.y Application Note 95
ﬂ- DE;ﬁL!I-ASH Interfacing the DS1307/1308 with an
¥ SEMICONDUCTO 8051-Compatible Microcontroller

www.dalsemi.com

INTRODUCTION

The DS1307 Serial Real Time Clock, which incorporates a 2—wire seria interface, can be controlled
using an 8051—-compatible DS5000 Secure Microcontroller. The DS1307 is connected directly to two of
the 1/0O ports on a DS5000 microcontroller and the 2—wire handshaking is handled by low—level drivers,
which are discussed in this application note.

DS1307 DESCRIPTION

The DS1307 Serid Real Time Clock is a low—power, full BCD clock/calendar plus 56 bytes of
nonvolatile SRAM. Address and data are transferred serialy via the 2—wire bi—directiona bus. The
clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of the
month date is automatically adjusted for months with less than 31 days, including corrections for leap
year. The clock operates in either the 24—hour or 12—hour format with AM/PM indicator. The DS1307
has a built—in power sense circuit which detects power failures and automatically switches to the battery
supply.

DS1307 OPERATION

The DS1307 operates as a Slave device on the serial bus. Access is obtained by implementing a START
condition and providing a device identification code followed by a register address. Subsequent registers
can be accessed sequentialy until a STOP condition is executed. The START and STOP conditions are
generated using the low level drives, SEND _START and SEND_STOP found in the attached DS5000
code. Also the subroutines SEND_BY TE and READ_BY TE provide the 2—wire handshaking required for
writing and reading 8-bit words to and from the DS1307.

HARDWARE CONFIGURATION

The system is configured as shown in Figure 1. The DS1307 has the 2—wire bus connected to two /O
port pins of the DS5000: SCL — P1.0, SDA — P1.1. The Vpp voltage is 5V, Re= 5KW and the DS5000 is
using a 12-MHz crystal. The other peripheral device could be any other device that recognizes the 2—wire
protocol, such as the DS1621 Digital Thermometer and Thermostat. The interface with the D5000 was
accomplished using the DS5000T Kit hardware and software. This development kit allows the PC to be
used as a dumb terminal using the DS5000’s serial portsto communicate with the keyboard and monitor.

10f 18 08/10/99



APPLICATION NOTE 95

TYPICAL 2-WIRE BUS CONFIGURATION Figure 1

Vbp

Rp Rp
SDA \ 4 . 2
2-WIRE
SERIAL DATA
BUS

SCL T T
DS5000 DS1307 OTHER
MICROCON- REAL TIME 2-WIRE

TROLLER CLOCK DEVICE

The following bus protocol has been defined (see Figure 2).

During data transfer, the data line must remain stable whenever the clock line is high. Changes in the
data line while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Start data transfer: A change in the state of the data line from high to low, while the clock line is high,
definesa START condition.

Stop data transfer: A change in the state of the data line from low to high, while the clock line is high,
defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line
is stable for the duration of the high period of the clock signal. The data on the line must be changed
during the low period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The
number of data bytes transferred between the START and the STOP conditions is not limited, and is
determined by the master device. The information is transferred byte-wise and each receiver
acknowledges with a ninth bit.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the
reception of each byte. The master device must generate an extra clock pulse which is associated with this
acknowledge hit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into account. A master must signal an end of data to the dave
by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case,
the dave must leave the data line high to enable the master to generate the STOP condition.

Figure 2 details how data transfer is accomplished on the 2—wire bus. Depending on the state of the R/ w
bit, two types of data transfer are possible:

2 0of 18



APPLICATION NOTE 95
1. Datatransfer from a master transmitter to a avereceiver. Thefirst byte transmitted by the
master is the dave address. Next follows a number of data bytes. The slave returns an acknowledge
bit after each received byte. Data is transferred with the most significant bit (MSB) first.

2. Datatransfer from a davetransmitter to a master receiver. Thefirst byte (the dave address) is
transmitted by the master. The dave then returns an acknowledge bit. Thisis followed by the slave
transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes
other than the last byte. At the end of the last received byte, a not acknowledge is returned.

DATA TRANSFER ON 2-WIRE SERIAL BUS Figure 2
R Y AN S LU B B

[ (NI R ) \_’—\/-\/ et \/—V\_/ e~ ! P
b ADDRESS RW ACK DATA ACK DATA ACK !
START STOP
CONDITION CONDITION

The master device generates all of the seria clock pulses and the START and STOP conditions. A
transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START
condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred
with the most significant bit (MSB) first.

The DS1307 may operate in the following two modes:

1. Slave receiver mode (DS1307 write mode): Serial data and clock are received through SDA and
SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions
are recognized as the beginning and end of a serial transfer. Address recognition is performed by
hardware after reception of the slave address and direction bit (see Figure 3). The address byte is the
first byte received after the start condition is generated by the master. The address byte contains the

7—bit DS1307 address, which is 1101000, followed by the direction bit (R/w ) which for a write is a
0. After receiving and decoding the address byte, the DS1307 outputs an acknowledge on the SDA
line. After the DS1307 acknowledges the slave address + write bit, the master transmits a register
address to the DS1307. This will set the register pointer on the DS1307. The master will then begin
transmitting each byte of data with the DS1307 acknowledging each byte received. The master will
generate a stop condition to terminate the data write.

