DS07-12533-1E

8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89610R Series

MB89613R/615R

■ DESCRIPTION

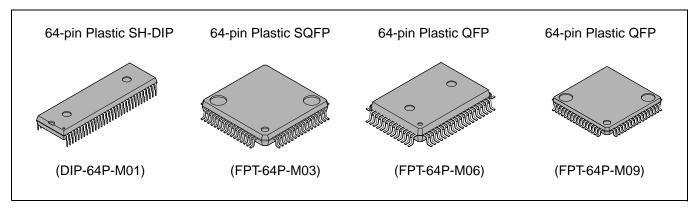
MB89610R series has been developed as a general-purpose version of the F²MC*-8L family of proprietary 8-bit, single-chip microcontrollers.

In addition to the F²MC-8L CPU core which can operate at low voltage but at high speed, the microcontrollers contain peripheral resources such as timers, serial interfaces, and an external interrupt.

The MB89610R series is applicable to a wide range of application from welfare products to industrial equipment, including portable devices.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES


- Various package options
 Three types of QFP packages (0.5-mm, 0.65-mm, 1-mm pitch)
 SDIP package
- High-speed processing at low voltages
 Minimum execution time: 0.4 μs/3.5 V and 0.8 μs/2.7 V
- F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and dividion instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

(Continued)

■ PACKAGES

(Continued)

Four types of timers

8-bit PWM timer (also usable a reload timer)

8-bit pulse-width count timer (Continuous measurement capable, applicable to remote control, etc)

16-bit timer/counter

20-bit time-base timer

• Two serial interfaces

Switchable transfer direction allows communication with various equipment.

• External interrupt: 4 channels

Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

• Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)

Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)

 Bus interface function Including hold and ready functions

■ PRODUCT LINEUP

Part number Parameter	MB89613R	MB89615R	MB89P625/W625*1	MB89PV620*1	
Classification	Mass produc (mask ROM	ction product // products)	One-time PROM product/EPROM product	Pggyback/evaluation product (for evaluation and development)	
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal PROM, programming with general-purpose EPROM programmer)	32 K × 8 bits (external ROM)	
RAM size	256 × 8 bits	512	× 8 bits	1 K × 8 bits	
CPU functions		it length: ength: yth: ecution time:	136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 µs/10 MHz 3.6 µs/10 MHz		
Ports		s (N-ch open-drain): ch open-drain): s (CMOS): MOS):	5 (4 ports also serve as 8 8 (4 ports also serve as 8 (All also serve as bus 24 (All also serve as bu 53	peripherals) control pins)	
8-bit PWM timer	8-bit reload timer operation (toggled output capable, operating clock cycle: 0.4 μ s to 3.3 ms) 8-bit resolution PWM operation (conversion cycle: 10 μ s to 839 ms)				

(Continued)

(Continued)

Part number Parameter	MB89613R	MB89615R	MB89P625/W625*1	MB89PV620*1		
Pulse width count timer		peration (toggled output of	able, operating clock cyc apable, operating clock cy easurement operation			
	(continuous measure		se width/"L" pulse width/	from \uparrow to \uparrow /from \downarrow to \downarrow)		
16-bit timer/ counter			perating clock cycle: 0.4 edge/falling edge/both edge/falling			
8-bit Serial I/O 1 8-bit Serial I/O 2	8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 μs, 3.2 μs, 12.8 μs)					
External interrupt	Four independent channels (edge selection, interrupt vector, and interrupt source flag) Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode (edge detection is also permitted in stop mode)					
Standby mode	Sleep mode and stop mode					
Process	CMOS					
Operating voltage*2	2.2 V to 6.0 V 2.7 V to 6.0 V					
EPROM for use	MBM27C256A-20C MBM27C256A-20T					

^{*1:} One-time PROM product/EPROM product, and piggyback/evaluation product are applicable to the MB89620 series.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89613R MB89615R	MB89P625	MB89W625	MB89PV620
DIP-64P-M01	0	0	×	×
DIP-64C-A06	×	×	0	×
FPT-64P-M03	0	×*	×*	×*
FPT64P-M06	0	0	×	×
FPT-64P-M09	0	0	×*	×*
MDP-64C-P02	×	×	×	0
MQF-64C-P01	×	×	×	0

○ : Available ×: Not available

Notes: • For more information about each package, see section "■ Package Dimensions."

 One-time PROM product/EPROM product, and piggyback/evaluation product are applicable to the MB89620 series.

^{*2:} Varies with conditions such as the operating frequency (See section "■ Electrical Characteristics.") In the case of the MB89PV620, the voltage varies with the restrictions the ICE or EPROM for use.

^{*:} Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available. 64SD-64SQF-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M03 64SD-64QF2-8L: For conversion from DIP-64P-M01 or DIP-64C-A06 to FPT-64P-M09 Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89613R, the upper half of the register bank cannot be used.
- The stack area, etc., is set at the upper limit of the RAM.
- External area is used.

2. Current Consumption

- In the case of the MB89PV620, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than a product with a mask ROM.
- However, the current consumption in sleep/stop modes is the same. (For more information, see sections
 "■ Electrical Characteristics" and "■ Example Characteristics."

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

Take particular care on the following points:

- Pull-up resistor cannot be set for P40 to P47 on the MB89P625 and MB89W625.
- Options are fixed on the MB89PV620.

4. Differences between the MB89610 and MB89610R Series

· Memory access area

Memory access area of both the MB89615 and MB89615R is the same.

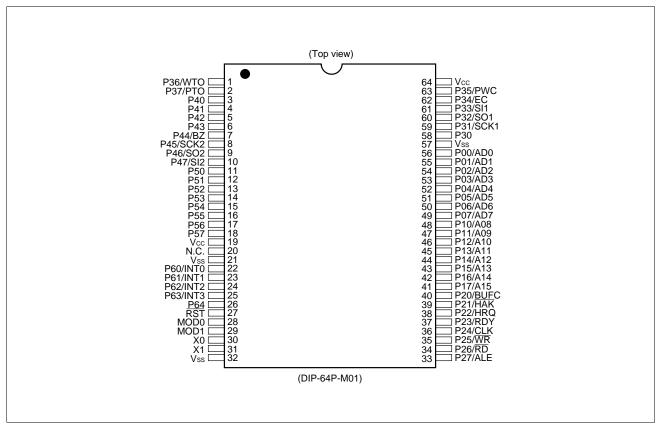
The access area of the MB89613 is different from that of the MB89613R when using in external bus mode. See below.

