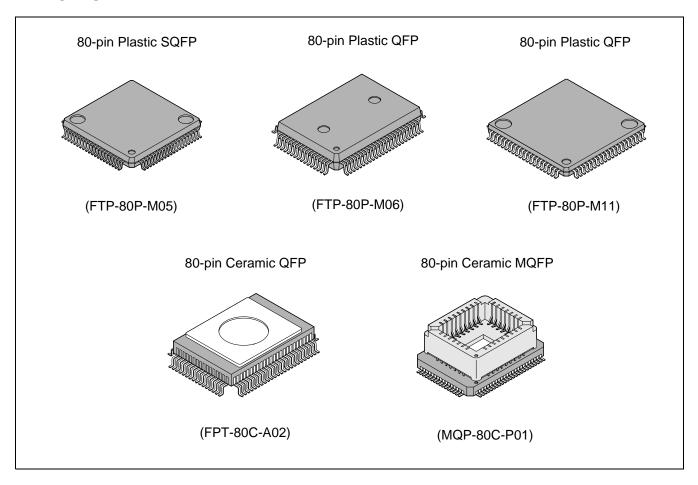
DS07-12405-2E

8-bit Proprietary Microcontroller

CMOS

F2MC-8L MB89160/160A Series

MB89161/163/165/P165/PV160/W165 MB89161A/163A/165A


■ DESCRIPTION

The MB89160 series is a line of the general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as an LCD controller/driver, an A/D converter, timers, a serial interface, PWM timers, and external interrupts.

■ FEATURES

- F2MC-8L family CPU core
- Dual-clock control system
- Maximum memory size: 16-Kbyte ROM, 512-byte RAM (max.)
- Minimum execution time: 0.95 μs/4.2 MHz
- I/O ports: max. 54 channels
- 21-bit time-base counter
- 8/16-bit timer/counter: 2 or 1 channels
- 8-bit serial I/O: 1 channel
- External interrupts (wake-up function): Four channels with edge selection plus eight level-interrupt channels
- 8-bit A/D converter: 8 channels
- 8-bit PWM timers: 2 channels
- Watch prescaler (15 bits)
- LCD controller/driver: 24 segments × 4 commons (max. 96 pixels)
- LCD driving reference voltage generator and booster (option)
- · Remote control transmission output
- Buzzer output
- Power-on reset function (option)
- Low-power consumption modes (stop, sleep, and watch mode)
- · CMOS technology

■ PACKAGE

■ PRODUCT LINEUP

Part number Parameter	MB89161/ MB89161A*1	MB89163/ MB89163A*1	MB89165		MB89P165	MB89W165	MB89PV160	
Classification		s production pro ask ROM produ			One-time PROM product	EPROM product	Piggyback/ evaluation product (for development)	
ROM size	4 K × 8 bits (internal mask ROM)	8 K × 8 bits (internal mask ROM)	16 K × 8 b (internal mask ROM		16 K > (internal PROM with general-pu programmer)	8 bits , programming rpose EPROM	32 K × 8 bits (external ROM)	
RAM size	128 × 8 bits	256 × 8 bits			512×	8 bits		
CPU functions		Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: 1, 8,16 bits Minimum execution time: 0.95 μs/4.2 MHz Interrupt processing time: 9 μs/4.2 MHz						
Ports	I/O port (N-ch open-drain): 8 (6 ports also serve as peripherals, 3 ports are a heavy-current drive type.) Output ports (N-ch open-drain): 28 (16 ports also serve as segment pins, 2 ports serve as booster capacitor connection pins, 2 ports serve as common pins.) ³ (8 ports also serve as an A/D input) I/O ports (CMOS): Output ports (CMOS): Outp						ins, 2 ports oction pins,	
Timer/counter	8-bit timer of 16-bit timer	operation (toggle operation (toggl	ed output ca ed output ca	pab apal	le, operating cloole, operating c	ock cycle 1.9 μ lock cycle 1.9 μ	s to 486 μs) ιs to 486 μs)	
Serial I/O	(one e		k selectable	fro	rst selectability m four operatio	n clocks	0.4 μs)	
LCD controller/ driver	Segment output: 24 (m Bias power supply pins: 4 LCD display RAM size: 24 × 4 Booster for LCD driving: Built-ii Dividing resistor for LCD driving: Built-ii				24 × 4 bits booster for Built-in (product with a booster)*3 LCD driving			
A/D converter	8-bit resolution × 8 channels A/D conversion mode (conversion time 43 μs/4.2 MHz (44 instruction cycles)) Sense mode (conversion time 11.9 μs/4.2 MHz) Continuous activation by an internal timer capable Reference voltage input							

(Continued)

Part number Parameter	MB89161/ MB89161A*1	MB89163/ MB89163A*1	MB89165/ MB89165A*1	MB89P165	MB89W165	MB89PV160		
PWM timer 1, PWM timer 2		8 bits \times 2 channels 8-bit reload timer operation (toggled output capable, operating clock cycle: 0.95 μ s to 124 ms) 8-bit resolution PWM operation (conversion cycle: 243 μ s to 32 s)						
External interrupt 1 (wake-up function)		4 independent channels (edge selectability) Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)						
External interrupt 2		"	L" level interrup	ts × 8 channels				
Buzzer output		1 (7 frequ	iencies are sele	ctable by the s	oftware.)			
Remote control transmission output		1 (Pulse width and cycle are software selectable.)						
Standby modes		Subclock mod	e, sleep mode,	stop mode, and	watch mode			
Process		CMOS						
Operating voltage*2	2.2 V to 6.0 V (single clock)/ 2.2 V to 4.0 V (dual clock) 2.7 V to 6.0 V							
EPROM for use								

^{*1:} Products with an internal booster.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89161 MB89161A	MB89163 MB89163A	MB89165 MB89165A	MB89PW165	MB89W165	MB89PV160
FPT-80P-M05	0	0	0	0	×	×
FPT-80P-M06	0	0	0	0	×	×
FPT-80P-M11	0	0	0	0	×	×
MQP-80C-P01	×	×	×	×	0	×
FPT-80C-A02	×	×	×	×	×	0

○ : Available × : Not available

Note: For more information about each package, see section "■ Package Dimensions."

^{*2:} Varies with conditions such as the operating frequency. (The operating voltage of the A/D converter is assured separately. See section "■ Electrical Characteristics.")

^{*3:} See section "■ Mask Options."

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

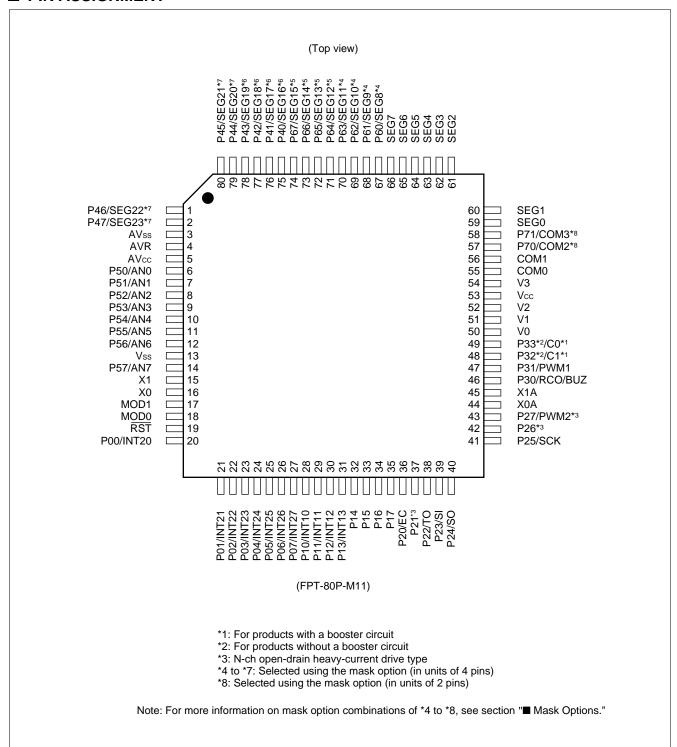
- On the MB89161/A and MB89163/A, the upper half of each register bank cannot be used.
- The stack area, etc., is set at the upper limit of the RAM.

