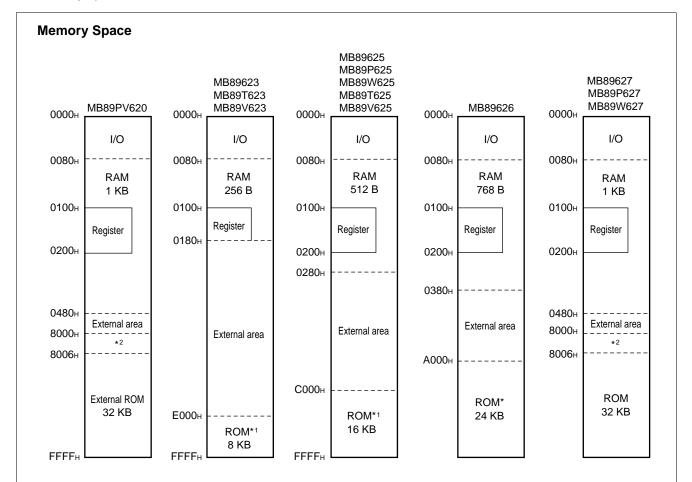
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space


Memory space in 32-Kbyte PROM is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0006H to 7FFFH.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89620 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89620 series is structured as illustrated below.

^{*1:} The ROM area is an external area depending on the mode.
The 89T623, MB89T625, MB89V623, and MB89V625 cannot use internal ROM.

^{*2:} Since addresses 8000н to 8005н for the MB89P627 and MB89W627 comprise an option area, do not use this area for the MB89PV620 and MB89627.

2. Registers

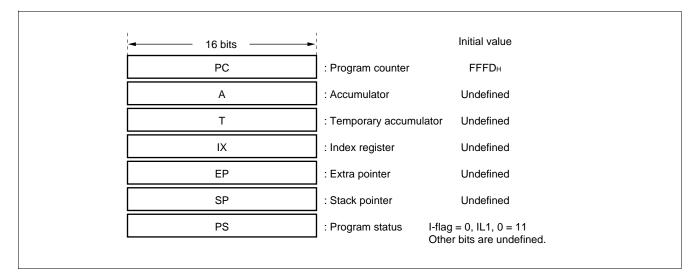
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

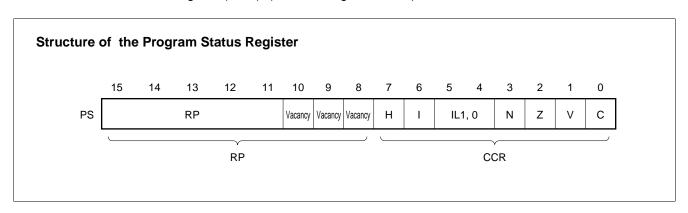
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

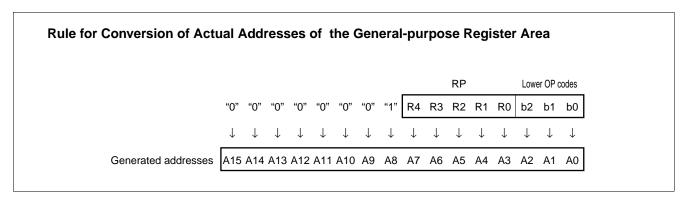
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

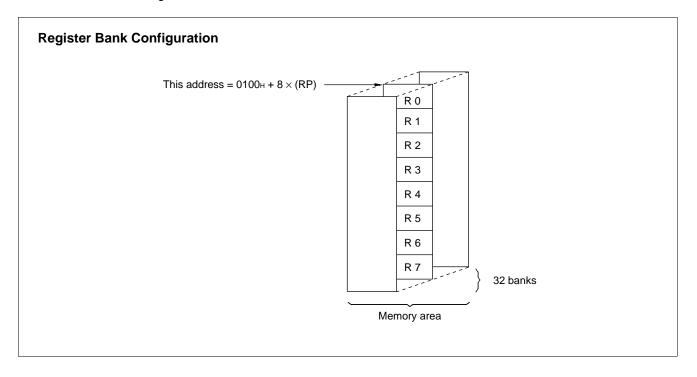
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	l	†
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.


C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89620. In the MB89623, there are 16 banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to addresses 0180H to 01FFH using an external circuit. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

■ I/O MAP

Address	Read/write	Register name	Register description		
00н	(R/W)	PDR0	Port 0 data register		
01н	(W)	DDR0	Port 0 data direction register		
02н	(R/W)	PDR1	Port 1 data register		
03н	(W)	DDR1	Port 1 data direction register		
04н	(R/W)	PDR2	Port 2 data register		
05н	(R/W)	BCTR	External bus pin control register		
06н			Vacancy		
07н			Vacancy		
08н	(R/W)	STBC	Standby control register		
09н	(R/W)	WDTC	Watchdog timer control register		
0Ан	(R/W)	TBTC	Time-base timer control register		
0Вн			Vacancy		
0Сн	(R/W)	PDR3	Port 3 data register		
0Dн	(W)	DDR3	Port 3 data direction register		
0Ен	(R/W)	PDR4	Port 4 data register		
0Fн	(R/W)	BZCR	Buzzer register		
10н	(R/W)	PDR5	Port 5 data register		
11н	(R)	PDR6	Port 6 data register		
12н	(R/W)	CNTR	PWM control register 1		
13н	(W)	COMR	PWM compare register		
14н	(R/W)	PCR1	PWC pulse width control register 1		
15н	(R/W)	PCR2	PWC pulse width control register 2		
16н	(R/W)	RLBR	PWC reload buffer register		
17н		1	Vacancy		
18н	(R/W)	TMCR	16-bit timer control register		
19н	(R/W)	TCHR	16-bit timer count register (H)		
1Ан	(R/W)	TCLR	16-bit timer count register (L)		
1Вн			Vacancy		
1Сн	(R/W)	SMR1	Serial I/O 1 mode register		
1Dн	(R/W)	SDR1	Serial I/O 1 data register		
1Ен	(R/W)	SMR2	Serial I/O 2 mode register		
1Fн	(R/W)	SDR2	Serial I/O 2 data register		

(Continued)

(Continued)