2. Slavetransmitter mode (DS1307 read mode): The first byte is received and handled as in the dave
recelver mode. However, in this mode, the direction bit will indicate that the transfer direction is
reversed. Serial data is transmitted on SDA by the DS1307 while the seria clock is input on SCL.
START and STOP conditions are recognized as the beginning and end of a serial transfer (See Figure
4). The address byte is the first byte received after the start condition is generated by the master. The
address byte contains the 7—bit DS1307 address, which is 1101000, followed by the direction bit

(R/w ),which for aread is a 1. After receiving and decoding the address byte, the DS1307 inputs an
acknowledge on the SDA line. The DS1307 then begins to transmit data starting with the register
address pointed to by the register pointer. If the register pointer is not written to before the initiation

30f 18



APPLICATION NOTE 95

of aread mode, the first address that is read is the last one stored in the register pointer. The DS1307
must be sent a Not—Acknowledge bit by the master to terminate a read.

DATA WRITE — SLAVE RECEIVER MODE Figure 3

[}
<SLAVE ADDRESS> % <WORDADDRESS (n)>  <DATA (n)> <DATA (n+1)> <DATA (+X)>
|s| 1101000 |o|A| xxxxxxxxlAlxxxxxxxx]AI xxxxxxxx]A| xxxxxxxx|A]P]
l b)) ‘
A AUKNOWLEDGE
= TA TRANSFERRED
P=STOP DA S

(X+1 BYTES + ACKNOWLEDGE)

DATA READ — SLAVE TRANSMITTER MODE Figure 4

A
|

<SLAVE ADDRESS> V <DATA (n)> <DATA (n+1)> <DATA (n+2)> <DATA (n+X)>
| ) l 1101000 l 1 | A ' OO0 ! A l KX I A I KOO i A I OO I A l P ;
I N |
S=START s
P ACKNOWLEDGE DATA TRANSFERRED B
A =NOT ACKNOWLEDGE (X+1 BYTES + ACKNOWLEDGE); NOTE: LAST DATA BYTE FOLLOWED BY NOT ACKNOWLEDGE (A)

SOFTWARE OPERATION

DS5000 INTERFACE

The software presented in Appendix 1 is written to interface the DS5000 with the DS1307 over the 2—
wire interface. The DS5000 was programmed using Dallas Semiconductor’s DS5000T Evaluation Kit,
which allows a PC to be used as a dumb terminal. The KIT5K software environment supplied with the
DS5000T Evaluation Kit provides a high—level interface for loading application software to the DS5000
or for setting its configuration parameters via the Program command. The KIT5K software includes a
dumb terminal emulator to allow users to run application software in the DS5000, which communicates
with the user viaa PC COM port.

DS1307 SOURCE CODE

The first section of the code found in the Appendix is used to configure the DS5000 for serid
communication with the PC. Also at the beginning of the code is the MASTER_CONTROLLER
subroutine which is used to control the demonstration software.

The subroutines that immediately follow the MASTER_CONTROLLER subroutine are the low level
drivers for controlling the 2—wire interface. They are not specific to the DS1307 but can be used with any
2—wire compatible slave-only device. These subroutines are:

SEND_START
This subroutine is used to generate the Start condition on the 2—wire bus.

SEND_STOP
This subroutine is used to generate the Stop condition on the 2—wire bus.

SEND _BYTE
This subroutine sends an 8-bit word, MSB first, over the 2—wire bus with a 9" clock pulse
for the Acknowledge pulse.

4 of 18



APPLICATION NOTE 95

READ_BYTE
This subroutine reads an 8-hit word over the 2—wire bus. It checks for the LASTREAD
flag to be cleared indicating when the last read from the slave device is to occur. If it is not
the last read, the DS5000 sends an Acknowledge pulse on the 9" clock and if it is the last
read from the dave device, the DS5000 sends a Not—Acknowledge.

SCL_HIGH
This subroutine transitions the SCL line low—to—high and ensures the SCL line is high
before continuing.

DELAY and DELAY 4
These two subroutines have been included to ensure that the 2—wire bus timing is
maintained.

The rest of the code included in the appendix is specifically designed to demonstrate the functions of the
DS1307. The functions that are demonstrated are:

Setting Time
The time is read in from the keyboard and stored in the DS5000 scratchpad memory. It is
then transferred, over the 2—wire interface, to the DS1307.

Set RAM
A single hex byte is read in from the keyboard and written to the entire user RAM of the
DS1307.

Read Date/Time
The date and time are read, over the 2—wire bus, and stored in the DS5000 scratchpad
memory. It is then written to the screen. This continues until a key is pressed on the
keyboard.

Read RAM
The entire user RAM of the DS1307 is read into the DS5000 scratchpad memory and then
written to the PC monitor.

OSC On/ OSC Off
The DS1307 clock oscillator can be turned on or off.

SQW/OUT On/ SQW/OUT Off
The SQW/OUT can be turned on or off. It will toggle at 1 Hz.