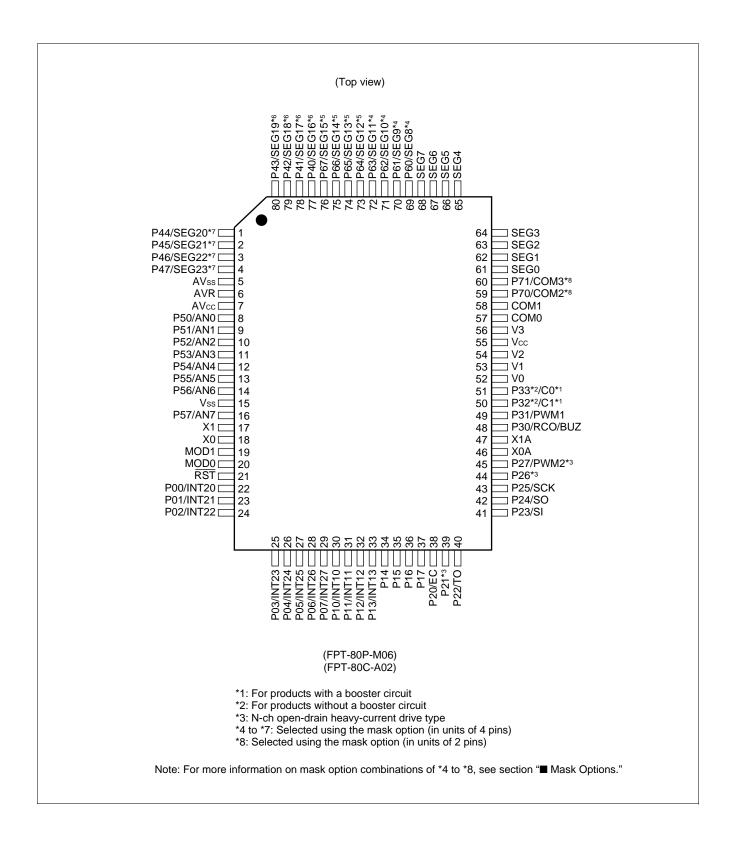
2. Current Consumption

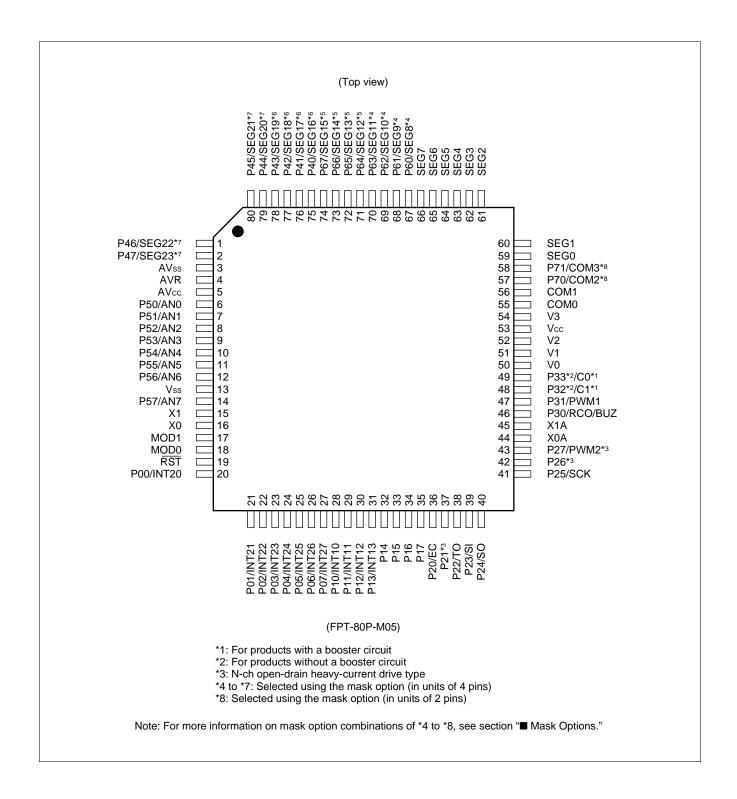
- In the case of the MB89PV160, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

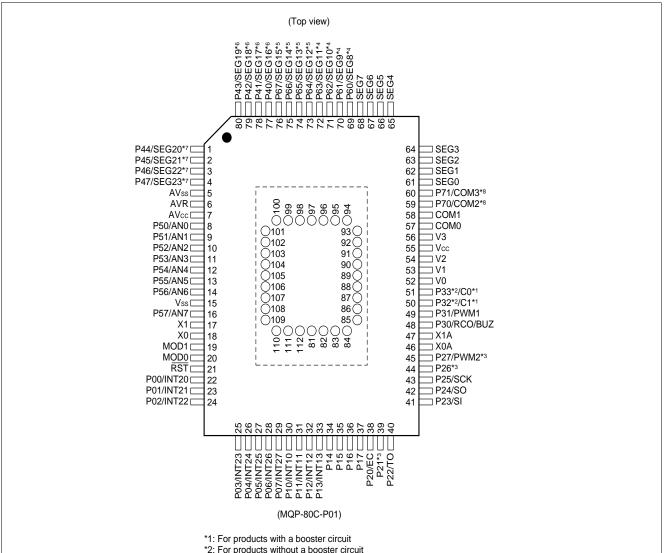
However, the current consumption in the sleep/stop modes is the same. (For more information, see section "■ Electrical Characteristics.")

3. Mask Options


Functions that can be selected as options and how to designate these options vary by the product.


Before using options check section "■ Mask Options."


Take particular care on the following points:


- A pull-up resistor cannot be set for P20 to P27 on the MB89P165.
- A pull-up resistor is not selectable for P40 to P47 and P60 to P67 if they are used as LCD pins.
- Options are fixed on the MB89PV160.

■ PIN ASSIGNMENT

^{*2:} For products without a booster circuit

Note: For more information on mask option combinations of *4 to *8, see section "■ Mask Options."

Pin assignment on package top (MB89PV160 only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
81	N.C.	89	A2	97	N.C.	105	ŌĒ
82	V _{PP}	90	A1	98	04	106	N.C.
83	A12	91	A0	99	O5	107	A11
84	A7	92	N.C.	100	O6	108	A9
85	A6	93	01	101	07	109	A8
86	A5	94	O2	102	O8	110	A13
87	A4	95	O3	103	CE	111	A14
88	А3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

^{*3:} N-ch open-drain heavy-current drive type

^{*4} to *7: Selected using the mask option (in units of 4 pins)

^{*8:} Selected using the mask option (in units of 2 pins)

■ PIN DESCRIPTION

Pin no.			21 1:				
SQFP*1 QFP*2	MQFP*3 QFP*4	Pin name	Circuit type	Function			
16	18	X0	А	Main clock crystal oscillator pins			
15	17	X1		CR oscillation selectability (mask products only)			
18	20	MOD0	С	Operating mode selection pins			
17	19	MOD1		Connect directly to Vss.			
19	21	RST	D	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".			
20 to 27	22 to 29	P00/INT20 to P07/INT27	E	General-purpose I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input is hysteresis input.			
28 to 31	30 to 33	P10/INT10 to P13/INT13	Е	General-purpose I/O ports Also serve as an external interrupt 1 input. External interrupt 1 input is hysteresis input.			
32 to 35	34 to 37	P14 to P17	F	General-purpose I/O ports			
36	38	P20/EC	Н	N-ch open-drain general-purpose I/O port Also serves as the external clock input for the timer. The peripheral is a hysteresis input type.			
37	39	P21	I	N-ch open-drain general-purpose I/O port			
38	40	P22/TO	I	N-ch open-drain general-purpose I/O port Also serves as a timer output.			
39	41	P23/SI	Н	N-ch open-drain general-purpose I/O port Also serves as the data input for the serial I/O. The peripheral is a hysteresis input type.			
40	42	P24/SO	I	N-ch open-drain general-purpose I/O port Also serves as the data output for the serial I/O.			
41	43	P25/SCK	Н	N-ch open-drain general-purpose I/O port Also serves as the clock I/O for the serial I/O. The peripheral is a hysteresis input type.			
42	44	P26	I	N-ch open-drain general-purpose I/O port			
43	45	P27/PWM2	I	N-ch open-drain general-purpose I/O port Also serves as the square wave or PWM wave output for the 8-bit PWM timer 2.			
49	51	P33	J	Functions as an N-ch open-drain general-purpose output port only in the products without a booster.			
		C0	_	Functions as a capacitor connection pin in the products with a booster.			

*1: FPT-80P-M05

*2: FPT-80P-M11

*3: MQP-80C-P01

*4: FPT-80P-M06

(Continued)

Pin no.			Oimait	
SQFP*1 QFP*2	MQFP*3 QFP*4	Pin name	Circuit type	Function
48	50	P32	J	Functions as an N-ch open-drain general-purpose output port only in the products without a booster.
		C1	_	Functions as a capacitor connection pin in the products with a booster.
47	49	P31/PWM1	G	General-purpose output-only port Also serves as the square wave or PWM wave output for the 8-bit PWM timer 1.
46	48	P30/RCO/BUZ	G	General-purpose output-only port Also serves as a buzzer output and a remote control transmission frequency output.
14, 12 to 6	16, 14 to 8	P57/AN7 to P50/AN0	L	N-ch open-drain general-purpose output ports Also serve as an analog input.
2, 1, 80 to 75	4 to 1 80 to 77	P47/SEG23 to P40/SEG16	J/K	N-ch open-drain general-purpose output ports Also serve as an LCD controller/driver segment
74 to 67	76 to 69	P67/SEG15 to P60/SEG8	J/K	output. Switching between port and segment output is done by the mask option.
66 to 59	68 to 61	SEG7 to SEG0	K	LCD controller/driver segment output pins
58, 57	60, 59	P71/COM3, P70/COM2	J/K	N-ch open-drain general-purpose output ports Also serve as an LCD controller/driver common output. Switching between port and common output is done by the mask option.
56, 55	58, 57	COM1, COM0	K	LCD controller/driver common output-only pins
54, 52 to 50	56, 54 to 52	V3, V2 to V0	_	LCD driving power supply pins
44	46	X0A	В	Subclock crystal oscillator pins (32.768 KHz)
45	47	X1A		
53	55	Vcc		Power supply pin
13	15	Vss	_	Power supply (GND) pin
5	7	AVss		A/D converter power supply pin Use this pin at the same voltage as Vcc.
4	6	AVR	_	A/D converter reference voltage input pin
3	5	AVss	_	A/D converter power supply pin Use this pin at the same voltage as Vss.

*1: FPT-80P-M05

*2: FPT-80P-M11

*3: MQP-80C-P01

*4: FPT-80P-M06

• External EPROM pins (MB89PV160 only)

Pin no.	Pin name	I/O	Function
82	V _{PP}	0	"H" level output pin
83 84 85 86 87 88 89 90	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
93 94 95	O1 O2 O3	I	Data input pins
96	Vss	0	Power supply (GND) pin
98 99 100 101 102	O4 O5 O6 O7 O8	I	Data input pins
103	CE	0	ROM chip enable pin Outputs "H" during standby.
104	A10	0	Address output pin
105	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
107 108 109	A11 A9 A8	0	Address output pins
110	A13	0	
111	A14	0	
112	Vcc	0	EPROM power supply pin
81 92 97 106	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	X1 X0 X0 X0 X1 X0 X1 X0 X1 X0 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1	 Main clock At an oscillation feedback resistor of approximately 1 MΩ/5.0 V CR oscillation is selectable (MB8916X/A only).
В	X1A X0A X0A X0A X0A X1A X1A X0A X1A X1A X1A X1A X1A X1A X1A X1A X1A X1	Subclock • At an oscillation feedback resistor of approximately 4.5 MΩ/5.0 V
С		
D	R R N-ch	 At an output pull-up resistor of approximately 50 kΩ/5.0 V Hysteresis input
E	P-ch P-ch Port Peripheral	 CMOS I/O The peripheral is a hysteresis input type. Pull-up resistor optional (Not available on the MB89PV160.)