Address	Read/write	Register name	Register description		
20н	(R/W)	ADC1	A/D converter control register 1		
21н	(R/W)	ADC2	A/D converter control register 2		
22н	(R/W)	ADCD	A/D converter data register		
23н		Vacancy			
24н	(R/W)	EIC1	External interrupt control register 1		
25н	(R/W)	EIC2	External interrupt control register 2		
26н to 7Вн			Vacancy		
7Сн	(W)	ILR1	Interrupt level setting register 1		
7Dн	(W)	ILR2	Interrupt level setting register 2		
7Ен	(W)	ILR3	Interrupt level setting register 3		
7Fн			Vacancy		

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Donomoton	Cumbal	Va	lue	Unit	Remarks		
Parameter	Symbol	Min. Max.		Unit	Remarks		
Power supply voltage	Vcc AVcc	Vss-0.3	Vss + 7.0	V	*1		
A/D converter reference input voltage	AVR	Vss - 0.3	Vss + 7.0	V	AVR must not exceed AVcc + 0.3 V.		
land the sec	Vı	Vss-0.3	Vcc + 0.3	V	Except P40 to P47*2		
Input voltage	V _{I2}	Vss - 0.3	Vss + 7.0	V	P40 to P47		
Outrot walts as	Vo	Vss-0.3	Vcc + 0.3	V	Except P40 to P47*2		
Output voltage	V _{O2}	Vss - 0.3	Vss + 7.0	V	P40 to P47		
"L" level maximum output current	Іоь	_	20	mA			
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating rate)		
"L" level total maximum output current	∑lo∟		100	mA			
"L" level total average output current	∑Iolav		40	mA	Average value (operating current × operating rate)		
"H" level maximum output current	Іон		-20	mA			
"H" level average output current	Іонач		-4	mA	Average value (operating current × operating rate)		
"H" level total maximum output current	∑Іон		-50	mA			
"H" level total average output current	ΣIOHAV	_	-20	mA	Average value (operating current × operating rate)		
Power consumption	PD	_	300	mW			
Operating temperature	TA	-40	+85	°C			
Storage temperature	Tstg	-55	+150	°C			

^{*1:} Use AVcc and Vcc set at the same voltage.

Take care so that AVcc does not exceed Vcc, such as when power is turned on.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{*2:} V_I and V_O must not exceed V_{CC} + 0.3 V.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks
Farameter	Symbol	Min.	Max.	Oilit	Kemarks
		2.2*	6.0*	V	Normal operation assurance range* (MB89623/625/626/627)
Power supply voltage	Vcc AVcc	2.7*	6.0*	V	Normal operation assurance range* (MB89T623/V623/T625/V625/P625/ W625/P627/W627/PV620)
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AVcc	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency and analog assurance range. See Figure 1 and "5. A/D Converter Electrical Characteristics."

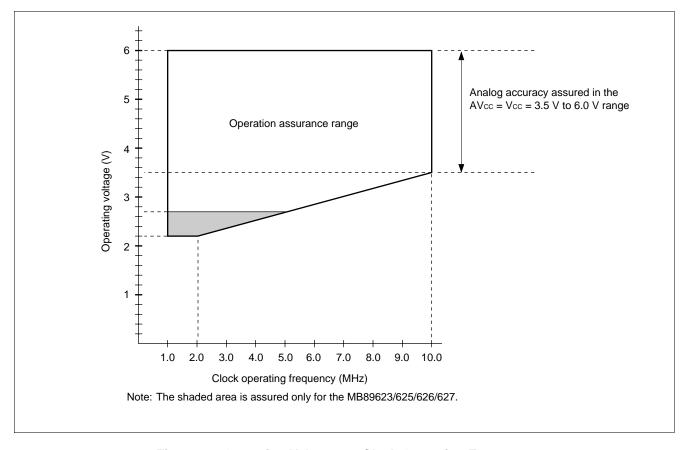


Figure 1 Operating Voltage vs. Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fc.

3. DC Characteristics

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

	Symb			AVcc = Vcc =	= 5.0 V, A\ Value		$f_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	
Parameter	ol	Pin	Condition	Min. Typ.		Max.	Unit	Remarks
	VIH	P00 to P07, P10 to P17, P22, P23	_	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	Vihs	RST, MOD0, MOD1, P30 to P37, P60 to P64	_	0.8 Vcc	_	Vcc + 0.3	V	
	V _{IHS2}	P40 to P47	_	0.8 Vcc		Vcc + 0.3	V	
	VIL	P00 to P07, P10 to P17, P22, P23	_	Vss - 0.3		0.3 Vcc	V	
"L" level input voltage	VILS	RST, MOD0, MOD1, P30 to P37, P40 to P47, P60 to P64	_	Vss - 0.3	_	0.2 Vcc	V	
Open-drain output pin	VD	P50 to P57	_	Vss-0.3	_	Vcc + 0.3	V	
application voltage	V _{D2}	P40 to P47	_	Vss-0.3	_	Vss + 6.0	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37	Iон = −2.0 mA	4.0	_	_	V	
"L" level output voltage	VoL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57	loL = +4.0 mA	_		0.4	V	
	V _{OL2}	RST				0.4	V	
Input leakage current (Hi-z output leakage current)	Іш	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64, MOD0, MOD1	0.0 V < V ₁ < V _{CC}	_	_	±5	μА	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64, RST	Vı = 0.0 V	25	50	100	kΩ	

(Continued)

(Continued)

 $(AVcc = Vcc = 5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symb	Pin	Condition		Value		Unit	Remarks
Parameter	ol	PIII	Condition	Min.	Тур.	Max.	Ullit	Kemarks
	loo	$\begin{tabular}{l l} Icc & & Norm open \\ mod & tinst^2 \\ \hline & Vcc & Fc = \\ Slee & tinst^2 \\ \hline & Stop \\ T_A = \\ \hline & Fc = \\ whell & conv \\ \hline \end{tabular}$	Fc = 10 MHz Normal	_	9	15	mA	MB89623/625/ 627/V623/ T623/V625/ T625/PV620
	ICC		operating mode t _{inst} ² = 0.4 μs	_	10	18	mA	MB89P625/ W625 MB89P627/ W627
Power supply	Iccs		Fc = 10 MHz Sleep mode t _{inst*2} = 0.4 μs	_	3	4	mA	
current*1	Іссн		Stop mode T _A = +25°C	_	_	1	μА	
	la		Fc = 10 MHz, when A/D conversion is activated	_	1	3	mA	
	Іан	AVcc	Fc = 10 MHz, TA = +25°C, when A/D conversion is stopped	_	_	1	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	æ	pF	

^{*1:} In the case of the MB89PV620, the current consumed by the connected EPROM and ICE is not included. The power supply current is measured at the external clock.