50f 18



APPLICATION NOTE 95

AC ELECTRICAL CHARACTERISTICS Table 1

PARAMETER SYMBOL ACTUAL UNITS
SCL Clock Frequency fscL 59 kHz
Bus Free Time Between a STOP and START condition tsuF 5.7 ns
Hold Time (repeated) START Condition thp:sTA 6.2 ns
LOW Period of SCL Clock tLow 10.5 ns
HIGH Period of SCL Clock thicH 6.5 ns
Set-up Time for a Repeated START Condition tsu:sta 53 ns
DataHold Time tHD:DAT 55 ns
Data Set-up Time tsu-pDAT 3.1 ns
Set-up Time for STOP Condition tsu:sto 54 ns
CONCLUSION

It has been shown that it is very straight forward to interface the DS1307 or any other 2—wire slave device
to an 8051—compatible microcontroller. The only concern must be that the 2—wire timing specification is
not violated by the low level drivers on the microcontroller. The delay subroutines have been inserted into
the code for this purpose. The valuesin Table 1 are the actual timing parameters observed in the hardware
setup used to develop this application note.

6 of 18




APPENDIX
DS1307.ASM

; Program DS1307. ASM

; This program responds to conmmands received over the seria

; port to set the date/time as well

; usi ng a DS5000

CR EQU

LF EQU

MCON EQU

PCON EQU

TA EQU

scL BIT

SDA BIT

TR G BIT

DS1307W EQU

DS1307R EQU

FLAGS DATA

LASTREAD BIT

12 24 BIT FLAGS. 1

PMAM BIT FLAGS. 2

0sC BIT

SQW BIT

ACK BIT

BUS_FAULT BIT

_2W BUSY BIT

Bl TCOUNT DATA

BYTECOUNT D  ATA

BYTE DATA
CSEG
AINP
CSEG

as a controller

ODH
OAH
0C6H
087H
0C7H
P1.0
P1.1
P1.2
ODOH
OD1H
20H
FLAGS. 0

FLAGS. 3

FLAGS. 4

FLAGS. 5

FLAGS. 6

FLAGS. 7

21H

22H

23H

AT 0

START

AT 30H

as RAM data on the DS1307

DR R R R R R R R R R R
’

; *** RESET GOES HERE TO START PROGRAM ****

B R R R I
’

START:

; MOV
: DINZ
: DINZ
SETB
LCALL
CLR
CLR
CLR

TA, #0AAH
TA, #55H
PCON, #0
MCON, #0F8H

SP, #70H

| E, #0
TMOD, #20H
THL, #OFAH
TL1, #OFAH
PCON, #80H
SCON, #52H
TCON, #40H
RO, #0
RL, #0

RO, $

RI, $-2
SDA

SCL_HI GH
ACK
BUS_FAULT
_2W BUSY

Ti med

; access.

; Reset watchdog tiner.
Turn off CE2 for

; MENDry access.
Position stack above

; buffer.

; Initialize the
serial port
for 9600

; baud.

; ENSURE SCL HI GH

; THHS IS THE MASTER CONTRCLLER LOOP

MASTER CONTROLLER:
MOV
FORM_FEED: MOV

LCALL

BYTECOUNT, #10H
A #LF

WRI TE_DATA

; CLEAR SCREEN FOR MNAI N

MENU

7 of 18

APPLICATION NOTE 95

ENSURE SDA HI GH

CLEAR STATUS FLAGS



APPLICATION NOTE 95

NOTA:

NOTB:

NOTC:

NOTD:

NOTE:

NOTF:

NOTG:

NOTH:

NOTI :

NOTJ:

NOTK:

NOTL:

NOTM

CINE

CINE

CINE

CINE

CINE

CINE

CINE

CINE

JWP

DINZ
MoV

LCALL
MoV
LCALL
LCALL
CLR

BYTECOUNT, FORM_FEED
DPTR, #TEXTO

WRI TE_TEXT
DPTR, #TEXT3
WRI TE_TEXT
READ_DATA
ACC. 5

CINE A # A, NOTA

LCALL
JWP

CINE

LCALL
LCALL
JWP

CINE

LCALL
JWP

CINE

LCALL
JWP

CLR
LCALL
JWP

SETB
LCALL
JWP

CLR
LCALL
JWP

CLR
LCALL
JWP

CLR
LCALL
JWP

CLR
LCALL
JWP

CLR
LCALL
JWP

SETB
LCALL

CINE
LCALL
LCALL

SET_CLOCKM
MASTER CONTROLLER
A # B, NOTB
SET_RAM
READ_RAM
MASTER CONTROLLER
A # C , NOTC
READ_CLOCK
MASTER CONTROLLER
A # D, NOTD
READ_RAM
MASTER CONTROLLER
A # E, NOTE :
osc
OSC_CONTROL
MASTER CONTROLLER
A # F , NOTF
osc
OSC_CONTROL
MASTER CONTROLLER
A # G, NOTG
SQW