(Continued)

Туре	Circuit	Remarks
F	P-ch P-ch N-ch	Pull-up resistor optional (Not available on the MB89PV160)
G	P-ch N-ch Port	 CMOS output P-ch output is a heavy-current drive type.
Н	P-ch N-ch Port Peripheral	 N-ch open-drain I/O CMOS input The peripheral is a hysteresis input type. P21, P26, and P27 are a heavy-current drive type. Pull-up resistor optional (Not available on the MB89P165/A, MB89W165/A and MB89PV160)
I	P-ch N-ch Port	 N-ch open-drain output CMOS input Pull-up resistor optional (Not available on the MB89P165/A, MB89W165/A and MB89PV160)
J	P-ch N-ch	 N-ch open-drain output Pull-up resistor optional (Not available on the MB89P165/A, MB89W165/A and MB89PV160) P32 and P33 are not provided with a pull-up resistor.

Туре	Circuit	Remarks
К	P-ch N-ch P-ch N-ch	LCD controller/driver segment output
L	P-ch P-ch N-ch Analog input	 N-ch open-drain output Analog input Pull-up resistor optional (Not available on the MB89PV160)

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc to Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVR = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pin

Be sure to leave (internally connected) N.C. pins open.

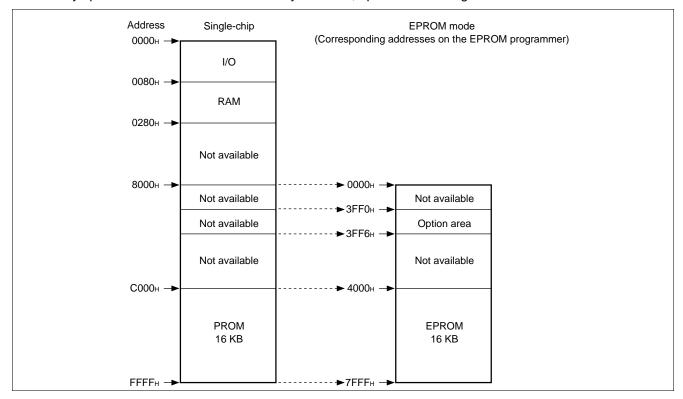
5. Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P165


The MB89P165 is an OTPROM version of the MB89160 series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

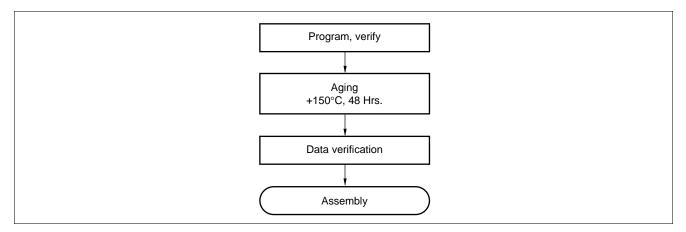
2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P165 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

When the operating area for a single chip is 16 Kbyte (C000H to FFFFH) the PROM can be programmed as follows:


• Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program into the EPROM programmer at 4000_H to 7FFF_H.

 (Note that addresses C000_H to FFFF_H while operating as a single chip assign to 4000_H to 7FFF_H in EPROM mode.)
 - Load option data into address 3FF0_H to 3FF5_H of the EPROM programmer.
 - (For information about each corresponding option, see "8. Setting OTPROM Options.")
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Adapter Socket

Package	Compatible adapter socket
FPT-80P-M05	ROM-80SQF-28DP-8L
FPT-80P-M06	ROM-80QF-28DP-8L3
FPT-80P-M11	ROM-80QF2-28DP-8L2

7. Erasure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W-seconds/cm² is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (Å)) with intensity of 12000 μ W/cm² for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000Å. Although erasure time will be much longer than with UV source at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

8. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming value at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Oscillation stabilization time		Vacancy	Reset pin output	Clock mode selection	Power-on reset
3FF0 _H	Readable	Readable	WTM1 See section "■	WTM0 Mask Option."	Readable	1: Yes 0: No	1: Dual clock 0: Single clock	1: Yes 0: No
3FF1н	P07 Pull-up 1: No 0: Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0: Yes	P04 Pull-up 1: No 0: Yes	P03 Pull-up 1: No 0: Yes	P02 Pull-up 1: No 0: Yes	P01 Pull-up 1: No 0: Yes	P00 Pull-up 1: No 0: Yes
3FF2н	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
3FF3н	P57 Pull-up 1: No 0: Yes	P56 Pull-up 1: No 0: Yes	P55 Pull-up 1: No 0: Yes	P54 Pull-up 1: No 0: Yes	P53 Pull-up 1: No 0: Yes	P52 Pull-up 1: No 0: Yes	P51 Pull-up 1: No 0: Yes	P50 Pull-up 1: No 0: Yes
3FF4н	Vacancy Readable	Vacancy Readable						
3FF5н	Vacancy	Vacancy						
	Readable	Readable						

Notes: • Set each bit to 1 to erase.

The read value of the vacant bit is 1, unless 0 is written to it.

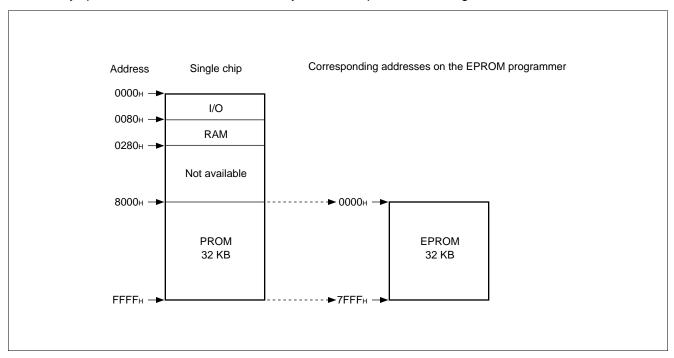
[•] Do not write 0 to the vacant bit.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

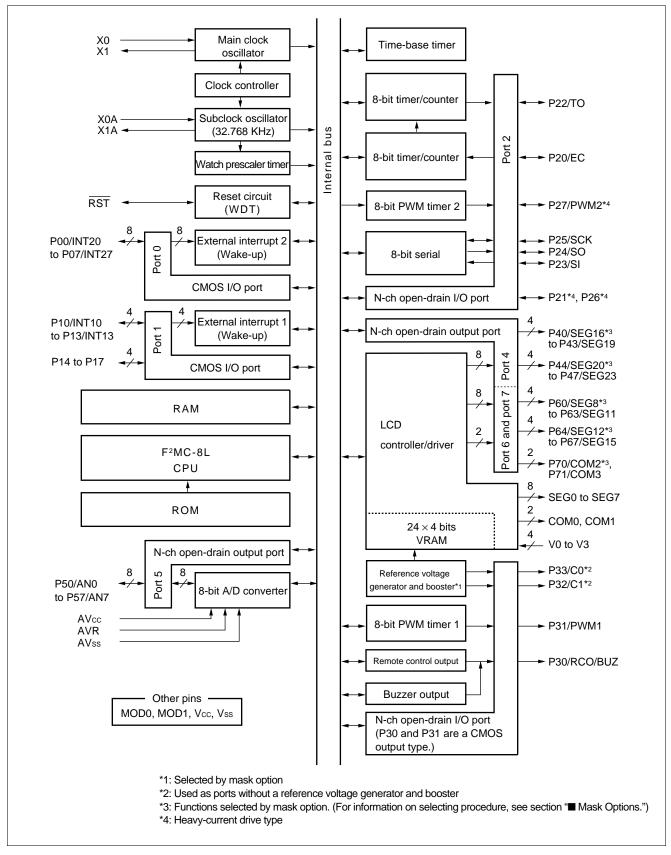
2. Programming Socket Adapter


To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

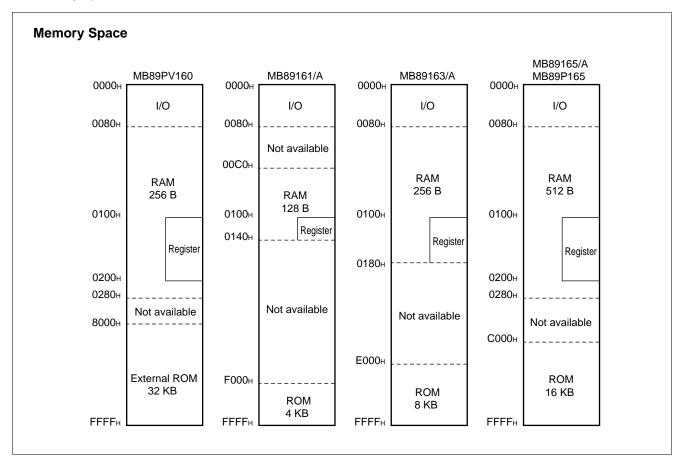
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space


Memory space in each mode, such as 32-Kbyte PROM, option area is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0000H to 7FFFH.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89160 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89160 series is structured as illustrated below.