^{*2:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

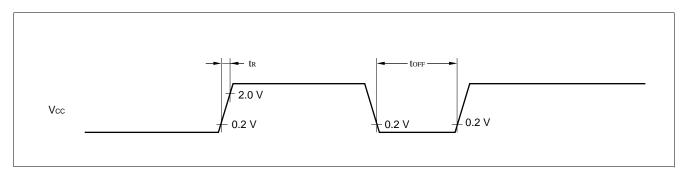
4. AC Characteristics

(1) Reset Timing

(Vcc = +5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Condition	Valu	ne	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Onit	Remarks
RST "L" pulse width	t zlzh	_	16 t xcyl		ns	

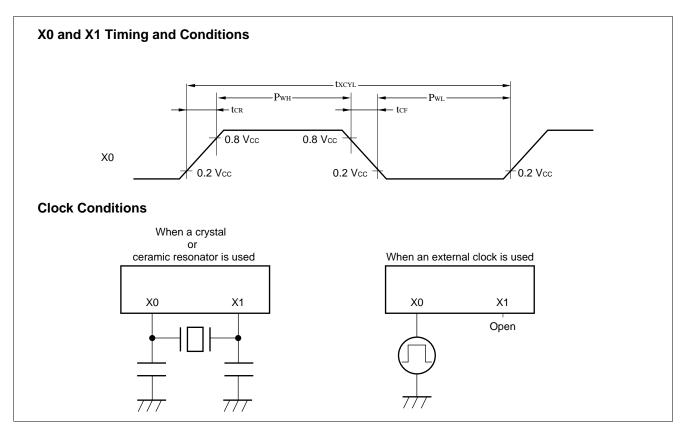
Note: txcyL is the oscillation cycle (1/Fc) to input to the X0 pin.


(2) Power-on Reset

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Value		Unit	Remarks	
raiailletei	Syllibol	Condition	Min.	Max.	Oiiit	iveillat k2	
Power supply rising time	tR		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff		1	_	ms	Due to repeated operations	

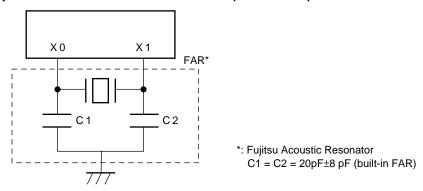
Note: Make sure that power supply rises within the selected oscillation stabilization time.


If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

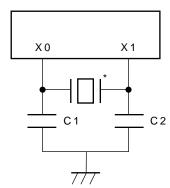
Parameter	Symbol	Pin	Condition	Va	alue	I Imit	Damada	
				Min.	Max.	Unit	Remarks	
Clock frequency	Fc	X0, X1		1	10	MHz		
Clock cycle time	txycL	X0, X1	-	100	1000	ns		
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	ns	External clock	
Input clock rising/falling time	tcr tcr	X0		_	10	ns	External clock	



(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/F c	μs	$t_{inst} = 0.4 \mu s$ when operating at Fc = 10 MHz

(5) Recommended Resonator Manufacturers


Sample Application of Piezoelectric Resonator (FAR Series)

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)		
FAR-C4CB-08000-M02	8.00 MHz	±0.5%	±0.5%		
FAR-C4CB-10000-M02	10.00 MHz	±0.5%	±0.5%		

Inquiry: FUJITSU LIMITED

Sample Application of Ceramic Resonator

Resonator manufacturer*	Resonator	Frequency	C1 (pF)	C2 (pF)	R (k Ω)
Kyocera Corporation	KBR-7.68MWS	7.68 MHz	33	33	
Ryoceia Corporation	KBR-8.0MWS	8.0 MHz	33	33	_
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.0 MHz	30	30	_

Inquiry: Kyocera Corporation

AVX Corporation

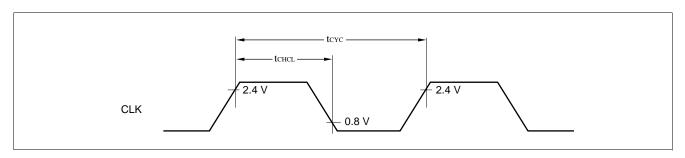
North American Sales Headquarters: TEL 1-803-448-9411

AVX Limited

European Sales Headquarters: TEL 44-1252-770000

AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303

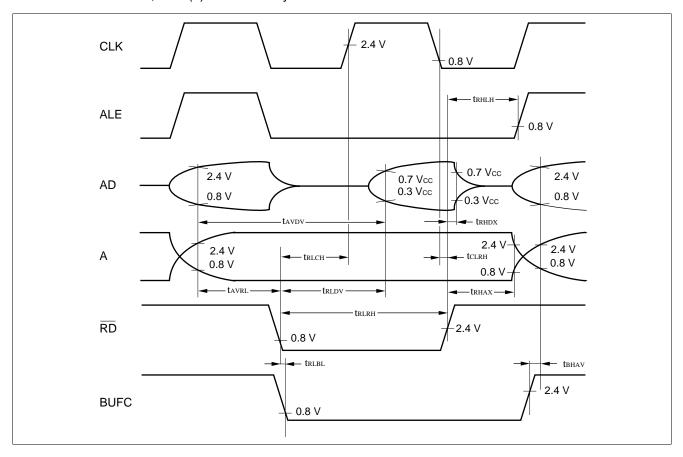

Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

(6) Clock Output Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks	
				Min.	Max.	Oilit		
Cycle time	tcyc	CLK	_	200	_	ns	txcyL × 2 at 10 MHz oscillation	
$CLK \uparrow \to CLK \downarrow$	t chcL			30	100	ns	Approx. tcyc/2 at 10 MHz oscillation	