SQW CONTROL_1HZ
MASTER CONTROLLER
A # G, NOTH

SQW
SQW CONTROL_1HZ

MASTER CONTROLLER
A # H , NOTI

SQW
SQW CONTROL_4KHZ

MASTER CONTROLLER
A # 1, NOTJ

SQW
SQW CONTROL_8KHZ
MASTER CONTROLLER ;
A # 3, NOTK

SQW
SQW CONTROL_32KHZ
MASTER CONTROLLER
A # K, NOTL :

SQW
SQW CONTROL_1HZ
MASTER CONTROLLER
A # L', NOTM
SET_RAM_UNQ
READ_RAM
MASTER CONTROLLER :

; PUT MAIN MENU ON
; SCREEN

; CONVERT ACC TO UPPER
; CASE
; CALL SET CLOCK
; FUNCTI ON
; RETURN TO MAI N MENU
; CALL SET RAM FUNCTI ON
; AND
; CALL READ RAM FUNCTI ON
; RETURN TO MAI N MENU

; CALL READ CLOCK
; FUNCTI ON

; RETURN TO MAI N MENU

; CALL READ RAM
; FUNCTI ON

; RETURN TO MAI N MENU

CALL OSC CONTROL

; FUNCTI ON
; CLR OSC FLAG — ON

; RETURN TO MAI N MENU
; CALL OSC CONTROL

; FUNCTI ON
; SET OSC FLAG — COFF

; RETURN TO MAI N MENU
; CALL SWQ CONTROL
; FUNCTI ON
; CLR SQW FLAG — ON

; RETURN TO MAI N MENU
; CALL SWQ CONTROL
; FUNCTI ON
; CLR SQW FLAG — ON

; RETURN TO MAI N MENU
; CALL SWQ CONTROL
; FUNCTI ON
; CLR SQW FLAG — ON

; RETURN TO MAI N MENU
; CALL SWQ CONTROL
; FUNCTI ON
; CLR SQW FLAG — ON

RETURN TO MAI N MENU
; CALL SWQ CONTROL
; FUNCTI ON
; CLR SQW FLAG — ON

; RETURN TO MAI N MENU

CALL SWQ CONTROL

; FUNCTI ON
; SET SQW FLAG — COFF

RETURN TO MAI N MENU

THI'S SUB SENDS THE START CONDI TI ON

8 of 18



APPLICATION NOTE 95

SEND_START:

SETB _2W BUSY . | NDI CATE THAT 2W RE
. OPERATI ON | N PROGRESS

CLR ACK . CLEAR STATUS FLAGS
CLR BUS_FAULT
JNB SCL, FAULT . CHECK FOR BUS CLEAR
JNB SDA, FAULT . BEG N START CONDI TI ON
SETB SDA :
LCALL SCL_HI GH . SDA
CLR SDA
LCALL  DELAY . SCL ~START CONDI TI ON
CLR scL :
RET

FAULT:
SETB BUS_FAULT . SET FAULT STATUS
RET : AND RETURN

: TH'S SUB SENDS THE STOP CONDI TI ON

SEND_STOP: :
CLR SDA . SDA
LCALL SCL_HI GH :
SETB SDA . SCL ~STOP CONDI TI ON
CLR _2W BUSY
RET :

; THI'S SUB SENDS ONE BYTE OF DATA TO THE DS1307

SEND_BYTE:
MOV Bl TCOUNT, #08H ;
SB_LOOP:
JNB ACC. 7, NOTONE ;
SETB SDA
JMP ONE
NOTONE:
CLR SDA
ONE:
LCALL SCL_HI GH ;
RL A
CLR SCL
DINZ Bl TCOUNT, SB_LOOP
SETB SDA
LCALL SCL_HI GH ;
CLR ACK
JNB SDA, SB_EX
SETB ACK
SB_EX:
LCALL DELAY ;
CLR SCL
LCALL DELAY
RET

SET COUNTER FOR 8 BI TS

CHECK TO SEE IF BIT 7 OF
. ACCIS A1
: SET SDA HIGH (1)

. CLR SDA LOW (0)

TRANSI TI ON SCL LOM-TO-HI GH
; ROTATE ACC LEFT ONE BIT
; TRANSI TI ON SCL HI GH-TO-LOW
; LOOP FOR 8 BITS
; SET SDA HI GH TO LOXK
; FOR ACKNOWLEDGE PULSE
TRASI TI ON SCL LOM-TO-HI GH
; CLEAR ACKNOW.EDGE FLAG
; CHECK FOR ACK OR NOT ACK
; SET ACKNOWLEDGE FLAG FOR
;. NOT ACK

DELAY FOR AN OPERATI ON
; TRANSI TI ON SCL

; H GH-TO-LOW
; DELAY FOR AN OPERATI ON

; THI'S SUB READS ONE BYTE OF DATA FROM THE DS1307

READ BYTE:
MOV BI TCOUNT, #008H
MOV A, #00H
SETB SDA

LI NE

READ_BI TS:

LCALL SCL_H GH

; SET COUNTER FOR 8 BITS OF
; DATA

; SET SDA HI GH TO ENSURE
. FREE
TRANSI TI ON SCL LOW-TO-HI GH
9of 18



APPLICATION NOTE 95

MoV C, SDA ; MOVE DATA BIT | NTO CARRY
; BITA
RLC A ; ROTATE CARRY BIT I NTO ACC. 0
CLR SCL ; TRANSI TI ON SCL HI GH-TO-LOW
DINZ Bl TCOUNT, READ _BI TS ; LOOP FOR 8 BITS
JB LASTREAD, ACKN ; CHECK TO SEE IF THIS IS THE
; LAST READ
CLR SDA ; | F NOT LAST READ SEND
; ACKNOWLEDGE BI' T
ACKN:
LCALL SCL_HI GH ; PULSE SCL TO TRANSIM T
; ACKNOWLEDGE
CLR SCL ; OR NOT ACKNOWLEDGE BI T
RET

; THES SUB SETS THE CLOCK LI NE HI GH

SCL_HI GH:

SETB SCL ; SET SCL HI GH
JNB SCL, $ ; LOOP UNTIL STRONG 1 ON SCL
RET

; THI'S SUB DELAY THE BUS

DELAY:
NOP - DELAY FOR BUS TI M NG
RET

; THE'S SUB DELAYS 4 CYCLES

DELAY_4:
NOP . DELAY FOR BUS TI M NG

; THI'S SUB SETS THE CLOCK ( MANUAL)

SET_CLOCKM
MoV R1, #2EH ; SET R1 TO SCRATCHPAD
MEMORY
; FOR DATE/ TI ME
MoV DPTR, #YEAR ; GET THE DATE/ TI ME
;| NFORVATI ON FROM THE
LCALL WRITE_TEXT ; USER. WRI TE THE DATE/ TI ME
; TO SCRATCHPAD
LCALL READ BCD ; MEMORY
MoV @1, A
DEC R1
MoV DPTR, #MONTH

LCALL WRITE_TEXT
LCALL READ BCD

MoV @1, A
DEC R1
MoV DPTR, #DAY

LCALL WRITE_TEXT
LCALL READ BCD

MoV @1, A
DEC R1
MoV DPTR, #DAYW

LCALL WRITE_TEXT
LCALL READ BCD

ANL A #7

MoV @1, A

DEC R1

MoV DPTR, #HOUR

LCALL WRITE_TEXT

10 of 18



APPLICATION NOTE 95

SEND_L OOP:

LCALL

DEC

LCALL
LCALL

DEC

LCALL
LCALL

LCALL

LCALL

LCALL
MoV
LCALL
I NC
CINE

LCALL
RET

READ_BCD

@1, A

RL

DPTR, #M NUTE
VR TE_TEXT
READ_BCD

@1, A

RL

DPTR, #SECOND
VR TE_TEXT
READ_BCD

@1, A

RL, #28H :
SEND_START :
A, #DS1307W :
SEND_BYTE

A, #00H :

SEND BYTE ;

A @RL ;

PO NT TO BEG NNI NG OF @.CCK
DATA | N SCRATCHPAD MEMORY

SEND 2W RE START CONDI TI ON

SEND DS1307 WRI TE COMVAND

SET DATA PO NTER TO

REG STER 00H ON

THE DS1307

MOVE THE FI RST BYTE OF DATA

; TO ACC

SEND BYTE ;
R1
R1, #2FH, SEND_LOOP ;

SEND_STOP ;

SEND DATA ON 2W RE BUT

LOOP UNTI L CLOCK DATA SENT

TO DS1307

SEND 2W RE STOP CONDI Tl ON

; THES SUB SETS THE DS1307 USER RAM TO THE VALUE I N

' BYTE

SET_RAM

SEND_LOOP2:

LCALL
LCALL

LCALL

LCALL

LCALL

MoV

LCALL
I NC
CINE
LCALL
RET

R1, #08H

DPTR, #TEXT5 :

VR TE_TEXT :

READ_BCD :
BYTE, A :

SEND_START :
A, #DS1307W

SEND_BYTE :
A, #08H :

SEND BYTE ;
A, BYTE ;

SEND BYTE ;
R1

R1, #040H, SEND_LOOP2 ;
SEND_STOP ;

; PO NTER TO BEG NNI NG OF
; DS1307 USER RAM
MESSAGE TO ENTER DATA BYTE

READ BYTE FROM KEYBOARD
AND STORE I N ' BYTE
SEND 2W RE START CONDI TI ON
; LOAD DS1307 WRI TE COMVAND
SEND WRI TE COVIVAND
SET DS1307 DATA PO NTER TO
; BEG NNI NG
OF USER RAM - 08H

VWRI TE BYTE TO ENTI RE RAM
; SPACE
WHICH | S 08H TO 37H

LOOP UNTI L RAM FI LLED
SEND 2W RE STOP CONTI ON

; THES SUB SETS THE DS1307 USER RAM TO THE UNI QUE PATTERN

SET_RAM UNQ

SEND_LOOP3:

MoV

LCALL
MoV
LCALL
MoV

LCALL

LCALL
I NC
I NC
CINE
LCALL
RET

R1, #08H

SEND_START ;
A, #DS1307W

SEND BYTE ;
A, #08H ;

SEND BYTE ;

SEND BYTE ;
R1
A
R1, #040H, SEND_LOOP3 ;
SEND_STOP ;