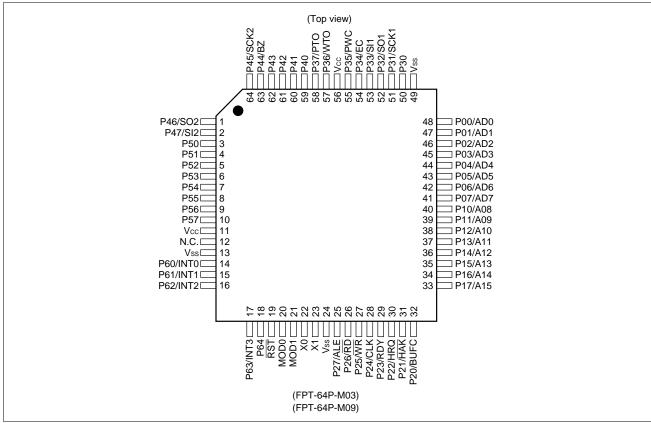
Address	Memory area		
Address	MB89613	MB89613R	
0000н to 007Fн	I/O area	I/O area	
0080н to 017Fн	RAM area	RAM area	
0180н to 027Fн		Access prohibited	
0280н to BFFFн	External area	External area	
C000н to DFFFн		Access prohibited	
E000н to FFFFн	ROM area	ROM area	

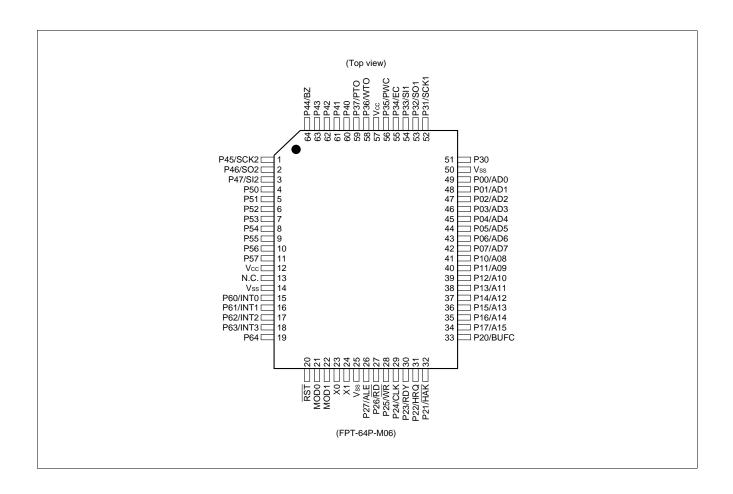
· Other specifications

Both the MB89610 and MB89610R is the same.

Electrical specifications/electrical characteristics
 Electrical specifications of the MB89610R series are the same with that of the MB89610 series.


For electrical characteristics, refer to the MB89620R series data sheet.


■ CORRESPONDENCE BETWEEN THE MB89610 AND MB89610R SERIES


- The MB89610R series is the reduction version of the MB89610 series.
- The MB89610 and MB89610R series consist of the following products:

MB89610 series	MB89613	MB89615
MB89610R series	MB89613R	MB89615R

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.					
SH- DIP*1, MDIP*2	QFP1*3 MQFP*4	SQFP*5 QFP2*6	Pin name	Circuit type	Function
30	23	22	X0	Α	Crystal oscillator pins
31	24	23	X1		
28	21	20	MOD0	В	Operating mode selection pins
29	22	21	MOD1		Connected directly to Vcc or Vss.
27	20	19	RST	С	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
56 to 49	49 to 42	48 to 41	P00/AD0 to P07/AD7	D	General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower addresses output and data I/O.
48 to 41	41 to 34	40 to 33	P10/A08 to P17/A15	D	General-purpose I/O ports When an external bus is used, these ports function as upper addresses output.
40	33	32	P20/BUFC	F	General-purpose output-only port When an external bus is used, this port can also be used as a buffer control output by setting of BCTR.
39	32	31	P21/HAK	F	General-purpose output-only port When an external bus is used, this port can also be used as a hold acknowledge output by setting of BCTR.
38	31	30	P22/HRQ	D	General-purpose output-only port When an external bus is used, this port can also be used as a hold request input by setting of BCTR.
37	30	29	P23/RDY	D	General-purpose output-only port When an external bus is used, this port functions as a ready input.
36	29	28	P24/CLK	F	General-purpose output-only port When an external bus is used, this port functions as a clock output.
35	28	27	P25/WR	F	General-purpose output-only port When an external bus is used, this port functions as a write signal output.
34	27	26	P26/RD	F	General-purpose output-only port When an external bus is used, this port functions as a read signal output.
33	26	25	P27/ALE	F	General-purpose output-only port When an external bus is used, this port functions as an address latch signal output.

*1: DIP-64P-M01, DIP-64C-A06

*2: MDP-64C-P02

*3: FPT-64P-M06

*4: MQP-64C-P01

*5: FPT-64P-M03

*6: FPT64P-M09

(Continued)

(Continued)

Pin no.					
SH- DIP*1, MDIP*2	QFP1*3 MQFP*4	SQFP*5 QFP2*6	Pin name	Circuit type	Function
58	51	50	P30	Е	General-purpose I/O port This port is a hysteresis input type.
59	52	51	P31/SCK1	Е	General-purpose I/O port Also serves as the clock I/O for the 8-bit serial I/O 1. This port is a hysteresis input type.
60	53	52	P32/SO1	E	General-purpose I/O port Also serves as the data output for the 8-bit serial I/O 1. This port is a hysteresis input type.
61	54	53	P33/SI1	E	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O 1. This port is a hysteresis input type.
62	55	54	P34/EC	Е	General-purpose I/O port Also serves as the external clock input for the 16-bit timer/counter. This port is a hysteresis input type.
63	56	55	P35/PWC	E	General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width count timer. This port is a hysteresis input type.
1	58	57	P36/WTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width count timer. This port is a hysteresis input type.
2	59	58	P37/PTO	Е	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. This port is a hysteresis input type.
3 to 6	60 to 63	59 to 62	P40 to P43	G	N-ch open-drain I/O ports This port is a hysteresis input type.
7	64	63	P44/BZ	G	N-ch open-drain I/O port Also serves as the buzzer output. This port is a hysteresis input type.
8	1	64	P45/SCK2	G	N-ch open-drain I/O port Also serves as the clock I/O for the 8-bit serial I/O 2. This port is a hysteresis input type.
9	2	1	P46/SO2	G	N-ch open-drain I/O port Also serves as the data output for the 8-bit serial I/O 2. This port is a hysteresis input type.
10	3	2	P47/SI2	G	N-ch open-drain I/O port Also serves as the data input for the 8-bit serial I/O 2. This port is a hysteresis input type.
11 to 18	4 to 11	3 to 10	P50 to P57	Н	N-ch open-drain output-only ports

*1: DIP-64P-M01, DIP-64C-A06

*4: MQP-64C-P01

*2: MDP-64C-P02

*5: FPT-64P-M03

*3: FPT-64P-M06

*6: FPT64P-M09

(Continued)

(Continued)

	Pin no.				
SH- DIP*1, MDIP*2	QFP1*3 MQFP*4	SQFP*5 QFP2*6	Pin name	Circuit type	Function
22 to 25	15 to 18	14 to 17	P60/INT0 to P63/INT3	I	General-purpose input-only ports Also serve as external interrupt input. This port is a hysteresis input type.
26	19	18	P64	I	General-purpose input-only ports This port is a hysteresis input type.
19, 64	12, 57	11, 56	Vcc	_	Power supply pin
21, 32, 57	14, 25, 50	13, 24, 49	Vss	_	Power supply (GND) pin
20	13	12	N.C.	_	Internally connected pin Be sure to leave it open.