2. Registers

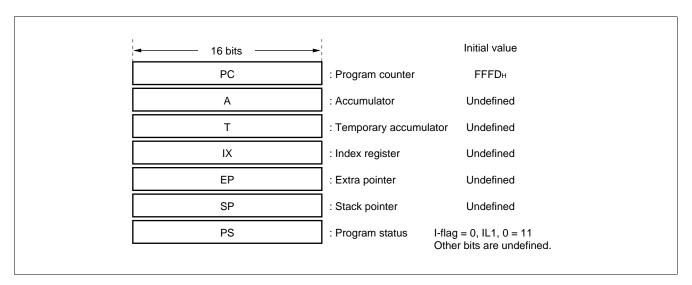
The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

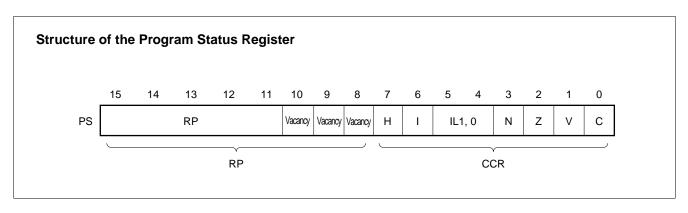
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

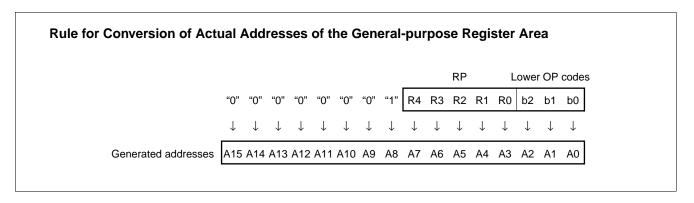
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator


When the instruction is an 18-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area


Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divide into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

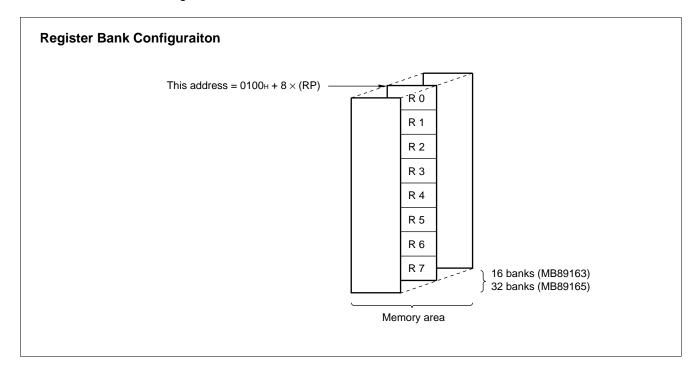
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	- 	†
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.


C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 16 banks can be used on the MB89163 (RAM 256×8 bits), and a total of 32 banks can be used on the MB89165 (RAM 256×8 bits). The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

■ I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05н	(W)	DDR2	Port 2 data direction register
06н			Vacancy
07н	(R/W)	SYCC	System clock control register
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTE	Watchdog timer control register
ОАн	(R/W)	TBTC	Time-base timer control register
0Вн	(R/W)	WPCR	Watch prescaler control register
0Сн	(R/W)	PDR3	Port 3 data register
0Dн			Vacancy
0Ен	(R/W)	PDR4	Port 4 data register
0Fн	(R/W)	PDR5	Port 5 data register
10н	(R/W)	BUZR	Buzzer register
11н			Vacancy
12н	(R/W)	PDR6	Port 6 data register
13н	(R/W)	PDR7	Port 7 data register
14н	(R/W)	RCR1	Remote control transmission register 1
15н	(R/W)	RCR2	Remote control transmission register 2
16н			Vacancy
17н			Vacancy
18н	(R/W)	T2CR	Timer 2 control register
19н	(R/W)	T1CR	Timer 1 control register
1Ан	(R/W)	T2DR	Timer 2 data register
1Вн	(R/W)	T1DR	Timer 1 data register
1Сн	(R/W)	SMR	Serial mode register
1Dн	(R/W)	SDR	Serial data register
1Ен	(R/W)	CNTR1	PWM 1 control register
1Fн	(W)	COMP1	PWM 1 compare register

(Continued)

Address	Read/write	Register name	Register description
20н	(R/W)	CNTR2	PWM 2 control register
21н	(W)	COMP2	PWM 2 compare register
22н to 2Сн			Vacancy
2Dн	(R/W)	ADC1	A/D converter control register 1
2Ен	(R/W)	ADC2	A/D converter control register 2
2Fн	(R/W)	ADCD	A/D converter data register
30н	(R/W)	EIE1	External interrupt 1 enable register 1
31н	(R/W)	EIF1	External interrupt 1 flag register 1
32н	(R/W)	EIE2	External interrupt 2 enable register 2
33н	(R/W)	EIF2	External interrupt 2 flag register 2
34н to 5Fн			Vacancy
60н to 6Bн	(R/W)	VRAM	Display data RAM
6Сн to 71н			Vacancy
72н	(R/W)	LCDR	LCD controller/driver control register 1
73 н to 7В н			Vacancy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level setting register 2
7E _H	(W)	ILR3	Interrupt level setting register 3
7Fн	Access prohibited	ITR	Interrupt test register

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Donomoton	Cymah al	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vss-0.3	Vss + 7.0	V	AVcc must not exceed Vcc + 0.3 V.
	AVR	Vss-0.3	Vss + 7.0	V	AVR must not exceed AVcc + 0.3 V.
LCD power supply voltage	V0 to V3	Vss - 0.3	Vss + 7.0	V	V0 to V3 on the product without booster must not exceed Vcc.
Input voltage	Vıı	Vss-0.3	Vcc + 0.3	V	V _{I1} must not exceed V _{SS} + 7.0 V. All pins except P20 to P27 without a pull-up resistor
	Vı2	Vss - 0.3	Vss + 7.0	V	P20 to P27 without a pull-up resistor
Output voltage	V ₀₁	Vss - 0.3	Vcc + 0.3	V	V ₀₁ must not exceed V _{ss} + 7.0 V. All pins except P20 to P27, P32, P33, P40 to P47, and P60 to P67 without a pull-up resistor
	Vo2	Vss - 0.3	Vss + 7.0	V	P20 to P27, P32, P33, P40 to P47, and P60 to P67 without a pull-up resistor
"L" level maximum output current	lo _{L1}		10	mA	All pins except P21, P26, and P27
L level maximum output current	lo _{L2}		20	mA	P21, P26, and P27
"L" level average output current	lolav1	_	4	mA	All pins except P21, P26, P27, and power supply pins Average value (operating current × operating rate)
	lolav2	_	8	mA	P21, P26, and P27 Average value (operating current × operating rate)
"L" level total maximum output current	ΣΙοι	_	100	mA	Peak value
"L" level total average output current	ΣΙοιαν	_	40	mA	Average value (operating current × operating rate)
"H" level maximum output current	І ОН1	_	- 5	mA	All pins except P30, P31, and power supply pins
	І он2	_	-10	mA	P30 and P31

(Continued)

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Syllibol	Min.	Max.	Onit	Remarks
"H" level average output current	lонаv1	_	-2	mA	All pins except P30, P31, and power supply pins Average value (operating current × operating rate)
	Iонаv2	_	-4	mA	P30 and P31 Average value (operating current × operating rate)
"H" level total maximum output current	ΣІон	_	-50	mA	Peak value
"H" level total average output current	ΣΙομαν	_	-10	mA	Average value (operating current × operating rate)
Power consumption	P _D	_	300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

Precautions: Parmanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Davamatar	Cumbal	Symbol Val		Unit	Remarks		
Parameter	Symbol	Min.	Max.	Unit	Remarks		
		2.2*1	6.0 ^{*1}	V	Normal operation assurance range*1		
	Vcc	2.2*1	4.0	V	Dual-clock mask ROM products		
Power supply voltage	AVcc	2.7	6.0	٧	Normal operation assurance range for MB89P165/A and MB89W165/A		
		1.5	6.0	V	Retains the RAM state in stop mode		
	AVR	2.0	AVcc	V	Normal operation assurance range		
LCD power supply voltage	V0 to V3	Vss	Vcc	V	V0 to V3 pins on the products without a booster LCD power supply range (The optimum value dependent on the LCD element in use.)		
EPROM program power supply voltage	V _{PP}	_	Vss + 13.0	V	MOD1 pin of the MB89P165		
Operating temperature	TA	-40	+85	°C			

^{*1:} The minimum operating power supply voltage varies with the execution time (instruction cycle time) setting for the operating frequency.

A/D converter assurance accuracy varies with the operating power supply voltage.

^{*2:} P32 and P33 are applicable only for procucts of the MB89160 series (without "A" suffix). P40 to P47 and P60 to P67 are applicable when selected as ports.

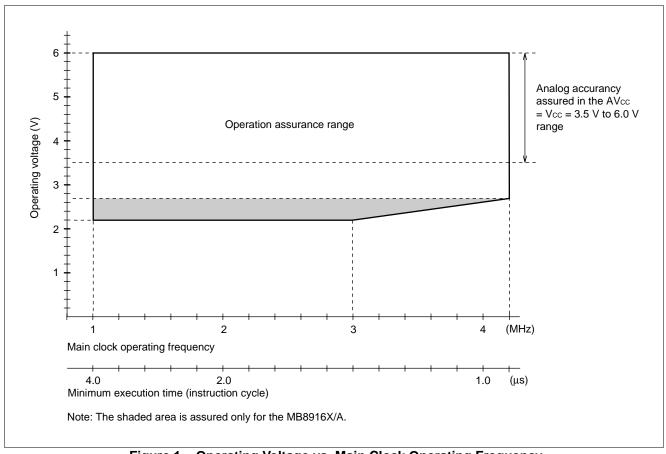


Figure 1 Operating Voltage vs. Main Clock Operating Frequency (Single-clock MB8916X/A and MB89P165/PV160)

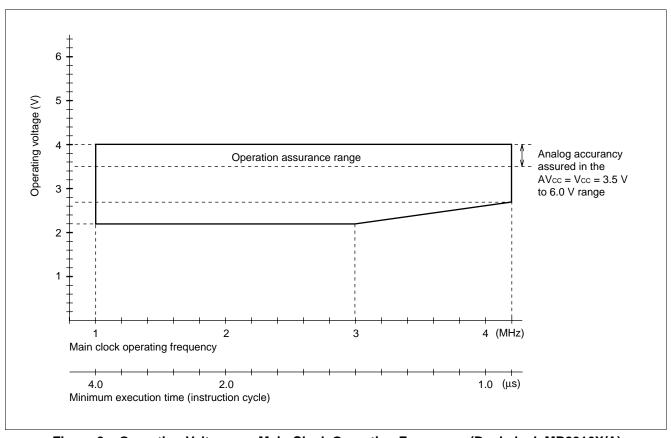


Figure 2 Operating Voltage vs. Main Clock Operating Frequency (Dual-clock MB8916X/A)

Figures 1 and 2 indicate the operating frequency of the external oscillator at an instruction cycle of 4/Fch.

Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

3. DC Characteristics

(1) Pin DC characteristics (Vcc = +5.0 V)

 $(Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

					Value			40°C to +85°C)
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	VIH	P00 to P07, P10 to P17, P20 to P27		0.7 Vcc	_	Vcc + 0.3	V	
"H" level input voltage	Vihs	RST, MOD0, MOD1, EC, SI, SCK, INT10 to INT13, INT20 to INT27		0.8 Vcc		Vcc+ 0.3	V	
	VıL	P00 to P07, P10 to P17, P20 to P27	_	Vss - 0.3	_	0.3 Vcc	V	
"L" level input voltage	VILS	RST, MOD0, MOD1, EC, SI, SCK, INT10 to INT13, INT20 to INT27		Vss - 0.3		0.2 Vcc	V	
Open-drain output pin application	V _{D1}	P20 to P27, P33, P32, P40 to P47, P60 to P67		Vss - 0.3	_	Vss + 6.0*2	V	P20 to P27, P40 to P47, and P60 to P67 without pull- up resistor only
voltage	V_{D2}	P50 to P57		Vss-0.3	_	Vcc + 0.3	V	
"H" level output	Vон1	P00 to P07, P10 to P17	Iон = −2.0 mA	2.4	_	_	V	
voltage	V _{OH2}	P30, P31	Iон = $-6.0 mA$	4.0		_	V	
"L" level output voltage	VoL	P00 to P07, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P71	IoL = 1.8 mA	_		0.4	V	
	V _{OL2}	P21, P26, P27	IoL = 8.0 mA			0.4	V	
	V _{OL3}	RST	IoL = 4.0 mA		_	0.6	V	
Input leakage current (Hi-z output leakage current)	Іш	P00 to P07, P10 to P17, MOD0, MOD1, P30, P31	0.45 V < Vı < Vcc	_		±5	μΑ	Without pull- up resistor

(Continued)

 $(Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Dorometer		Pin	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
Open-drain output leakage current	ILO1	P20 to P27, P32, P33, P40 to P47, P60 to P67, P70, P71	0.45 V < Vı < 6.0 V	_	_	±1	μА	Without pull- up resistor
ounsine .	I _{LO2}	P50 to P57	0.45 V < Vı < Vcc	_	_	±1	μΑ	Without pull- up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P57, P60 to P67, RST	Vı = 0.0 V	25	50	100	kΩ	With pull-up resistor
Common output impedance	Rусом	COM0 to COM3	V1 to V3 = +5.0 V	_	_	2.5	kΩ	
Segment output impedance	Rvseg	SEG0 to SEG24	V 1 to V3 = +5.0 V	_	_	15	kΩ	
LCD divided resistance	RLCD	_	Between Vcc and V0	300	500	750	kΩ	Products without a booster only
LCD controller/driver leakage current	ILCDL	V0 to V3, COM0 to COM3, SEG0 to SEG23	_	_	_	±1	μА	
Booster for LCD	V _{OV3}	V3	V1 = 1.5 V	4.3	4.5	4.7	V	
driving output voltage	V _{OV2}	V2	V I = 1.0 V	2.9	3.0	3.1	V	Products with
Reference output voltage for LCD driving	V _{OV1}	V1	In = 0 μA	1.27	a booste		a booster only	
Reference voltage input impedance	RRIN	V1	_	600	1000	1400	kΩ	Procucts with a booster only
Input capacitance	Cin	Other than Vcc, Vss	f = 1 MHz	_	10	_	pF	

Note: For pins which serve as the segment (SEG8 to SEG24) and ports (P40 to P47, P50 to P57, and P60 to P67), see the port parameter when these pins are used as ports and the segment parameter when they are used as segments. P32 and P33 are applicable only for products of the MB89160 series (without "A" suffix). Applicable as external capacitor connection pins for products of the MB89160A series (with "A" suffix).

(2) Pin DC Characteristics (Vcc = +3.0 V)

 $(Vcc = 3.0 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

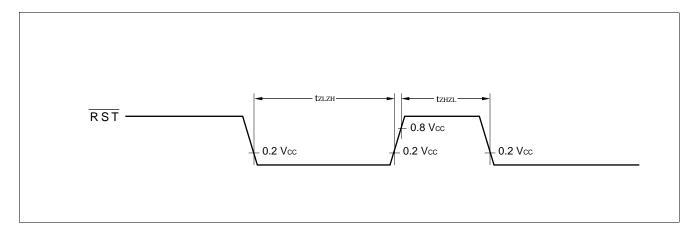
					Value	·		10 0 10 100 0)
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
"H" level output	V _{OH1}	P00 to P07, P10 to P17	Iон = −1.0 mA	2.4	_	_	V	
voltage	V _{OH2}	P30, P31	Iон = $-3.0 mA$	2.4	_	_	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P71	IoL = 1.8 mA	_	_	0.4	V	
	V _{OL2}	RST	IoL = 1.8 mA	_	_	0.4	V	
	V _{OL3}	P21, P26, P27	IoL = 3.6 mA	_	_	0.4	V	
Pull-up resistance	RPULL	P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P57, P60 to P67, RST	Vı = 0.0 V	50	100	150	kΩ	With pull-up resistor

(3) Power Supply Current Characteristics (MB8916X)

 $(Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Davamatav	0 1	Pin	Condition		Value		Unit	Remarks			
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks			
	Icc1		FcH = 4.2 MHz, Vcc = 5.0 V $t_{inst}^{*2} = 4/F_{CH}$		5.0	10.0	mA	MB8916X/A, MB89PV160			
			Main clock operation mode	_	8.0	15.0	mA	MB89PV165			
	Icc2		FcH = 4.2 MHz, Vcc = 3.0 V $t_{inst}^{+2} = 64/F$ cH	_	1.5	2.0	mA	MB8916X/A, MB89PV160			
			Main clock operation mode	_	2.4	2.8	mA	MB89P165			
	Iccl		$F_{CL} = 32.768 \text{ kHz}, V_{CC} = 3.0 \text{ V}$ $t_{inst}^2 = 2/F_{CL}$	_	0.05	0.1	mA	MB8916X/A, MB89PV160			
			Subclock operation mode	_	1.0	3.0	mA	MB89PV165			
	Iccs ₁		$F_{CH} = 4.2 \text{ MHz}, V_{CC} = 5.0 \text{ V}$ $t_{inst}^{*2} = 4/F_{CH}$ Main clock sleep mode	_	2.5	5.0	mA				
Power supply	Iccs2	Vcc	$F_{\text{CH}} = 4.2 \text{ MHz}, \text{ Vcc} = 3.0 \text{ V}$ $t_{\text{inst}^{*2}} = 64/F_{\text{CH}}$ Main clock sleep mode	_	1.0	1.5	mA	MB8916X/A, MB89PV160, MB89PV165			
current*1	Iccsl		$\begin{aligned} F_{\text{CL}} &= 32.768 \text{ kHz}, \text{ Vcc} = 3.0 \text{ V} \\ t_{\text{inst}}^{*2} &= 2/F_{\text{CL}} \\ \text{Subclock sleep mode} \end{aligned}$	_	25	50	μА				
	Ісст		FcL = 32.768 kHz, Vcc = 3.0 V Watch mode	_	10	15	μА	MB8916X, MB89P165-1XX, MB89PV160			
lccT.	Ісст2					 Fcl = 32.768 kHz, Vcc = 3.0 V Watch mode During reference voltage generator and booster operation 		250	400	μА	MB8916XA, MB89P165-2XX
		1	T 125°C Voo - 5.0 V	_	0.1	1.0	μΑ	MB8916X			
	Іссн		T _A = +25°C, V _{CC} = 5.0 V Stop mode		0.1	10	μΑ	MB89PV160, MB89P165-1XX			
	IA	AVcc	Fcн = 4.2 MHz, Vcc = 5.0 V	_	1.0	3.0	mA	When A/D conversion is activated			

^{*1:} The power supply current is measured at the external clock, open output pins, and the external LCD dividing resistor (or external input for the reference voltage). In the case of the MB89PV160, the current consumed by the connected EPROM and ICE is not included.

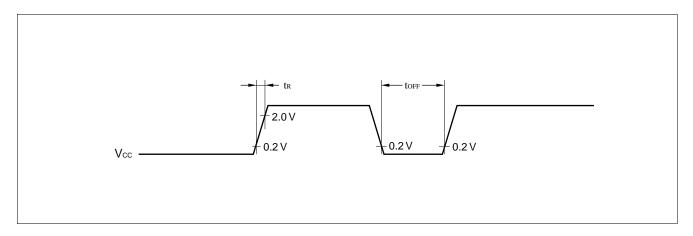

^{*2:} For information on t_{inst}, see "(4) Instruction Cycle" in "4. AC Characteristics."