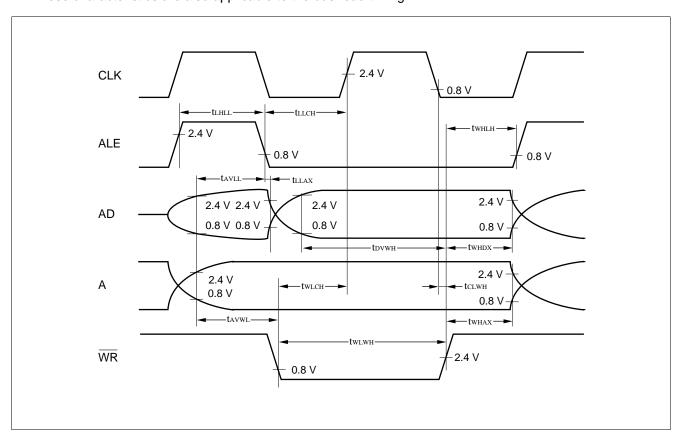


(7) Bus Read Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Val	Unit	Remarks	
Parameter	Symbol	FIII	Condition	Min.	Max.	Oilit	iveillai ka
$Valid\;address\to\overline{RD}\downarrowtime$	t avrl	RD, A15 to A08, AD7 to AD0		1/4 t _{inst} *- 64 ns	_	μs	
RD pulse width	trlrh	RD		1/2 t _{inst} *- 20 ns	_	μs	
Valid address → data read time	tavdv	AD7 to AD0, A15 to A08		_	1/2 t inst*	μs	No wait
$\overline{RD} \downarrow \to data \ read \ time$	trldv	RD, AD7 to AD0		_	1/2 t _{inst} *- 80 ns	μs	No wait
$\overline{RD} \uparrow \to data \; hold \; time$	trhdx	AD7 to AD0, RD		0	_	μs	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE	_	1/4 t _{inst} *- 40 ns	_	μs	
$\overline{\text{RD}} \uparrow \rightarrow \text{address invalid time}$	tRHAX	RD, A15 to A08		1/4 t _{inst} *– 40 ns	_	μs	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1/4 t _{inst} *- 40 ns	_	μs	
$CLK \downarrow \to \overline{RD} \uparrow time$	tclrh	RD, CLK		0	_	ns	
$\overline{RD} \downarrow \to BUFC \downarrow time$	trlbl	RD, BUFC		-5	_	μs	
BUFC $\uparrow \rightarrow$ valid address time	tвнаv	A15 to A08, AD7 to AD0, BUFC		5	_	μs	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle."

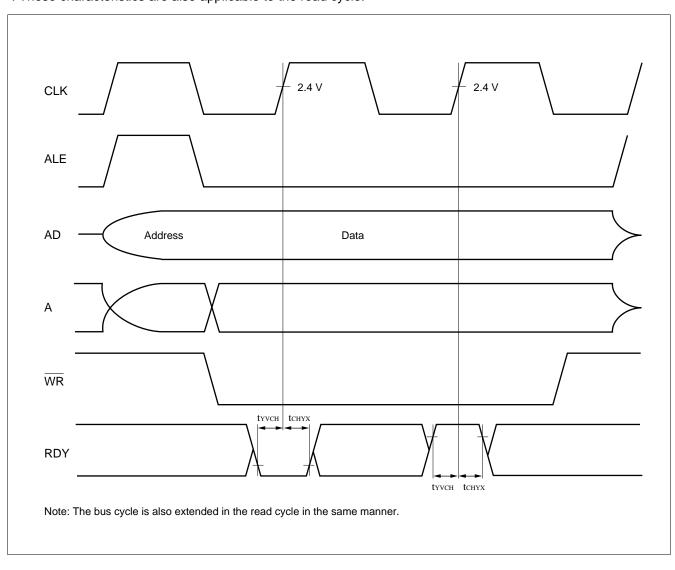

(8) Bus Write Timing

(Vcc = +5.0 V±10%, Fc = 10 MHz, AVss = Vss= 0.0 V, $T_A = -40^{\circ}C$ to +85°C)

Doromotor	Symbol	Pin	Condition	Valu	ıe	l lni4	Remarks
Parameter	Symbol	PIII	Condition	Min.	Max.	Unit	Remarks
Valid address $ ightarrow$ ALE \downarrow time	tavll	AD7 to AD0, ALE, A15 to A08		1/4 t _{inst} *1– 64 ns	_	μs	
$\begin{array}{c} ALE \downarrow time \to address \\ invalid \ time \end{array}$	tLLAX	AD7 to AD0, ALE, A15 to A08		5	_	ns	
Valid address \rightarrow $\overline{\text{WR}}$ ↓ time	tavwl	WR, ALE		1/4 tinst*1- 60 ns	_	μs	
WR pulse width	twlwh	WR		1/2 tinst*1- 20 ns	_	μs	
Write data $\rightarrow \overline{\text{WR}} \uparrow \text{time}$	t DVWH	AD7 to AD0, WR		1/2 tinst*1- 60 ns	_	μs	
$\overline{ m WR}$ \uparrow $ ightarrow$ address invalid time	twhax	WR, A15 to A08	_	1/4 t _{inst} *1– 40 ns	_	ns	
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	AD7 to AD0, WR		1/4 t _{inst} *1– 40 ns	_	μs	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE		1/4 t _{inst} *1– 40 ns	_	μs	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	WR, CLK		1/4 t _{inst} *1– 40 ns	_	μs	
$CLK \downarrow \to \overline{WR} \uparrow time$	t clwH	WK, CLK		0	_	ns	
ALE pulse width	t LHLL	ALE		1/4 t _{inst} *1– 35 ns*2	_	μs	
ALE $\downarrow \rightarrow$ CLK \uparrow time	t llch	ALE,CLK		1/4 t _{inst} *1-30 ns*2	_	μs	

^{*1:} For information on tinst, see "(4) Instruction Cycle."

^{*2:} These characteristics are also applicable to the bus read timing.