*1: DIP-64P-M01, DIP-64C-A06

*4: MQP-64C-P01

*2: MDP-64C-P02

*5: FPT-64P-M03

*3: FPT-64P-M06

*6: FPT64P-M09

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 X1 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	At oscillation feedback resistor of approximately 1 MΩ/5.0 V
В		
С	R P-ch N-ch	 At oscillation feedback resistor of approximately 50 kΩ/5.0 V CMOS hysteresis input
D	R P-ch	 CMOS output CMOS input Pull-up resistor optional (except P22 and P23)
Е	R P-ch N-ch	CMOS output Hysteresis input Pull-up resistor optional
F	P-ch N-ch	CMOS output

(Continued)

(Continued)

Туре	Circuit	Remarks
G	P-ch	N-ch open-drain output Hysteresis input
		Pull-up resistor optional
Н	P-ch Analog input	N-ch open-drain output
		Pull-up resistor optional
I	₹R	Hysteresis input
		Pull-up resistor optional

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

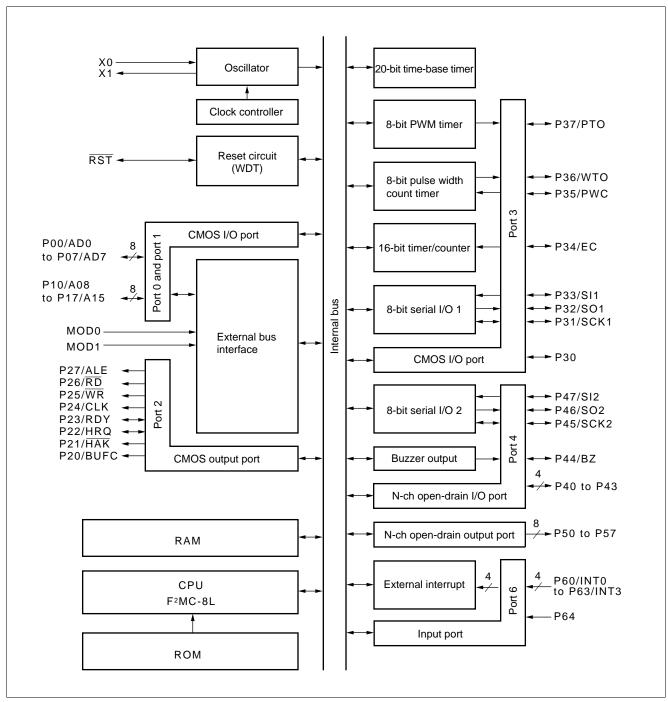
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

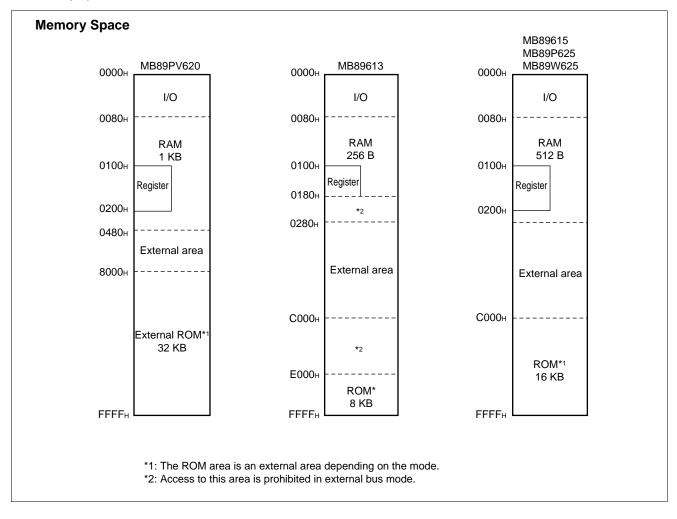
Be sure to leave (internally connected) N.C. pins open.


5. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89610 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89610 series is structured as illustrated below.

2. Registers

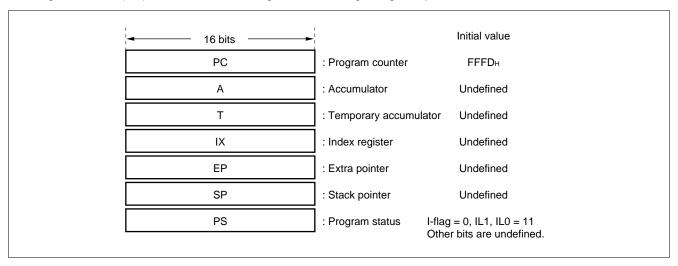
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

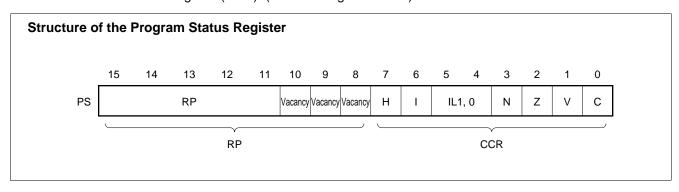
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

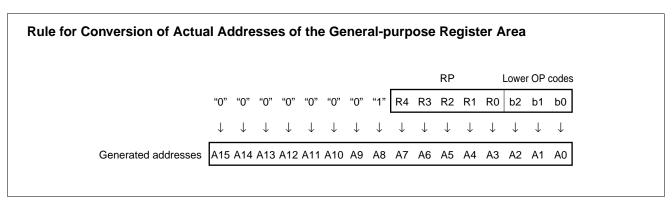
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

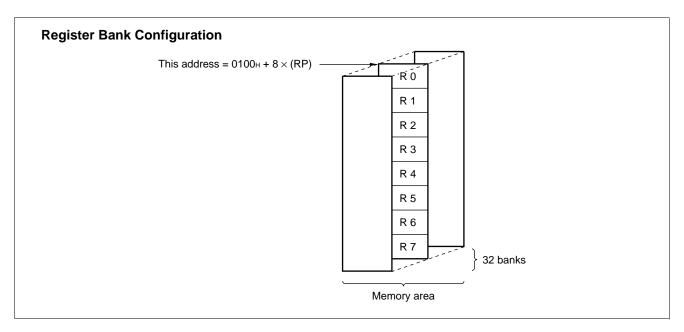
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	·	<u>†</u>
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.


C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89610. In the MB89613, there are 16 banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to addresses 0180_H to 01FF_H using an external circuit. The bank currently being in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size. Up to a total of 32 banks can be used on other than the MB89615.