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 \text{ V} \pm 10 \text{ %, Vss} = 0.0 \text{ V, T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

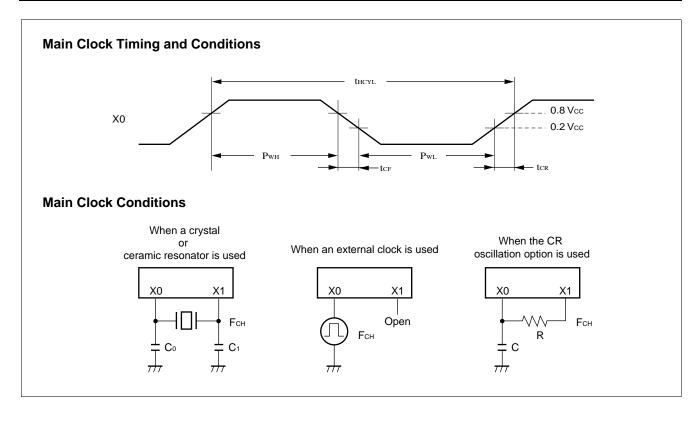
Parameter	Parameter Symbol		Value		Unit	Remarks	
raiailletei	Symbol	Condition	Min.	Max.	Oilit	iveillai ks	
RST "L" pulse width	t zlzh		48 txcyl	_	ns		
RST "H" pulse width	t zhzl	<u> </u>	24 txcyL	_	ns		

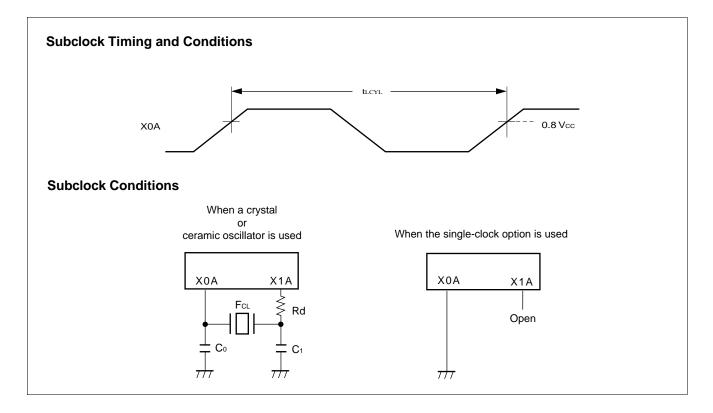


(2) Power-on Reset

 $(Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.	Offic	Remarks
Power supply rising time	t R	_	_	50	ms	Power-on reset function only
Power supply cut-off time	toff	_	1	_	ms	Due to repeated operations


Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

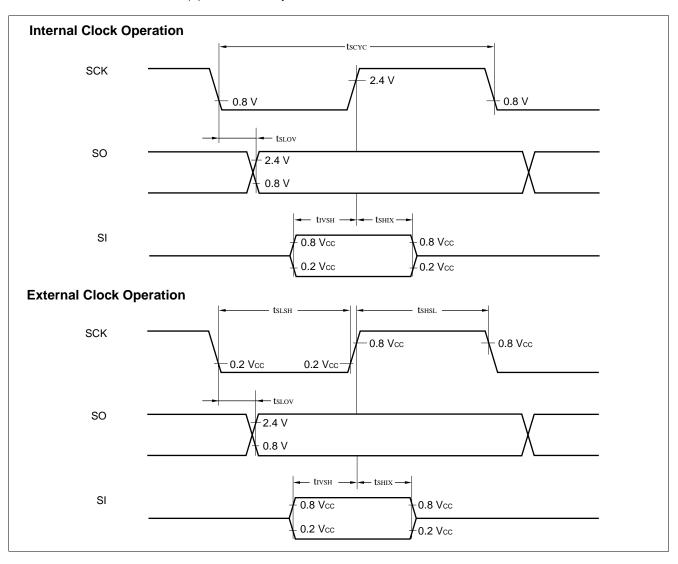


(3) Clock Timing

 $(Vss = 0.0 V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin		Value		Unit	Remarks	
raiametei	Symbol	FIII	Min.	Тур.	Max.	Oilit	Remarks	
Clock frequency	Fcн	X0, X1	1	_	4.2	MHz	Main clock	
	FcL	X0A, X1A	_	32.768	_	kHz	Subclock	
Clask avalatima	t HCYL	X0, X1	238	_	1000	ns	Main clock	
Clock cycle time	t LCYL	X0A, X1A	_	30.5	_	μs	Subclock	
Input clock pulse width	Pwh PwL	X0	20	_	_	ns	External clock	
Input clock rising/falling time	tcr tcr	X0	_	_	24	ns	External Clock	

(4) Instruction Cycle

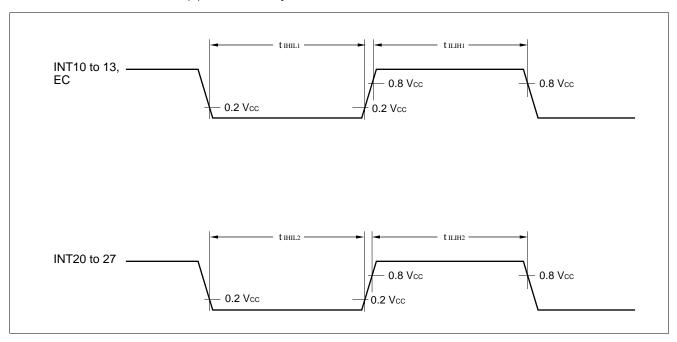

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	t inst	4/Fcн, 8/Fcн, 16/Fcн, 64/Fcн	μs	(4/Fcн) t _{inst} = 1.0 μs at Fcн = 4 MHz
(minimum execution time)		2/FcL	μs	t _{inst} = 62 μs at F _{CL} = 32.768 kHz

(5) Serial I/O Timing

 $(Vcc = +5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Valu	ıe	Unit	Remarks	
Parameter	Syllibol	FIII	Condition	Min.	Max.	Offic	Remarks	
Serial clock cycle time	tscyc	SCK		2 tinst*	_	μs		
$SCK \downarrow \to SO$ time	tslov	SCK, SO	Internal clock	-200	200	ns		
Valid SI → SCK \uparrow	tıvsh	SI, SCK	operation	1/2 tinst*	_	μs		
$SCK \uparrow \rightarrow valid SI hold time$	t shix	SCK, SI		1/2 tinst*	_	μs		
Serial clock "H" pulse width	tshsl	SCK		1 t inst*	_	μs		
Serial clock "L" pulse width	tslsh	SCK	External	1 tinst*	_	μs		
$SCK \downarrow \to SO$ time	tslov	SCK, SO	clock	0	200	ns		
Valid SI → SCK \uparrow	tıvsh	SI, SCK	operation	1/2 tinst*	_	μs		
SCK $\uparrow \rightarrow$ valid SI hold time	t shix	SCK, SI		1/2 tinst*		μs		

^{*:} For information on tinst, see "(4) Instruction Cycle."



(6) Peripheral Input Timing

 $(Vcc = +5.0 \text{ V} \pm 10\%, \text{ AVss} = \text{Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

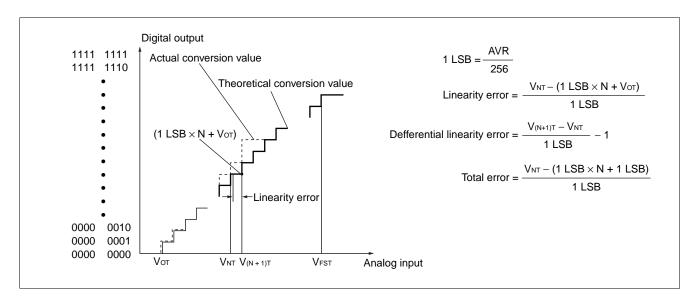
Parameter	Symbol	Pin	Va	lue	Unit	Remarks
Farameter	Syllibol	FIII	Min.	Max.	Offic	
Peripheral input "H" pulse width 1	tILIH1 INT10 to INT13, EC		1 tinst*	_	μs	
Peripheral input "L" pulse width 1			1 tinst*	_	μs	
Peripheral input "H" pulse width 2	t _{ILIH2}	INT20 to INT27	2 tinst*	_	μs	
Peripheral input "L" pulse width 2	t _{IHIL2}	111120 10 111127	2 tinst*		μs	

*: For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

(3 MHz, AVcc = Vcc = +3.5 V to +6.0 V, AVss = Vss = 0.0 V, TA = -40° C to $+85^{\circ}$ C)

Parameter	Symbol	Pin	n Condition		Value		Unit	Remarks
Parameter	Syllibol	FIII	Condition	Min.	Тур.	Max.	Offic	Remarks
Resolution			_	_	_	8	bit	
Total error				_	_	±1.5	LSB	
Linearity error	_			_	_	±1.0	LSB	
Differential linearity error			AVR = AVcc	_	_	±0.9	LSB	
Zero transition voltage	Vот			AVss – 1.0 LSB	AVss – 1.0 LSB AVss + 0.5 LSB AVss + 2.0 LSB			
Full-scale transition voltage	V _{FST}	A\	AVR – 3.0 LSB	AVR – 1.5 LSB	AVR	mV		
Interchannel disparity				_	_	0.5	LSB	
A/D mode conversion time	_			_	44 tinst	_	μs	
Sense mode conversion time				_	12 tinst	_	μs	
Analog port input current	IAI	AN0 to	_	_	_	10	μΑ	
Analog input voltage	_	AN7		0.0	_	AVR	V	
Reference voltage	_			2.0	_	AVcc	V	
Reference voltage	I R	AVR	AVR = 5.0 V, when A/D conversion is activated	_	100	_	μΑ	
supply current	I RH		AVR = 5.0 V, when A/D conversion is stopped	_	_	1	μΑ	

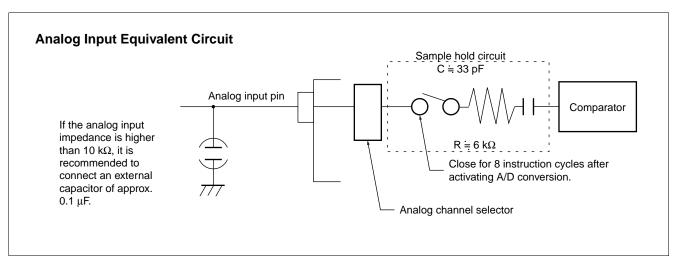

(1) A/D Glossary

Resolution

Analog changes that are identifiable with the A/D converter. When the number of bits is 8, analog voltage can be divided into 2^8 =256.

- Linearity error (unit: LSB)
 - The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics
- Differential linearity error (unit: LSB)
 The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error (unit: LSB)

The difference between theoretical and actual conversion values

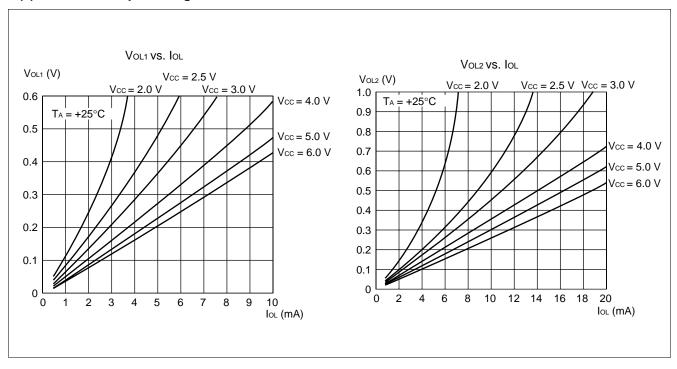

(2) Precautions

• Input impedance of analog input pins

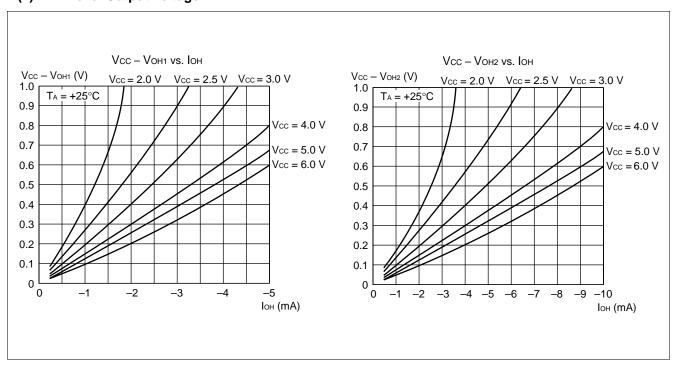
The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \text{ k}\Omega$).