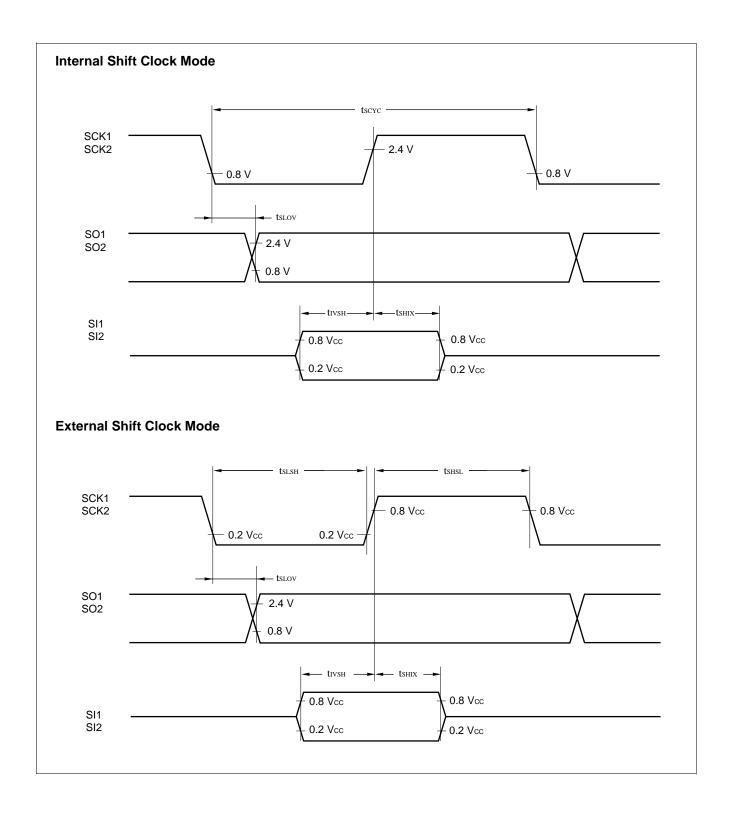


(9) Ready Input Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Va	Unit	Remarks	
	Syllibol			Min.	Max.	Oint	IXCIIIAI KS
RDY valid \rightarrow CLK \uparrow time	tyvcн	RDY, CLK		60	_	ns	*
$CLK \uparrow \to RDY$ invalid time	tchyx	NDI, CLK	_	0	_	ns	*

*: These characteristics are also applicable to the read cycle.

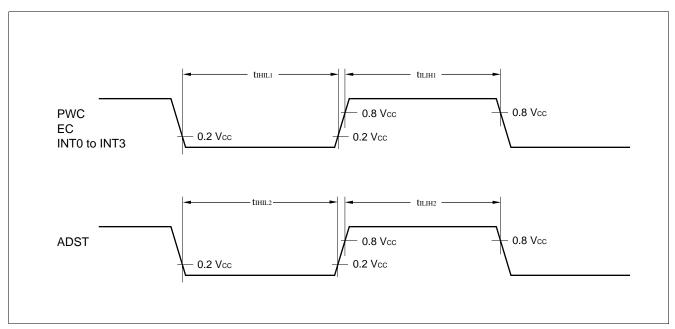


(10) Serial I/O Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Ullit	Remarks
Serial clock cycle time	tscyc	SCK1, SCK2		2 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \ time \\ SCK2 \downarrow \to SO2 \ time \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	Internal shift clock mode	-200	200	ns	
Valid SI1 → SCK1 ↑ Valid SI2 → SCK2 ↑	tıvsн	SI1, SCK1 SI2, SCK2		1/2 tinst*	_	μs	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	t shix	SCK1, SI1 SCK2, SI2		1/2 tinst*	_	μs	
Serial clock "H" pulse width	t shsl	SCK1, SCK2		1 t _{inst} *	_	μs	
Serial clock "L" pulse width	t slsh	SCK1, SCK2		1 t _{inst} *	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \ time \\ SCK2 \downarrow \to SO2 \ time \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	External shift clock mode	0	200	ns	
Valid SI1 → SCK1 ↑ Valid SI2 → SCK2 ↑	tivsh	SI1, SCK1 SI2, SCK2		1/2 tinst*	_	μs	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	t shix	SCK1, SI1 SCK2, SI2		1/2 tinst*	_	μs	

^{*:} For information on t_{inst}, see "(4) Instruction Cycle."



(11) Peripheral Input Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	FIII	Condition	Min.	Max.	Ullit	Remarks
Peripheral input "H" pulse width 1	tılıH1	PWC,		2 tinst*	_	μs	
Peripheral input "L" pulse width 1	t _{IHIL1}	EC, INT0 to INT3	_	2 tinst*	_	μs	
Peripheral input "H" pulse width 2	t _{ILIH2}		A/D mode	32 tinst*	_	μs	
Peripheral input "L" pulse width 2	t _{IHIL2}	ADST	A/D mode	32 tinst*	_	μs	
Peripheral input "H" pulse width 2	t _{ILIH2}	ADST	Sense mode	8 tinst*	_	μs	
Peripheral input "L" pulse width 2	t _{IHIL2}		Sense mode	8 tinst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +3.5 \text{ V to } +6.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

			,	- V00 - 10.0 V 1	to +6.0 V, AVss = Value	- V35 - 0.0 V, IA		
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
Resolution			_		_	8	bit	
Total error				_	_	±1.5	LSB	
Linearity error	_				_	±1.0	LSB	
Differential linearity error				_	_	±0.9	LSB	
Zero transition voltage	Vот		AVR = AVcc	AVss – 1.0 LSB	AVss + 0.5 LSB	AVss + 2.0 LSB	mV	
Full-scale transition voltage	V _{FST}	FST		AVR - 3.0 LSB	AVR – 1.5 LSB	AVR	mV	
Interchannel disparity				_	_	0.5	LSB	
A/D mode conversion time	_			_	44 tinst*	_	μs	
Sense mode conversion time		— 12 t _{inst} *		_	μs			
Analog port input current	Iain	AN0 to	_	_	_	10	μА	
Analog input voltage	_	AIN/		0.0	_	AVR	V	
Reference voltage	_			0.0	_	AVcc	V	
Reference voltage	IR	AVR	AVR = 5.0 V, when A/D conversion is activated	_	100	_	μА	
supply current	IrH		AVR = 5.0 V, when A/D conversion is stopped	_	_	1	μА	

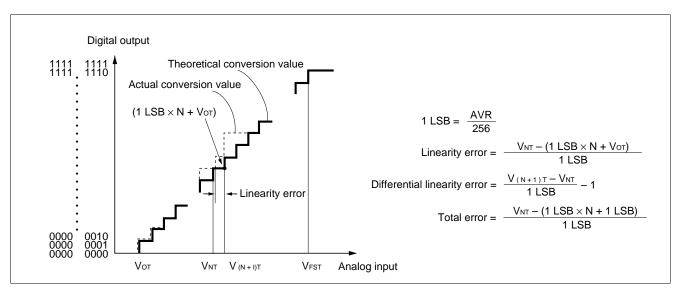
^{*:} For information on t_{inst}, see "(4) Instruction Cycle" in "4 AC Characteristics."