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05н	(R/W)	BCTR	External bus control register
06н		1	Vacancy
07н			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBTC	Time-base timer control register
0Вн			Vacancy
0Сн	(R/W)	PDR3	Port 3 data register
0Dн	(W)	DDR3	Port 3 data direction register
0Ен	(R/W)	PDR4	Port 4 data register
0Fн	(R/W)	BZCR	Buzzer register
10н	(R/W)	PDR5	Port 5 data register
11н	(R)	PDR6	Port 6 data register
12н	(R/W)	CNTR	PWM control register
13н	(W)	COMR	PWM compare register
14 _H	(R/W)	PCR1	PWC pulse width control register 1
15н	(R/W)	PCR2	PWC pulse width control register 2
16н	(R/W)	RLBR	PWM reload buffer register
17н			Vacancy
18н	(R/W)	TMCR	16-bit timer control register
19н	(R/W)	TCHR	16-bit timer count resister (H)
1Ан	(R/W)	TCLR	16-bit timer count register (L)
1Вн			Vacancy
1Сн	(R/W)	SMR1	Serial I/O 1 mode register
1Dн	(R/W)	SDR1	Serial I/O 1 data register
1Ен	(R/W)	SMR2	Serial I/O 2 mode register
1F _H	(R/W)	SDR2	Serial I/O 2 data register
20н to 23н	, ,	<u> </u>	Vacancy
21н	(R/W)	EIC1	External interrupt control register 1
25н	(R/W)	EIC2	External interrupt control register 2
26н to 7Вн	, ,	1	Vacancy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F _H	, ,		Vacancy

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 7.0	V	
Innut voltage	Vı	Vss - 0.3	Vcc + 0.3	V	Except P40 to P47*
Input voltage	Vı2	Vss - 0.3	Vss + 7.0	V	P40 to P47
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V	Except P40 to P47*
Output voltage	V _{O2}	Vss - 0.3	Vss + 7.0	V	P40 to P47
"L" level maximum output current	loL	_	20	mA	
"L" level average output current	lolav	_	4	mA	Average value (operating current × operating rate)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	ΣΙοιαν	_	40	mA	Average value (operating current × operating rate)
"H" level maximum output current	Іон	_	-20	mA	
"H" level average output current	Іонач	_	-4	mA	Average value (operating current × operating rate)
"H" level total maximum output current	Σ loн	_	-50	mA	
"H" level total average output current	ΣΙοнαν	_	-20	mA	Average value (operating current × operating rate)
Power consumption	P _D	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

 $^{^{\}star}$: V_I and V_O must not exceed V_{CC} + 0.3 V.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
raiailletei	Symbol	Min.	Max.	Ullit	Kemarks
Power supply voltage	Vcc	2.2*	6.0*	V	Normal operation assurance range* MB89613R/615R
		1.5	6.0	V	Retains the RAM state in stop mode
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency. See Figure 1.

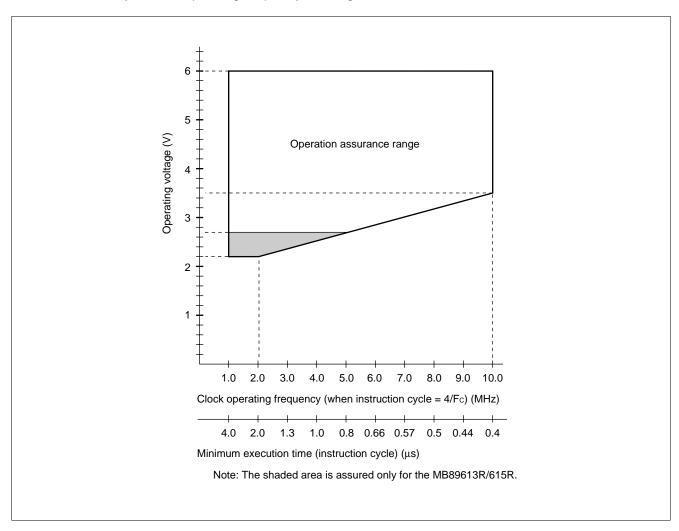


Figure 1 Operating Voltage vs. Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fc.

3. DC Characteristics

 $(Vcc = +5.0 \text{ V}, Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

		D .	0 1111	(100	Value	700 0.0		-40°C to +85°C
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	V _{IH}	P00 to P07, P10 to P17, P22, P23	_	0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	Vihs	RST, MOD0, MOD1, P30 to P37, P60 to P64	_	0.8 Vcc	_	Vcc + 0.3	V	
	V _{IH2}	P40 to P47	_	0.8 Vcc	_	Vss + 6.0	V	
"L" level input	V _L P		_	Vss - 0.3	_	0.3 Vcc	V	
voltage	RST, MOD0, MOD1, P30 to P37, P40 to P47, P60 to P64	_	Vss - 0.3	_	0.2 Vcc	V		
Open-drain	VD	P50 to P57	_	Vss - 0.3	_	Vcc + 0.3	V	
output pin application voltage V _{D2} P40	P40 to P47	_	Vss - 0.3	_	Vss + 6.0	٧		
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37	Iон = -2.0 mA	4.0	_	_	٧	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57	loL = +4.0 mA	_	_	0.4	V	
	V _{OL2}	RST		_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	Іш	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64, MOD0, MOD1	0.0 V < Vı < Vcc	_	_	±5	μΑ	Without pull- up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64, RST	V _I = 0.0 V	25	50	100	kΩ	

(Continued)

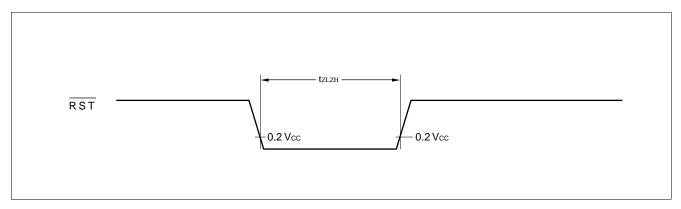
(Continued)

 $(Vcc = +5.0 \text{ V}, Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition		Value		Unit	Remarks
Farameter	Syllibol	FIII	Condition	Min.	Тур.	Max.	Offic	Nemarks
Power supply voltage*1 Iccs	Icc		$F_{C} = 10 \text{ MHz}$ $t_{\text{inst}}^{*2} = 0.4 \mu\text{s}$ Normal operation mode		9	15	mA	MB89613R/615R
	Iccs	Vcc	Fc = 10 MHz t_{inst}^{*2} = 0.4 µs Sleep mode	_	3	4	mA	
	Іссн		T _A = +25°C Stop mode	_	_	1	μА	
Input capacitance	Cin	Other than Vcc and Vss	f = 1 MHz	_	10	_	pF	

^{*1:} In the case of the MB89PV620, the current consumed by the connected EPROM and ICE is not included. The power supply current is measured at the external clock.

^{*2:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

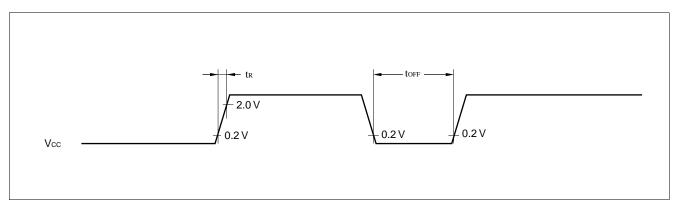

3. AC Characteristics

(1) Reset Timing

 $(V_{CC} = +5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Value		Unit	Remarks
Parameter	Syllibol	Condition	Min.	Max.	Offic	Remarks
RST "L" pulse width	t zlzh	_	16 txcyL*	_	ns	

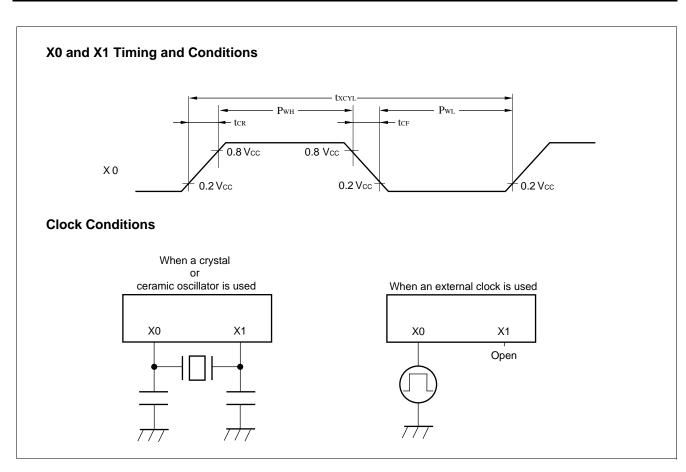
 $^{^*}$: txcyL is the oscillation cycle (1/Fc) to input to the X0 pin.