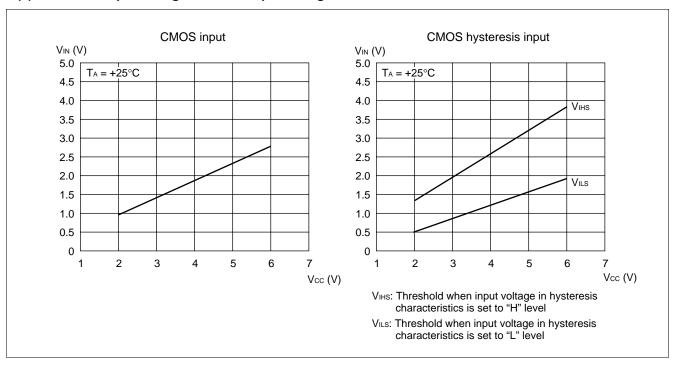
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about 0.1 μ F for the analog input pin.

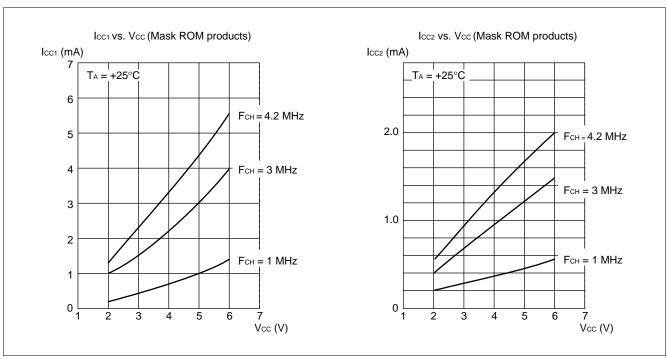


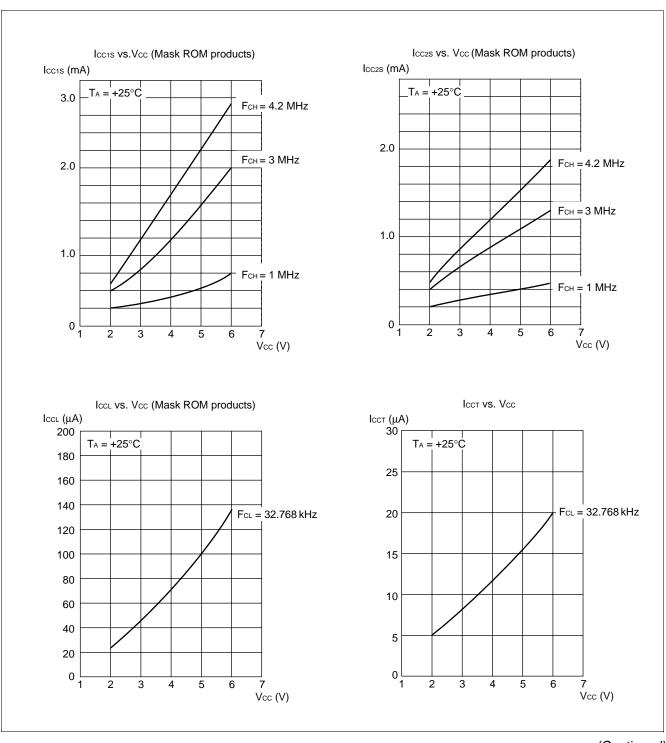
• Error


The smaller the |AVR - AVss|, the greater the error would become relatively.

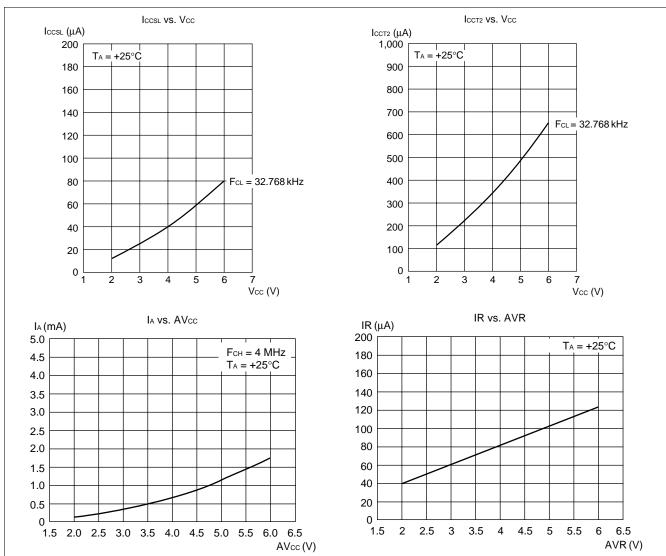
■ EXAMPLE CHARACTERISTICS


(1) "L" Level Output Voltage

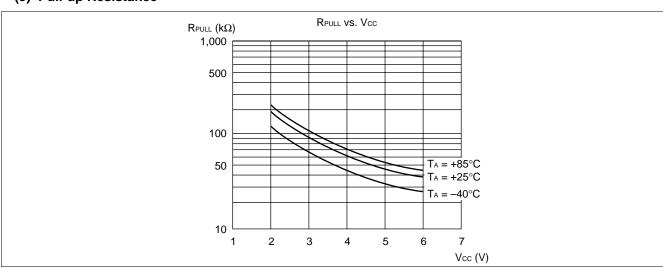

(2) "H" Level Output Voltage



(3) "H" Level Input Voltage/"L" level Input Voltage



(4) Power Supply Current (External Clock)



(Continued)

(5) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation for instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

• AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F ← This indicates 48, 49, ... 4F.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	ı	ı	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	$((EP)) \leftarrow (A)$	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
	_	_	$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	АН	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	ΑH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
100000000000000000000000000000000000000		_	$(AL) \leftarrow ((IX) + off + 1)$	/ \L	7 (1 1	ai i		00
MOVW A,ext	5	3	$(AH) \leftarrow ((IX) \mid OH \mid T)$ $(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (CAC), (AL) \leftarrow (CAC)$ $(AH) \leftarrow (AH) \leftarrow$	AL	AH	dH	<u> </u>	93
MOVW A, @EP	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$ $(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	· ·	C7
MOVW A, @ LF	2	1	$(A) \leftarrow (EP)$	_	_	dH		F3
MOVW A,E1	3	3	(EP) ← d16	_	_			E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	-	-			E2
MOVW IX,A	2	1	$(IX) \leftarrow (IX)$ $(A) \leftarrow (IX)$	_	_	dH		F2
MOVW A,IA	2	1	$(SP) \leftarrow (IA)$	_	_	_		E1
MOVW SP,A	2	1			_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (SP)$	_	-	uп _		82
	4		$((A)) \leftarrow (T)$	_	_	_		
MOVW @A,T		1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	— -		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b \leftarrow 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): b \leftarrow 0	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_			42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	(A) ← (PC)	_	_	dH		F0

<sup>Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics</sup> are written. (Reverse arrangement of F²MC-8 family)

 Table 3
 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	-	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	-	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	-	_	_	++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22
SUBC A,Ri	3	1	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F
SUBC A,#d8	2	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	34
SUBC A,dir	3	2	$(A) \leftarrow (A) - (dir) - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((EP)) - C$	_	_		++++	37
SUBCW A	3	1	$(A) \leftarrow (T) - (A) - C$	-	_	dH	++++	33
SUBC A	2	1	$(AL) \leftarrow (TL) - (AL) - C$	_	_	_	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	-	_	_	+++-	C8 to CF
INCW EP	3	1	(EP) ← (EP) + 1	-	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	-	_			C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) − 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	-11.1		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	-	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	— —	_	dH		01
DIVU A ANDW A	21 3	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00 dH	++R-	11
	3	1	$(A) \leftarrow (A) \wedge (T)$	-	_	dН		63
ORW A XORW A	3	1	$(A) \leftarrow (A) \vee (T)$	_	_	dН	++R- ++R-	73 53
CMP A	2	1	$(A) \leftarrow (A) \ \forall \ (T) (TL) - (AL)$	_	_	un _	++K-	12
CMPW A	3	1		_	_	_	++++	13
RORC A	2	1	(T) – (A)	_	_	_	++++	03
KOKO A		'	\rightarrow C \rightarrow A $-$	_	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	_	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) - (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	-	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	-	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	-	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	+ + R –	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$	_	_	_	+ + R –	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	+ + R –	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \ \forall \ (EP) \)$	_	_	_	+ + R -	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (IX) + off)$	-	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \forall (Ri)$	-	_	_	++R-	58 to 5F
AND A	2	1	$(A) \leftarrow (AL) \land (TL)$	-	_	_	++R-	62
AND A,#d8	2	2	$(A) \leftarrow (AL) \land d8$	-	_	_	++R-	64
AND A,dir	3	2	$(A) \leftarrow (AL) \land (dir)$	-	_	_	+ + R –	65

(Continued)

Mnemonic	ı	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	_	-	_	++R-	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R -	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R –	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R –	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R –	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R –	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R -	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R –	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	(SP) ← (SP) – 1	_	_	_		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If $(dir: b) = 1$ then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	$(PC) \leftarrow (A)$	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