; PO NTER TO BEG NNI NG OF
; DS1307 USER RAM
SEND 2W RE START CONDI TI ON
; LOAD DS1307 WRI TE COMVAND
SEND WRI TE COVIVAND
SET DS1307 DATA PO NTER TO
; BEG NNI NG
OF USER RAM - 08H

WHICH IS 08H TO 37H

LOOP UNTI L RAM FI LLED
SEND 2W RE STOP CONTI ON

11 of 18



APPLICATION NOTE 95

; THI'S SUB READS THE DS1307 RAM AND WRI TES I T TO THE SCRATCH PAD MEMORY

READ RAM

MoV DPTR, #TEXT4 ; SEND KEY PRESS MSG
LCALL WRITE_TEXT
MoV R1, #30H ; START OF RAM REGS | N
; SCRATCH PAD
MoV BYTECOUNT, #00H ; COUNTER FOR 56 RAM BYTES
CLR LASTREAD ; FLAG TO CHECK FOR LAST READ
LCALL SEND_START ; SEND 2W RE START CONDI TI ON
MoV A, #DS1307W ; SEND DS1307 WRI TE COMVAND
LCALL SEND BYTE
MoV A, #08H ; SET PO NTER TO REG 08H ON
; DS1307
LCALL SEND BYTE
LCALL SEND_STCP ; SEND STOP CONDI TI ON
LCALL SEND_START ; SEND START CONDI TI ON
MoV A, #DS1307R ; SEND DS1307 READ COMVAND
LCALL SEND BYTE
READ_LOOP2:
MoV A, BYTECOUNT ; CHECK TO SEE OF DO NG LAST
; READ
CINE A, #37H, NOT_LAST2
SETB LASTREAD ; | F LAST READ SET LASTREAD
; FLAG
NOT_LAST2:
LCALL READ BYTE ; READ A BYTE OF DATA
MoV @1, A ; MOVE DATA | NTO SCRATCHPAD
; MEMORY
I NC R1 ;I NC PO NTERS
I NC BYTECOUNT
MoV A, BYTECOUNT
CINE A #38H, READ LOOP2 ; LOOP FOR ENTI RE DS1307 RAM
LCALL SEND_STCP ; SEND 2W RE STOP CONDI TlI ON
LCALL DI SP_RAM ; DI SPLAY DATA | N SCRATCHPAD
; MEMORY
JNB R, $ s WALT UNTIL A KEY IS PRESSED
CLR R
RET

; THI'S SUB DI SPLAYS THE RAM DATA SAVED | N SCRATCHPAD MEMORY

DI SP_RAM

LCALL
DI SP_ADDR:
LCALL

DI S_LOOP:

LCALL

I NC
I NC

LCALL

CINE

LCALL
CINE

RET

R1, #30H ; START OF RAM | N SCRATCHPAD
; MEMORY
Bl TCOUNT, #00H
DPTR, #TEXT6 ; DI SPLAY TABLE HEADI NG
WRI TE_TEXT
DI SP_LOC ; DI SPLAY VALUE OF CURRENT
; RAM LOCATI ON
A @R1 ; DI SPLAY RAM DATA SAVED I N
; SCRATCHPAD
WRI TE_BCD ; CONVERT TO BCD FORMAT AND
;DI SPLAY
R1
Bl TCOUNT
A, #20H ; SPACE BETWEEN DATA BYTES
WRI TE_DATA
A, Bl TCOUNT
A, #08H, DI S_LOCP ; LINE FEED AFTER 8 BYTES OF
; DATA
Bl TCOUNT, #00H
DPTR, #TEXT3 ; 'CR LF
WRI TE_TEXT
R1, #68H, DI SP_ADDR ; DI SPLAY DATA FOR 56 BYTES
; OF RAM

12 of 18



APPLICATION NOTE 95

; THES SUB WRI TES THE RAM LOCATI ON OF THE DATA

DI SP_LOC:

ADD

MoV

A, #-28H

LCALL
MoV
LCALL
MoV
LCALL
MoV
LCALL
RET

A Rl

VR TE_BCD :
A, #20H :
VRl TE_DATA
A, #20H
VRl TE_DATA
A, #20H
VRl TE_DATA

; DI SPLAY THE HEX VALUE FOR
; THE DATA
; I N THE DS1307 RAM SPACE
CONVERTS SCRATCHPAD ADDRESS
I NTO DS1307 RAM ADDRESS

; THI'S SUB READS THE CLOCK AND WRITES I T TO THE SCRATCH PAD MEMORY ;

READ_CLOCK:

READ_AGAI N:

READ_LOOP:

NOT_LAST:

NO_OSC:
NOT_FI RST:

LCALL

CLR

LCALL
LCALL
LCALL
LCALL
LCALL

LCALL

CINE
SETB

LCALL

CINE
CLR

JNB
SETB
CLR

MoV
I NC
I NC
MoV
CINE

LCALL
LCALL

JNB

CLR
RET

DPTR, #TEXT4 ;
WRI TE_TEXT

R1, #28H
BYTECOUNT, #00H
LASTREAD
SEND_START ;
A, #DS1307W
SEND BYTE
A, #00H
SEND BYTE
SEND_STOP ;
SEND_START ;
A, #DS1307R
SEND BYTE
A, BYTECOUNT ;