(2) Power-on Reset

(Vcc = +5.0 V $\pm 10\%$, Vss = 0.0 V, TA = -40°C to +85°C)

Parameter	Symbol	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol	Condition	Min.	Max.	Oilit	Remarks	
Power supply rising time	t _R		_	50	ms	Power-on reset function only	
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operation	

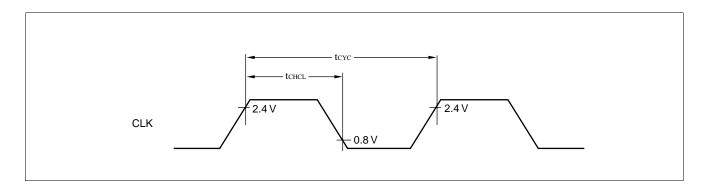
Note: Make sure that power supply rises within the selected oscillation stabilization time.


If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

 $(Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol Pin		Condition	Va	lue	Unit	Remarks	
raiametei	Cymbol	FIII	Condition	Min.	Max.	Oilit	Remarks	
Clock frequency	Fc	X0, X1	_	1	10	MHz		
Clock cycle time	txcyL	X0, X1	_	100	1000	ns		
Input clock pulse width	P _{WH} P _{WL}	X0	_	20	_	ns	External clock	
Input clock rising/falling time	tcr tcr	X0	_	_	10	ns	External clock	

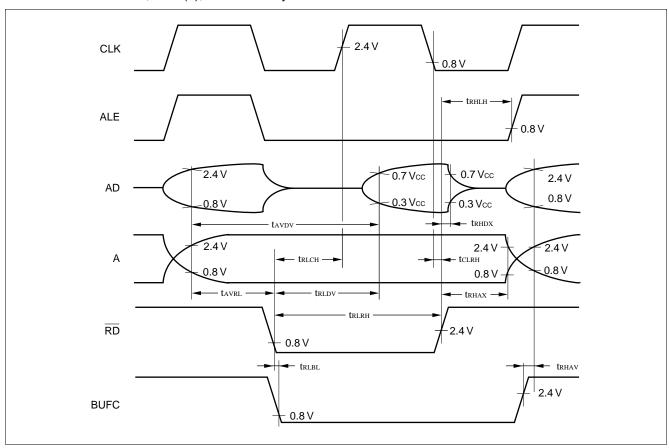

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fc	μs	$t_{inst} = 0.4 \mu s$ when operating at $F_C = 10 \text{ MHz}$

(5) Clock Output Timing

 $(Vcc = +5.0 V\pm 10\%, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Val	ues	Unit	Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Ollit	Remarks
Cycle time	tcyc	CLK	_	200	_	ns	txcyL × 2 at 10 MHz oscillation
$CLK \uparrow \rightarrow CLK \downarrow$	t CHCL			30	100	ns	Approx. tcyc/2 at 10 MHz oscillation

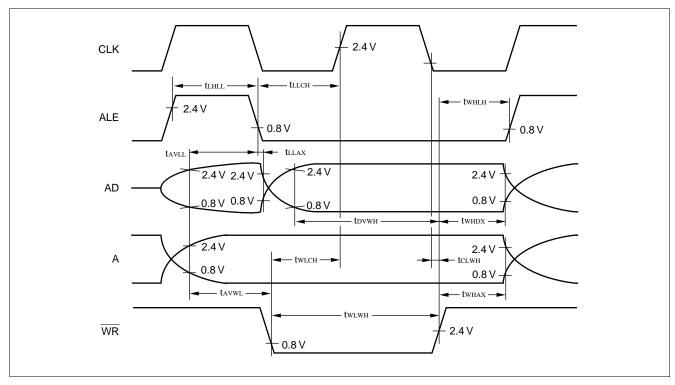


(6) Bus Read Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin	Condition	Val	lue	Unit	Remarks
Farameter	Syllibol	FIII	Condition	Min.	Max.	Oilit	iveillai ks
$ \begin{array}{c} \text{Valid address} \to \overline{\text{RD}} \downarrow \\ \text{time} \end{array} $	tavrl	RD, A15 to 08 AD7 to 0		1/4 t _{inst} * - 64 ns	_	μs	
RD pulse width	t rlrh	RD		1/2 t _{inst} * – 20 ns	_	μs	
$\begin{array}{c} \text{Valid address} \rightarrow \text{read} \\ \text{data time} \end{array}$	tandy	AD7 to 0, A15 to 08		_	1/2 t _{inst} *	μs	No wait
$\overline{RD} \downarrow \to read \; data \; time$	tRLDV	RD, AD7 to 0		_	1/2 t _{inst} * – 80 ns	μs	No wait
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	AD7 to 0, RD		0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE	_	1/4 t _{inst} * – 40 ns	_	μs	
$\overline{\text{RD}} \uparrow \rightarrow \text{address}$ invalid time	t RHAX	RD, A15 to 08		1/4 t _{inst} * - 40 ns	_	μs	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	<u> </u>		1/4 t _{inst} * – 40 ns	_	μs	
$CLK \downarrow \to \overline{RD} \uparrow time$	t CLRH	RD, CLK		0	_	ns	
$\overline{RD} \downarrow \to BUFC \downarrow time$	t RLBL	RD, BUFC		-5	_	μs	
BUFC $\uparrow \rightarrow \text{valid}$ address time	t BHAV	A15 to 08, AD7 to 0, BUFC		5	_	μs	

*: For information on tinst, see "(4), Instruction Cycle."