(1) A/D Glossary

Resolution

Analog changes that are identifiable with the A/D converter. When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.

• Linearity error (unit: LSB)

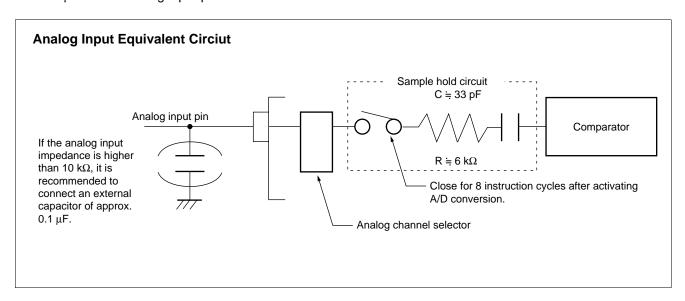

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics

• Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

• Total error (unit: LSB)

The difference between theoretical and actual conversion values

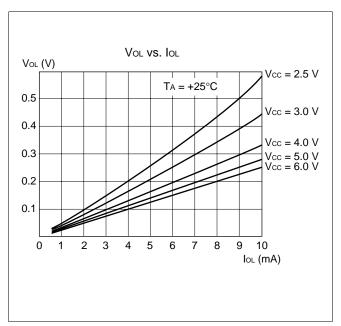

(2) Precautions

• Input impedance of the analog input pins

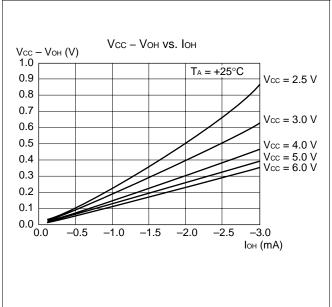
The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below 10 k Ω).

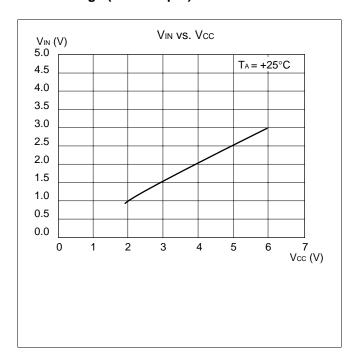
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about 0.1 μ F for the analog input pin.

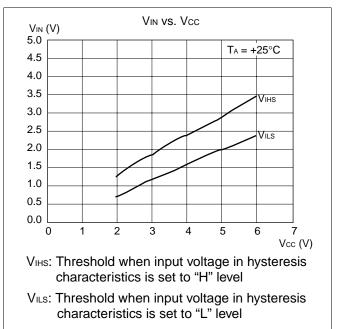


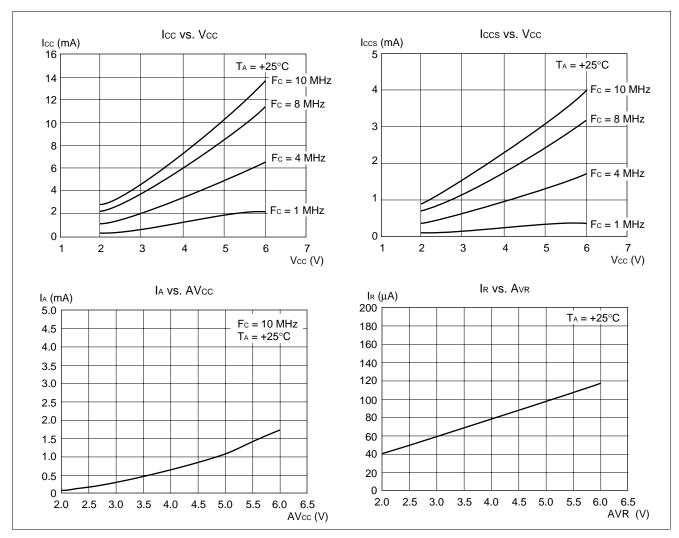
• Error

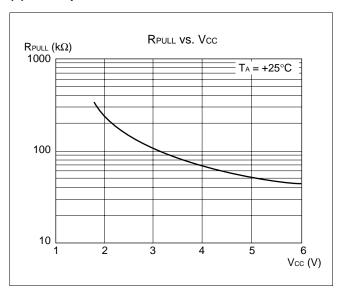

The smaller the | AVR - AVss |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage


(2) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

• AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

 Table 2
 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	_	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	-	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	-	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	$(dir) \leftarrow d8$	-	_	_		85
MOV @IX +off,#d8	5 4	3	$((IX) + off) \leftarrow d8$	_	_	_		86 87
MOV @EP,#d8 MOV Ri,#d8	4	2	((EP)) ← d8 (Ri) ← d8	_	_			88 to 8F
MOVW dir,A		2	` '	_	_	_		00 to or D5
MOVW @IX +off,A	4 5	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$ $((IX) + off) \leftarrow (AH),$	_	_	_		D5
INIOVVV WIX TOII,A	5		$((IX) + OII) \leftarrow (AII),$ $((IX) + Off + 1) \leftarrow (AL)$	_	_	_		D0
MOVW ext,A	5	3	$((1A) + 011 + 1) \leftarrow (AL)$ $(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$			_		D4
MOVW ext,A	4	1	$(EX) \leftarrow (AI), (EXI + I) \leftarrow (AL)$ $(EP) + 1) \leftarrow (AL)$	_		_		D7
MOVW @LF,A	2	1	$(EP) \leftarrow (AI), (EP) \leftarrow (AL)$			_		E3
MOVW A,#d16	3	3	$(A) \leftarrow (A)$ $(A) \leftarrow d16$	AL	AH	dH		E4
MOVW A,#d10	4	2	$(A) \leftarrow 0.10$ $(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow (III), (AL) \leftarrow (IIII + I)$ $(AH) \leftarrow (IX) + off),$	AL	AH	dH	++	C6
WOVVV A, SIX TOIL	0	_	$(AL) \leftarrow ((IX) + OH),$ $(AL) \leftarrow ((IX) + off + 1)$	/\L	711	uii		00
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (A), (AL) \leftarrow (A) + 1$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	++	C7
MOVW A,EP	2	1	$(A) \leftarrow (EP)$	_	_	dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	(IX) ← (A)	_	_	_		E2
MOVW A,ÍX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SPA	2	1	(SP) ← (Á)	_	_	_		E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	_	_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	(IX) ← d16	_	_	_		E6
MOVW A,PS	2	1	(A) ← (PS)	_	_	dΗ		70
MOVW PS,A	2	1	$(PS) \leftarrow (A)$	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b ← 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): b \leftarrow 0	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL				42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	-	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	-	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	-	_	dH		F5
MOVW A,PC	2	1	$(A) \leftarrow (PC)$	_	_	dH		F0

Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F²MC-8 family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	_	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	(Ri) ← (Ri) + 1	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \wedge (T)$	-	_	dH	+ + R –	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	++R-	73
XORW A	3	1	$(A) \leftarrow (A) \forall (T)$	_	_	dH	++R-	53
CMP A	2	1	(TL) – (AL)	_	_	- uii	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1		_	_	_	++-+	03
NONG A	_		$\rightarrow C \rightarrow A$		_	_	TT-T	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \forall (TL)$	_	_	_	+ + R -	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \forall d8$	_	_	_	++R-	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ ((EP))$	_	_	_	++R-	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (IX) + off)$	_	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$	_	_	_	++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \wedge (TL)$	_	_	_	++R-	62
AND A AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge (BL)$	_	_	_	++R-	64
AND A,#do	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	65
AND A,uii	3		(1) \ (12) /\ (\dil)	_			++N-	บอ

(Continued)

(Continued)

Mnemonic	1	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	-	_	+ + R -	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R -	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (ŚP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

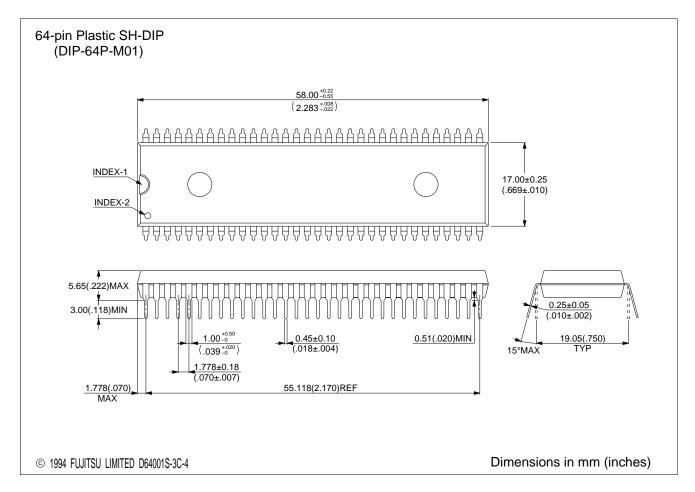
Table 5 Other Instructions (9 instructions)

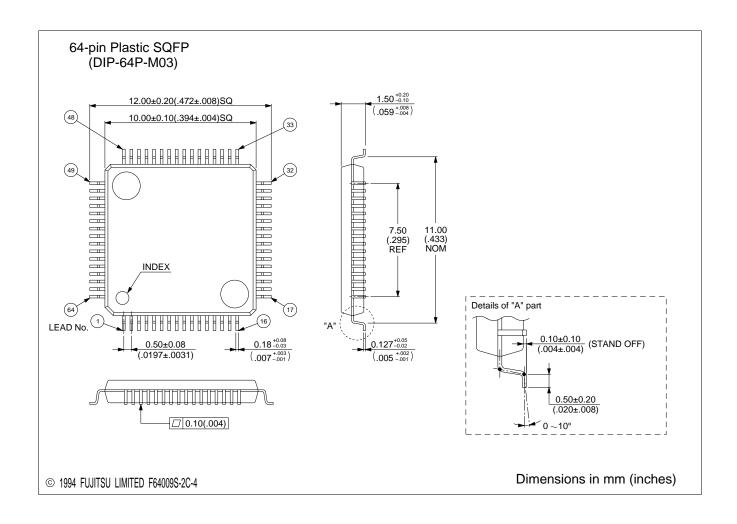
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