A, #07H, NOT_LAST
LASTREAD

READ_BYTE :
@r1, A ;

A, BYTECOUNT ;

A, #00H, NOT_FI RST

ACC. 7, NO_OSC

R1

BYTECOUNT

A, BYTECOUNT

A, #08H, READ_LOOP

SEND_STOP ;
DI SP_CLOCK ;

Rl , READ AGAIN ;

RI

KEY PRESS MsG

; START OF CLOCK REG I N
; SCRATCHPAD
; COUNTER UP TO 8 BYTES FOR
; CLOCK
; FLAG TO CHECK FOR LAST READ
SEND START CONDI TI ON
; SET PO NTER TO REG 00H ON
; DS1307

SEND STOP CONDI TI ON
SEND START CONDI TI ON
; SEND READ COVVAND TO DS1307

CHECK TO SEE OF DO NG LAST
; READ

; SET LASTREAD FLAG

READ A BYTE OF DATA

MOVE DATA | N SCRATCHPAD
; MEMORY

CHECK TO SEE | F READI NG
; SECONDS REG

; CLR OSC FLAG
MOVE SECONDS REG | NTO ACC
JUW IF BIT7 CFISADO
; SET OSC FLAG, BIT 7 1S A1
CLEAR BIT 7 FOR DI SPLAY
;  PURPOSES
MOVE DATA BACK TO SCRATCHPAD

;| NC COUNTERS

; LOOP FOR ENTI RE CLOCK
; REGQ STERS
SEND 2W RE STOP CONDI Tl ON
DI SPLAY DATE/ TI ME FROM
; SCRATCHPAD
READ AND DI SPLAY UNTIL A
; KEY | S PRESSED

; THE'S SUB DI SPLAYS THE DATE AND Tl ME SAVED | N SCRATCHPAD MEMORY

13 of 18



APPLICATION NOTE 95

DI SP_CLOCK:

MoV
LCALL
MoV
MoV
LCALL
MoV
LCALL
MoV
MoV
LCALL
MoV
LCALL
MoV
MoV
LCALL
MoV
LCALL
MoV
LCALL
MoV
MoV
LCALL
MoV
LCALL
MoV
MoV
LCALL
MoV
LCALL
MoV
MoV
LCALL
RET

DPTR, #TEXT1 :
VR TE_TEXT

RL, #2DH

A @1
VR TE_BCD

A#

VRl TE_DATA

RL, #2CH

A @1
VR TE_BCD

A#
VRl TE_DATA

RL, #2EH

A @1
VR TE_BCD

A, #09H :
VRl TE_DATA

DPTR, #TEXT2 :
VR TE_TEXT

RL, #2AH

A @1
VR TE_BCD

A, #3AH :
VRl TE_DATA

RL, #29H

A @1
VR TE_BCD

A, #3AH :
VRl TE_DATA

RL, #28H

A @1
VR TE_BCD

DATE:

; DATE

TAB
TI MVE:

; HOURS

COLON

;. M NUTES

COLON

; SECONDS

; THES SUB SETS THE OSCI LLATOR ACCORDI NG TO THE OSC BI T

OSC_CONTROL:

DS1307

OSC_SET:

STACK

LCALL

LCALL

LCALL
SETB

LCALL
LCALL

LCALL
LCALL
CLR
JNB
SETB

PUSH

LCALL

LCALL

LCALL

LCALL
PoP

LCALL
LCALL
RET

SEND_START ;
A, #DS1307W ;

SEND BYTE
A, #00H
SEND BYTE
LASTREAD

SEND_STOP ;
SEND_START ;
A, #DS1307R

SEND_BYTE
READ_BYTE :
ACC. 7 :
0SC, 0SC_SET
ACC. 7 :