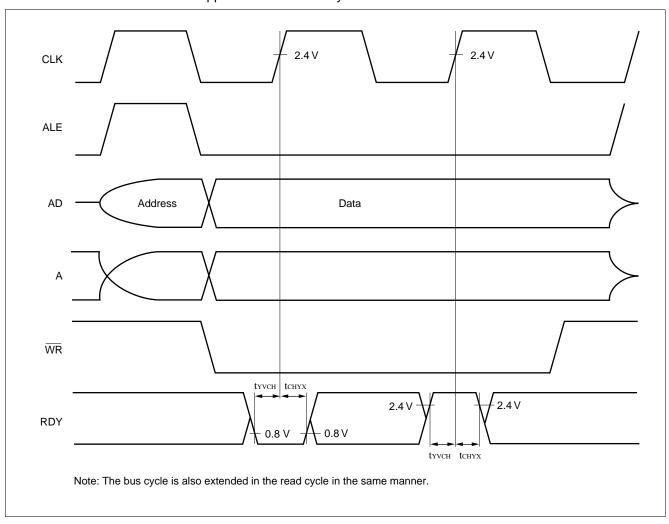


(7) Bus Write Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, Vss = 0.0 V, T_A = -40^{\circ}C)$

Doromotor	Symbol	Din	Candition	Val	ue	l lni4	Domorko
Parameter	Symbol	Pin	Condition	Min.	Max.	- Unit	Remarks
Valid address → ALE ↓ time	tavll	AD7 to 0, ALE,		1/4 t _{inst} * – 64 ns* ²	_	μs	
$\begin{array}{c} ALE \downarrow time \to address \\ invalid \ time \end{array}$	tLLAX	A15 to 08		5 ^{*2}	_	ns	
$Valid\;address \to \overline{WR} \downarrow time$	t avwl	WR, ALE		1/4 t _{inst} * - 60 ns*2	_	μs	
WR pulse width	twlwh	WR		1/2 t _{inst} * – 20 ns*2	_	μs	
Write data $ ightarrow \overline{WR} \uparrow$ time	t DVWH	AD7 to 0, WR		1/2 t _{inst} * – 60 ns* ²	_	μs	
$\overline{ m WR} \uparrow ightarrow$ address invalid time	twhax	WR, A15 to 08	<u> </u>	1/4 t _{inst} * – 40 ns* ²	_	μs	
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	AD7 to 0, WR		1/4 t _{inst} * – 40 ns* ²	_	μs	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE		1/4 t _{inst} * - 40 ns*2	_	μs	
$\overline{WR} \downarrow \to CLK \uparrow time$	t wlch	WR, CLK		1/4 t _{inst} * - 40 ns*2	_	μs	
$CLK \downarrow \to \overline{WR} \uparrow time$	tclwh	WR, CLK		0	_	ns	
ALE pulse width	t LHLL	ALE		1/4 t _{inst} * - 35 ns*2	_	μs	
ALE $\downarrow \rightarrow$ CLK \uparrow time	t llch	ALE, CLK		1/4 t _{inst} * - 30 ns*2		μs	

- *1: For information on tinst, see "(4) Instruction Cycle."
- *2: These characteristics are also applicable to the bus read timing.

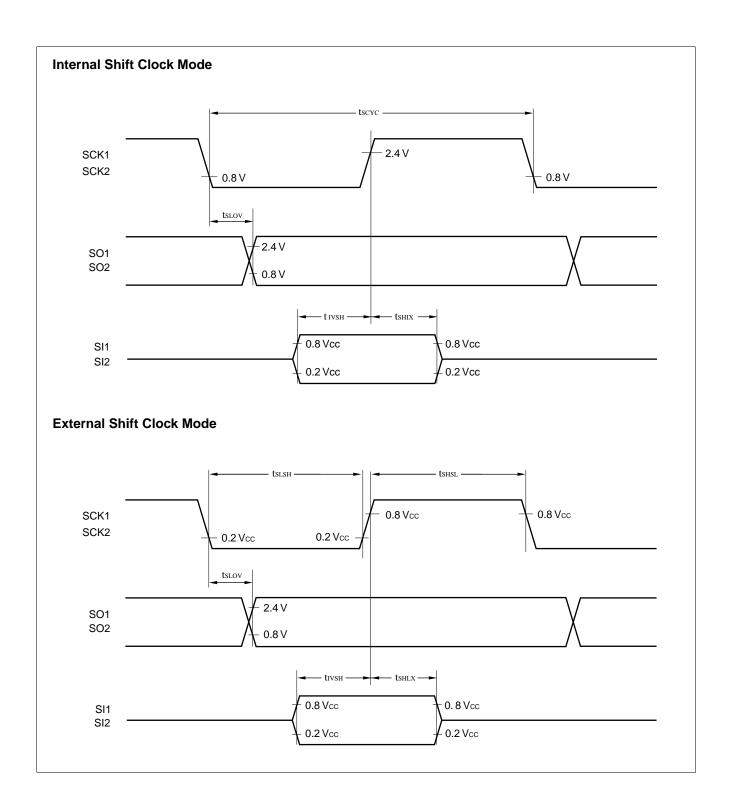


(8) Ready Input Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Val	ues	Unit	Remarks
Farameter	Syllibol	FIII		Min.	Max.		Nemarks
RDY valid \rightarrow CLK \uparrow time	tчvcн	RDY, CLK	_	60	_	ns	*
$CLK \uparrow \to RDY$ invalid time	t chyx			0	_	ns	*

*: These characteristics are also applicable to the read cycle.

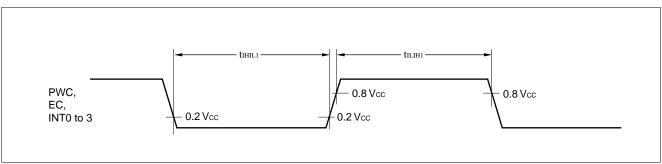


(9) Serial I/O Timing

 $(Vcc = +5.0 V\pm 10\%, Fc = 10 MHz, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

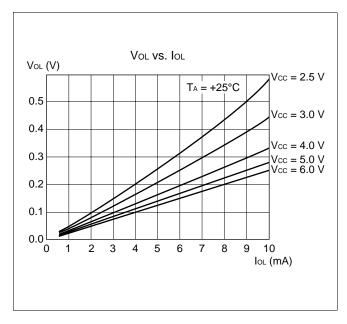
Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	FIII	Condition	Min.	Max.	Ullit	Remarks
Serial clock cycle time	tscyc	SCK1, SCK2		2 tinst*	_	μs	
$\begin{array}{c} SCK1 \downarrow \to SO1 \ time \\ SCK2 \downarrow \to SO2 \ time \end{array}$	tsLov	SCK1, SO1 SCK2, SO2		-200	200	ns	
$\begin{array}{c} \text{SCK1} \uparrow \rightarrow \text{valid SI1 hold} \\ \text{time} \\ \text{SCK2} \uparrow \rightarrow \text{valid SI2 hold} \\ \text{time} \end{array}$	tsніх	SCK1, SI1 SCK2, SI2	Internal shift clock mode	1/2 t inst*	_	μs	
Valid SI1 → SCK1 ↑ Valid SI2 → SCK2 ↑	tıvsh	SI1, SCK1 SI2, SCK2		1/2 t _{inst} *	_	μs	
Serial clock "H" pulse width	tshsl	SCK1, SCK2		1 tinst*	_	μs	
Serial clock "L" pulse width	tslsh	30K1, 30K2		1 tinst*	_	μs	
$\begin{array}{c} SCK \downarrow \to SO1 \ time \\ SCK2 \downarrow \to SO2 \ time \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	External shift clock	0	200	ns	
$\begin{array}{c} \text{SCK1} \uparrow \rightarrow \text{valid SI1 hold} \\ \text{time} \\ \text{SCK2} \uparrow \rightarrow \text{valid SI2 hold} \\ \text{time} \end{array}$	tsніх	SCK1, SI1 SCK2, SI2	mode	1/2 t inst*	_	μs	
Valid SI1 → SCK1 ↑ Valid SI2 → SCK2 ↑	tıvsн	SI1, SCK1 SI2, SCK2		1/2 t inst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