		INSTRUCTION MAP														
ь	MOVW A,PC	MOVW A,SP	MOWW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC rel	BC rel	BP rel	BN rel	BNZ rel	BZ rel	BGE rel	BLT rel
ш	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d1 6	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW A	DECW	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX +d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
၁	INCW A	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
٧	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP,#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP,#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
2	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND	ANDW	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
9	POPW A	POPW IX	XOR A	XORW	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	PUSHW IX	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC	ADDCW A	ADDC A,#d8	ADDC A,dir	ADDC A,@IX +d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
1	SWAP	DIVU A	CMP	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX +d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	NOP	MULU	ROLC A	RORC	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
H	0	-	2	က	4	2	9	7	8	6	A	В	ပ	٥	ш	F

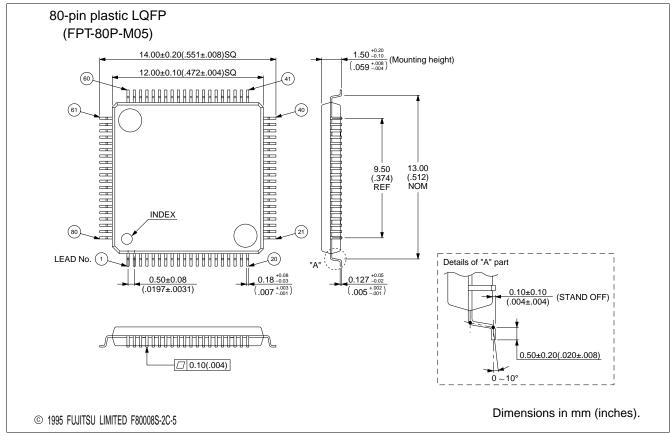
■ MASK OPTIONS

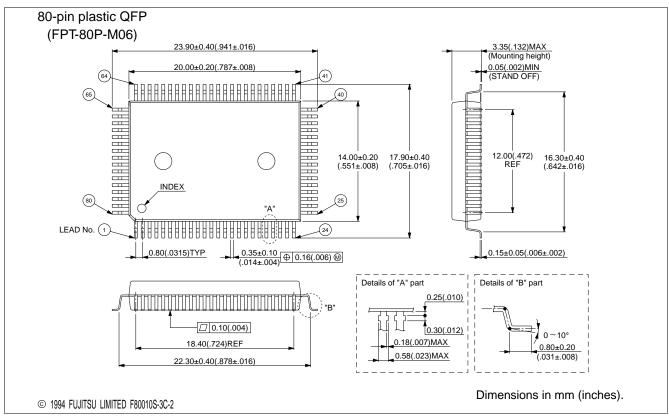
Part number	MB89161/3/5	MB89P165	MB89PV160	
Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible	
Pull-up resistors (SEG) P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P57, P60 to P67	Slectable per pin (The pull-up resistors for P40 to P47 and P60 to P67 are only selectable when these pins are not set as segment outputs. When the A/D is used, P50 to P57 are must not selected.)	Can be set per pin (P20 to P27, P40 to P47, and P60 to P67 are available only for without a pull-up resistor.)	Fixed to without pull-up resistor	
Power-on reset (POR) With power-on reset Without power-on reset	Selectable	Selectable	Fixed to with power-on reset	
Selection of oscillation stabilization time (OSC) The initial value of the oscillation stabilization time for the main clock can be set by selecting the values of the WTM1 and WTM0 bits on the right.	Selectable OSC 0 : 2²/FcH 1 : 2¹²/FcH 2 : 2¹6/FcH 3 : 2¹8/FcH	Selectable WTM1 WTM0 0 0 : 2 ² /FcH 0 1 : 2 ¹² /FcH 1 0 : 2 ¹⁶ /FcH 1 1 : 2 ¹⁸ /FcH	Fixed to oscillation stabilization time of 2 ¹⁶ /F _{CH}	
Main clock oscillation type (XSL) Crystal or ceramic resonator CR	Selectable	Crystal or ceramic only	Fixed to crystal or ceramic	
Reset pin output (RST) With reset output Without reset output	Selectable	Selectable	Fixed to with reset output	
Clock mode selection (CLK) Dual-clock mode Single-clock mode	Selectable	Selectable	Fixed to dual-clock mode	

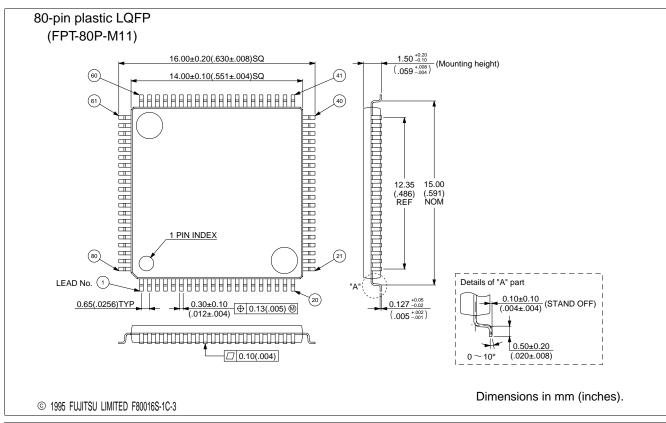
• Segment Options

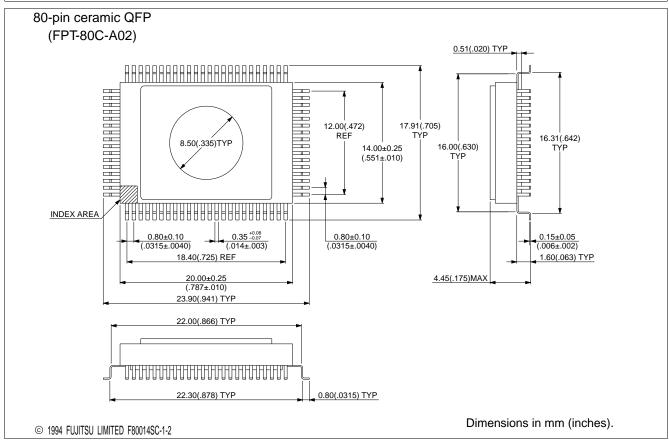
	Part number	MB89161/3/5	MB89P165	MB89PV160		
No.	Specifying procedure	Specify when ordering masking	Select by version number	Select by version number		
7	LCD output pin configuration choices	Specify by the option combinations listed below				
-	SEG = 4: P40 to P47 segment output P60 to P67 segment output P70, P71 common output	Specify as SEG = 4	-101 : SEG 24 pins -201 COM 4 pins	-101 : SEG 24 pins COM 4 pins		
	SEG = 3: P40 to P43 segment output P44 to P47 port output P60 to P67 segment output P70, P71 common output	Specify as SEG = 3	-102 : SEG 20 pins -202 COM 4 pins	-102 : SEG 20 pins COM 4 pins		
	SEG = 2: P40 to P47 port output P60 to P67 segment output P70, P71 common output	Specify as SEG = 2	-103 : SEG 16 pins -203 COM 4 pins	-103 : SEG 16 pins COM 4 pins		
	SEG = 1: P40 to P47 port output P60 to P63 segment output P64 to P67 port output P70, P71 port output	Specify as SEG = 1	-104 : SEG 12 pins COM 2 pins	-104 : SEG 12 pins COM 2 pins		
	SEG = 0: P40 to P47 port output P60 to P67 port output P70, P71 port output	Specify as SEG = 0	-105 : SEG 8 pins COM 2 pins	-105 : SEG 8 pins COM 2 pins		

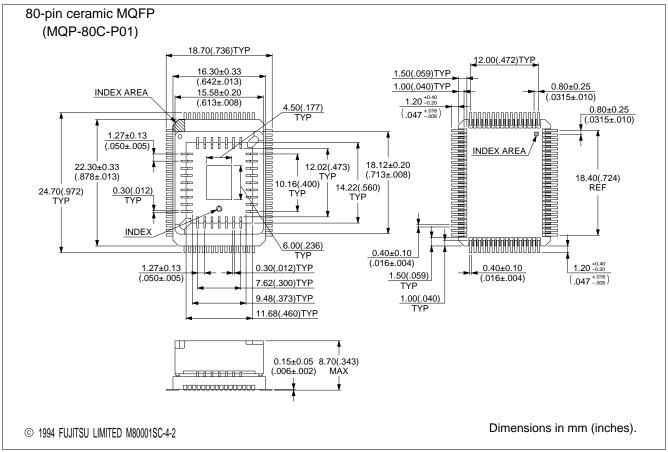
■ VERSIONS


	Features			
Mass production product	One-time PROM product	Piggyback/evaluation product	Number of segment pins	Booster
MB89160A series	MB89P165-201 -202 -203	_	24 (4 commons) 20 (4 commons) 16 (4 commons)	Yes
MB89160 series	MB89P165-101 -102 -103 -104 -105	MB89PV160-101 -102 -103 -104 -105	24 (4 commons) 20 (4 commons) 16 (4 commons) 12 (2 commons) 8 (2 commons)	No


■ ORDERING INFORMATION


Part number	Package	Remarks
MB89161-PFV MB89161A-PFV MB89163-PFV MB89163A-PFV MB89165-PFV MB89165A-PFV MB89P165-xxx-PFV	80-pin Plastic SQFP (FPT-80P-M05)	
MB89161-PF MB89161A-PF MB89163-PF MB89163A-PF MB89165-PF MB89165A-PF MB89P165-xx-PF	80-pin Plastic QFP (FPT-80P-M06)	
MB89161-PFS MB89161A-PFS MB89163-PFS MB89163A-PFS MB89165-PFS MB89165A-PFS MB89P165-xxx-PFS	80-pin Plastic QFP (FPT-80P-M11)	
MB89W165-xxx-PF	80-pin Ceramic QFP (FPT-80C-A02)	
MB89PV160-xxx-PF	80-pin Ceramic MQFP (MQP-80C-P01)	


Note: For information on xxx, see section "■ Versions."


■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763

Fax: +81-44-754-3329 http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea Tel: +82-2-3484-7100

Fax: +82-2-3484-7111

F0004

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.