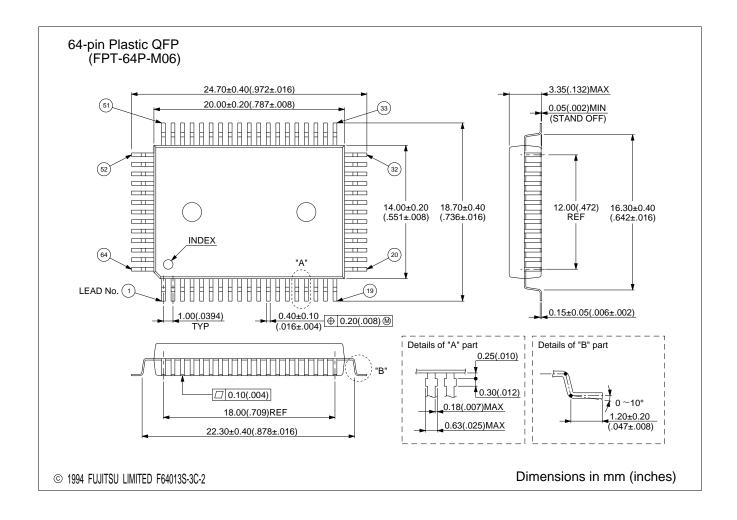
■ INSTRUCTION MAP

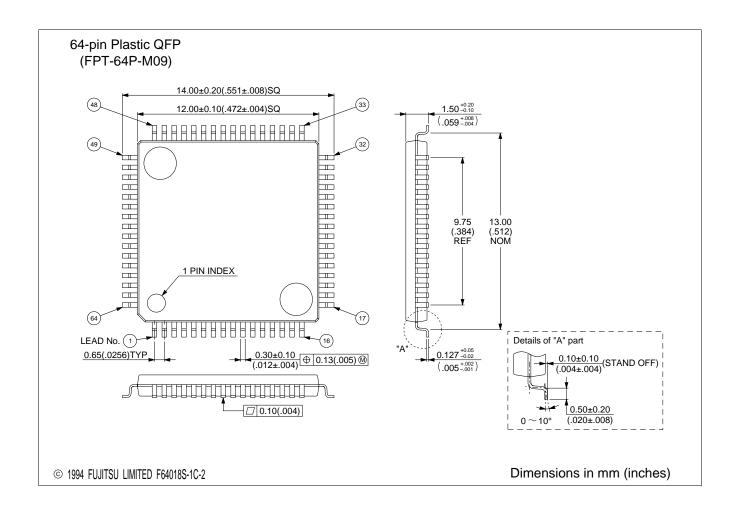
	NOIK	UCII	O	AP												
ш	MOVW A,PC	MOVW A,SP	MOWW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
ш	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
۵	DECW A	DECW SP	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
ပ	INCW A	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX+d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
Ф	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
A	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND A	ANDW	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR A	XORW	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
က	RETI	CALL addr16	SUBC	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC	ADDCW	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
1	SWAP	DIVU A	CMP A	CMPW A	CMP A,#d8	CMP /	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP / A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	MON	MULU A	ROLC A	RORC A	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
H/1	0	-	2	က	4	2	9	7	8	6	A	В	၁	Ω	Е	ь

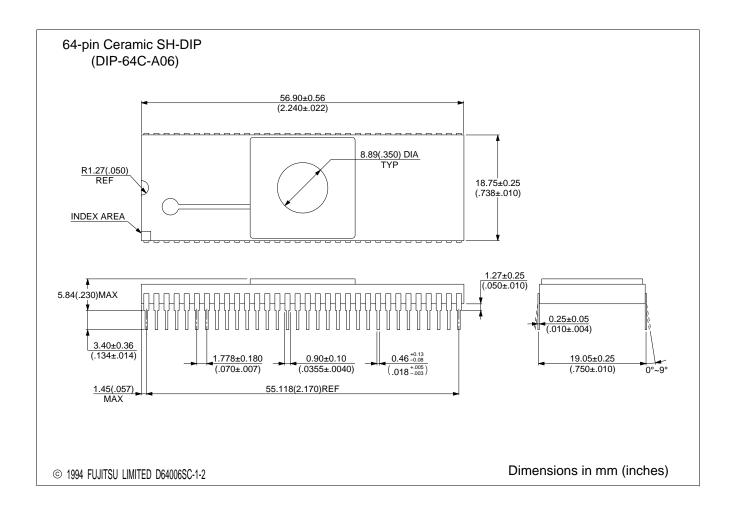
■ MASK OPTIONS

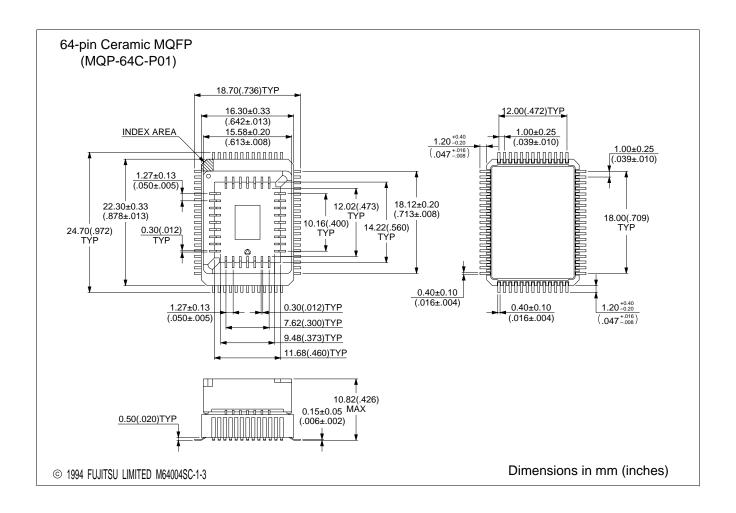

No.	Part number	MB89623 MB89625 MB89626 MB89627	MB89P625 MB89W625 MB89P627 MB89W627	MB89PV620 MB89V623 MB89T623 MB89T625	
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible	
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64	Selectable per pin. (P50 to P57 must be set to without a pull-up resistor when an A/D converter is used.)	Can be set per pin. (P40 to P47 are available only for without a pull-up resistor.)	Fixed to without pull-up resistor	
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to with power-on reset	
3	Oscillation stabilization time selection Crystal oscillator: 2 ¹⁸ /Fc(s)) Ceramic oscillator: 2 ¹⁴ /Fc(s))	Selectable	Setting possible	Crystal oscillator (2 ¹⁸ /Fc(s))	
4	Reset pin output With reset output Without reset output	Selectable	Setting possible	With reset output	


Note: Reset is input asynchronized with the internal clock whether with or without power-on reset.


■ ORDERING INFORMATION


Part number	Package	Remarks		
MB89623P-SH MB89625P-SH MB89626P-SH MB89627P-SH MB89P625P-SH MB89P627-SH MB89T623P-SH MB89T625P-SH MB89V623P-SH MB89V625P-SH	64-pin Plastic SH-DIP (DIP-64P-M01)			
MB89623PFV MB89625PFV MB89T623PFV MB89T625PFV	64-pin Plastic SQFP (FPT-64P-M03)	Lead pitch: 0.5 mm		
MB89623PF MB89625PF MB89626PF MB89627PF MB89P625PF MB89P627PF MB89T623PF MB89T625PF	64-pin Plastic QFP (FPT-64P-M06)	Lead pitch: 1.0 mm		
MB89623PFM MB89625PFM MB89626PFM MB89627PFM MB89P625PFM MB89T623PFM MB89T625PFM	64-pin Plastic QFP (FPT-64P-M09)	Lead pitch: 0.65 mm		
MB89W625C-SH MB89W627C-SH	64-pin Ceramic SH-DIP (DIP-64C-A06)			
MB89PV620C-SH	64-pin Ceramic MDIP (MDP-64C-P02)			
MB89PV620CF	64-pin Ceramic MQFP (MQP-64C-P01)			


■ PACKAGE DIMENSIONS



FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan

Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 189554

Tel: 336-1600 Fax: 336-1609 All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

F9602

© FUJITSU LIMITED Printed in Japan