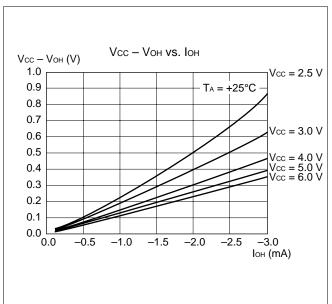


(10) Peripheral Input Timing

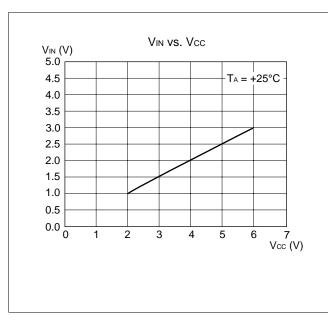
 $(Vcc = +5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

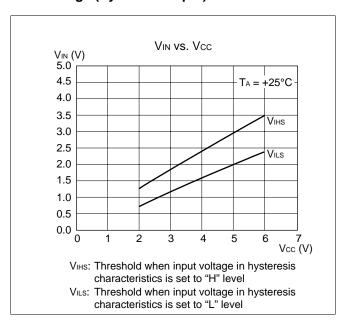

Parameter	Symbol	Symbol Pin Condition		Va	lue	Unit	Remarks
Farameter	Symbol	FIII	n Condition		Max.	Offic	IVEIIIAINS
Peripheral input "H" level pulse width 1	tiliH1	PWC, EC,		2 tinst*	_	μs	
Peripheral input "L" level pulse width 2	t _{IHIL1}	INT0 to INT3	_	2 tinst*	_	μs	

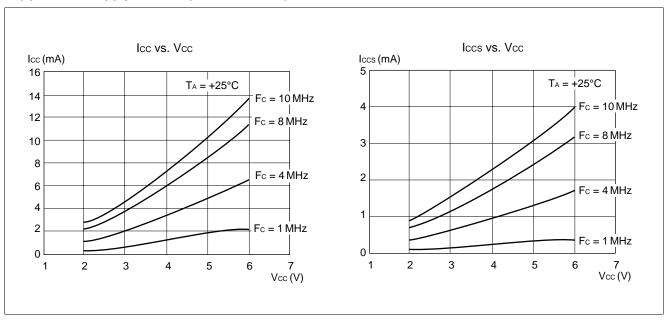
^{*:} For information on t_{inst}, see "(4) Instruction Cycle."

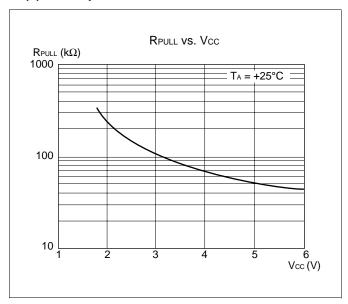


■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage


(2) "H" Level Output Voltage


(3) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)


(4) "H" level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (External Clock)

(6) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning						
EP	Extra pointer EP (16 bits)						
PC	Program counter PC (16 bits)						
SP	Stack pointer SP (16 bits)						
PS	Program status PS (16 bits)						
dr	Accumulator A or index register IX (16 bits)						
CCR	Condition code register CCR (8 bits)						
RP	Register bank pointer RP (5 bits)						
Ri	General-purpose register Ri (8 bits, i = 0 to 7)						
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)						
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)						
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)						

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

• AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F ← This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	(dir) ← (A)	_	_	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	-	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	-	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A, @ A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	$(dir) \leftarrow d8$	-	_	_		85
MOV @IX +off,#d8	5 4	3 2	$((IX) + off) \leftarrow d8$	_	_	_		86 87
MOV @EP,#d8 MOV Ri,#d8	4	2	((EP)) ← d8 (Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(KI) \leftarrow uo$ $(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_		_		00 to 6F D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$					D3
INIOVVV @IX +OII,A	3	_	$((IX) + OII) \leftarrow (AII),$ $((IX) + off + 1) \leftarrow (AL)$			_		D0
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$(EP) \leftarrow (AH), (EP) + 1 \leftarrow (AL)$	_	_	_		D7
MOVW GET,7X	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	АН	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	AH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
, 2			$(AL) \leftarrow ((IX) + off + 1)$					
MOVW A,ext	5	3	$(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	AH	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1$	AL	AH	dH	++	93
MOVW A,@EP	4	1	$(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dΗ	++	C7
MOVW A,EP	2	1	(A) ← (EP)	_	_	dH		F3
MOVW EP,#d16	3	3	(EP) ← d16	_	_	_		E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	-	_	_		E2
MOVW A,IX	2	1	$(A) \leftarrow (IX)$	_	_	dH		F2
MOVW SP,A	2	1	(SP) ← (A)	_	_			E1
MOVW A,SP	2	1	$(A) \leftarrow (SP)$	-	_	dH		F1
MOV @A,T	3	1	$((A)) \leftarrow (T)$	_	_	_		82
MOVW @A,T	4	1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	dH		E6
MOVW A,PS MOVW PS,A	2	1	$(A) \leftarrow (PS)$	_	_			70 71
MOVW PS,A MOVW SP,#d16	3	1 3	(PS) ← (A)	_	_	_	++++	71 55
SWAP	2	1	(SP) ← d16 (AH) ↔ (AL)	_	_	AL		E5 10
SETB dir: b	4	2	$(dir) \leftrightarrow (AL)$ $(dir): b \leftarrow 1$	_		AL		A8 to AF
CLRB dir: b	4	2	(dir): $b \leftarrow 1$	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_	_		42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_		dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	$(A) \leftarrow (PC)$	_	_	dH		F0
	_		(· ·/ · (· · ·/		1		1	

<sup>Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics</sup> are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	_	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_	-11.1	++++	27
ADDCW A ADDC A	3 2	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH –	++++	23 22
SUBC A,Ri	3	1	$(AL) \leftarrow (AL) + (TL) + C$ $(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,RI	2	2	$(A) \leftarrow (A) - (R) - C$ $(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	_	_	dΗ	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) − 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	 .		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$		- 00	dH		01
DIVU A ANDW A	21 3	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00 dH	++R-	11
ORW A	3	1	$(A) \leftarrow (A) \land (T)$	-	-	dН	++R- ++R-	63 73
XORW A	3	1	$ (A) \leftarrow (A) \lor (T) (A) \leftarrow (A) \lor (T) $		_	dH	++R-	53
CMP A	2	1	(TL) - (AL)	_	_	ui i	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	ightharpoonup C ightharpoonup A ightharpoonup C	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	-	-	_	++-+	02
CMP A,#d8	2	2	(A) – d8	-	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \forall (TL)$	_	_	_	++R-	52
XOR A,#d8	2	2	(A) ← (AL) ∀ d8 (A) ← (AL) ∀ (dir)	_	_	_	++R-	54 55
XOR A,dir	3	2	$(A) \leftarrow (AL) \lor (all)$ $(A) \leftarrow (AL) \lor ((EP))$	_	_	_	++R-	55 57
XOR A,@EP	3	1 2	$(A) \leftarrow (AL) \lor ((EP))$ $(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	++R- ++R-	57 56
XOR A,@IX +off	4	1	$(A) \leftarrow (AL) \lor (AL) + (AL) \lor ($	_	_	_	++R- ++R-	56 58 to 5F
XOR A,Ri AND A	2	1	$(A) \leftarrow (AL) \lor (AL)$ $(A) \leftarrow (AL) \land (TL)$	_	_	_	++R- ++R-	56 to 5F 62
AND A AND A,#d8	2	2	$(A) \leftarrow (AL) \wedge (TL)$ $(A) \leftarrow (AL) \wedge d8$	_	_	_	++R-	64
AND A,#do	3	2	$(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	65
7,110 7,011	J		(, , , , (. - , , , (,				1 11	00

(Continued)

(Continued)

Mnemonic	ł	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	-	_	+ + R -	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R -	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R -	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

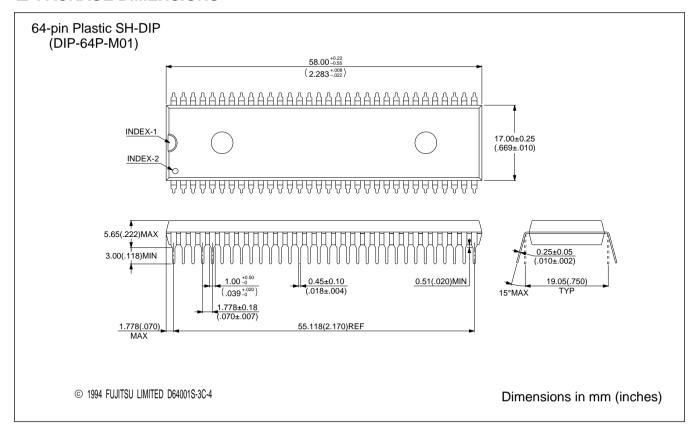
Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	-	-		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If $(dir: b) = 1$ then PC \leftarrow PC + rel	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

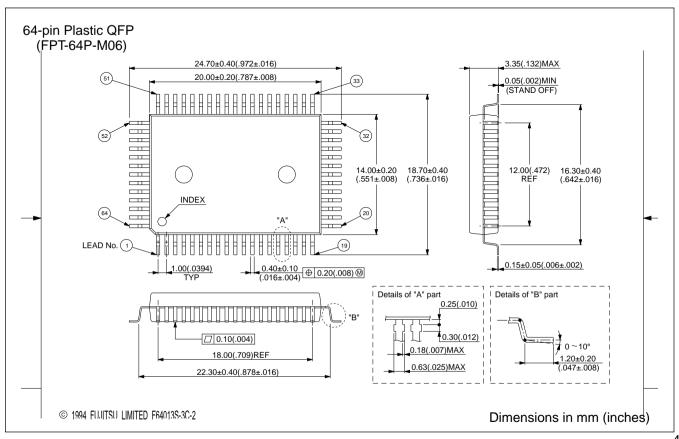
Table 5 Other Instructions (9 instructions)

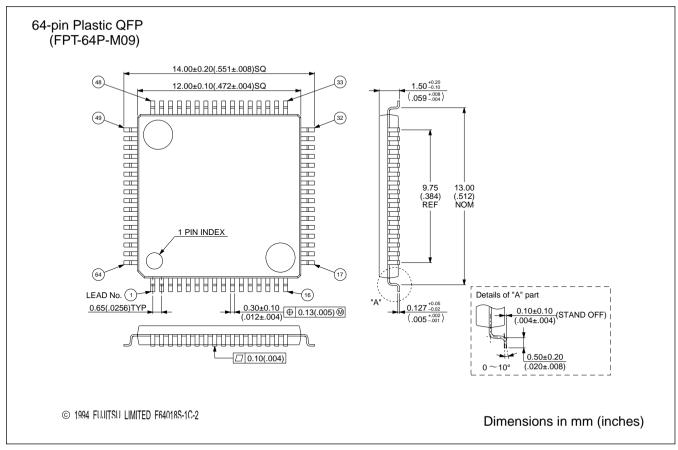
Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dH		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

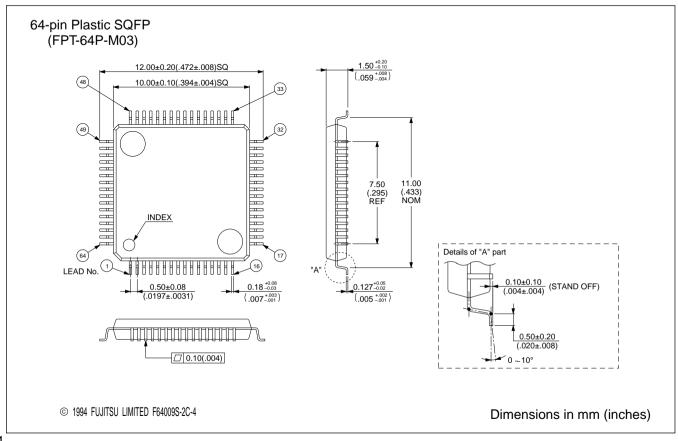
■ INSTRUCTION MAP

ч	MOVW A,PC	MOVW A,SP	MOWW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
Е	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW A	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX+d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
С	INCW A	INCW SP	INCW IX	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
Α	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
9	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND	ANDW A	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR A	XORW A	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC A	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC	ADDCW	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
1	SWAP	DIVU A	CMP A	CMPW A	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	NOP	MULU A	ROLC A	RORC	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
LH	0	1	2	3	4	2	9	7	8	6	٧	В	C	D	ш	F


■ MASK OPTIONS


No.	Part number	MB89613R MB89615R	MB89P625 MB89W625	MB89PV620	
NO.	Specifying procedure	rocedure Specify when ordering masking		Setting not possible	
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64	Selectable per pin	Can be set per pin. (P40 to P47 are available only for without pull-up resistor.)	Fixed to without pull- up resistor	
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to with power- on reset	
3	Oscillation stabilization time Selection Crystal oscillator (2 ¹⁸ /Fc(s)) Ceramic oscillator (2 ¹⁴ /Fc(s))	Selectable	Setting possible	Crystal oscillator (2 ¹⁸ /F _C (s))	
4	Reset pin output With reset output Without reset output	Selectable	Setting possible	Fixed to with reset output	


■ ORDERING INFORMATION


Part number	Package	Remarks
MB89613RP-SH MB89615RP-SH	64-pin Plastic SH-DIP (DIP-64P-M01)	
MB89613RPF MB89615RPF	64-pin Plastic QFP (FPT-64P-M06)	Lead pitch: 1.0 mm
MB89613RPFM MB89615RPFM	64-pin Plastic QFP (FPT-64P-M09)	Lead pitch: 0.65 mm
MB89613RPFV MB89615RPFV	64-pin Plastic SQFP (FPT-64P-M03)	Lead pitch: 0.5 mm

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan

Tel: (044) 754-3753 Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000

Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741

Tel: (65) 281 0770 Fax: (65) 281 0220 All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703

© FUJITSU LIMITED Printed in Japan