ACC

SEND_STOP ;
SEND_START ;
A, #DS1307W

SEND BYTE

A, #00H
SEND BYTE

ACC

SEND BYTE ;
SEND_STOP

SEND START CONDI TI ON
SET PO NTER TO REG 00H ON
; DS1307

; SET LAST READ FCR SI NGLE
; READ

SEND STOP CONDI TI ON

SEND START CONDI TI ON
; SEND READ COVMMAND TO

READ SECONDS REG STER
TURN OSC ON

TURN OSC CFF IF GSC BIT I S
; SET IN
; SECONDS REG STER
; SAVE SECONDS DATA ON

SEND STOP CONDI TI ON

SEND START CONDI TI ON
; SET PO NTER TO REG 00H ON
; DS1307

; SEND SECONDS REG STER TO
; CONTROL
OSClI LLATOR ON DS1307

14 of 18



APPLICATION NOTE 95

; THES SUB CONTROLS THE SQW OUTPUT 1HZ

SQW CONTROL_1HZ:
LCALL
VOV

LCALL
MOV
LCALL
MOV
JNB
MOV

SQW SET:
LCALL
LCALL
RET

SEND_START
A, #DS1307W

SEND_BYTE
A, #07H
SEND_BYTE
A, #90H
SQW SQW SET
A, #80H

SEND BYTE
SEND_STOP

SEND START CONDI TI ON
; SET PO NTER TO REG 07H ON
; DS1307

SQW QUT ON AT 1HZ
JUWP IF SQWBIT IS ACTI VE
TURN SQW QUT OFF — OFF HI GH

; THES SUB CONTROLS THE SQW OUTPUT 4KHZ

SQW_ CONTROL_4KHZ:
LCALL
VOV

LCALL
MoV
LCALL
MoV
JNB
MoV
SQW SET1:
LCALL
LCALL
RET

SEND_START
A, #DS1307W

SEND_BYTE
A, #07H
SEND_BYTE
A, #91H
SQW SQW SET1
A, #80H

SEND BYTE
SEND_STOP

SEND START CONDI TI ON
; SET PO NTER TO REG 07H ON
; DS1307

SQW QUT ON AT 1HzZ
JUWP IF SQWBIT IS ACTI VE
TURN SQW QUT OFF — OFF HI GH

; THES SUB CONTROLS THE SQW OUTPUT 8KHZ

SQW CONTROL_8KHZ:
LCALL
VOV

LCALL
MoV
LCALL
MoV
JNB
MoV
SQW SET2:
LCALL
LCALL
RET

SEND_START
A, #DS1307W

SEND_BYTE
A, #07H
SEND_BYTE
A, #92H
SQW SQW SET2
A, #80H

SEND BYTE
SEND_STOP

SEND START CONDI TI ON
; SET PO NTER TO REG 07H ON
; DS1307

SQW QUT ON AT 1HzZ
JUWP IF SQWBIT IS ACTI VE
TURN SQW QUT OFF — OFF HI GH

; THES SUB CONTROLS THE SQW OUTPUT 32KHZ

SQW CONTROL_32KHZ:
LCALL
VOV

LCALL
MoV
LCALL
MoV
JNB
MoV
SQW SETS3:
LCALL
LCALL
RET

SEND_START
A, #DS1307W

SEND_BYTE
A, #07H
SEND_BYTE
A, #93H
SQW SQW SET3
A, #80H

SEND BYTE
SEND_STOP

SEND START CONDI TI ON
; SET PO NTER TO REG 07H ON
; DS1307

SQW QUT ON AT 1HzZ
JUWP IF SQWBIT IS ACTI VE
TURN SQW QUT OFF — OFF HI GH

15 of 18



APPLICATION NOTE 95

THIS SUB I S A SCOPE TRI GGER BI T

TRI GGER:

CLR TRI G
SETB TRI G
LCALL DELAY_4

CLR TRI G
RET

THI' S SUB READS DATA FROM THE SCREEN AND CONVERTS | T

DATA SHOULD BE HEX DIG TS: 1,2,3...9,AB,C D E F

TO BCD FORM

READ_BCD:

MOV RO, #0 ;
BCD_LOOP:
LCALL READ_DATA ;
LCALL WRI TE_DATA ;
CINE A, #O0DH, BCD ;
MOV A RO
RET
BCD:
ADD A, #-30H
ACTUAL
JNB ACC. 4,DIAT ;
ADD A, #-07H
DIGT:
ANL A, #0FH ;
ANL 0, #0FH ;
XCH A, RO
SWAP A
ORL A, RO
I NTO
MOV RO, A
SJIMP BCD_LOOP

CLEAR RO

READ BYTE FROM KEYBOARD
WRI TE BYTE BACK TO SCREEN
CHECK FOR CR

; MOVE RO TO ACC AND RETURN

; BEA N TO CONVERT TO

; VALUE
JUWP | F NOT A-F
; | F A-F SUBTRACT 7

ENSURE BI TS 4-7 ARE CLEARED
ENSURE BI TS 4-7 ARE CLEARED
;  EXCHANGE RO AND ACC
;. NIBBLE SWAP ACC
; INSERT BITS 0-3 OF RO

;. ACC
; MOVE ACC | NTO RO
; LOOP UNTIL CR ENCOUNTERED

THI'S SUB WRI TES THE BYTE TO THE SCREEN

WRI TE_BCD:
PUSH ACC ;. SAVE ACC ON STACK
SWAP A ;NI BBLE SWAP ACC
ANL A, #0FH ; CLEAR BITS 4-7 OF ACC
ADD A, #07H ; ADD 7 TO ACC TO CONVERT TO
; ASCI | HEX
JNB ACC. 4, LESSNI NE ; CHECK TO SEE | F LESS THAN
; NINE 0-8
CINE A, #10H, NOTNI NE ; JUMP | S GREATER THAN NI NE
o A-F
LESSNI NE:
ADD A, #-07H ; SUBTRACT 7 FOR 0-9
NOTNI NE:
ADD A, #30H ; ADD 30 TO CONVERT TO ASCI |
;. EQUI VALENT
LCALL WRI TE_DATA ; WRI TE BYTE TO SCREEN
POP ACC ; RECALL ACC FROM STACK
ANL A, #0FH ;  PERFORM CONVERSI ON ON OTHER
. HALF OF BYTE
ADD A, #07H
JNB ACC. 4, NI NE2
CINE A, #10H, NOTNI NE2
NI NE2:
ADD A, #-07H
NOTNI NE2:
ADD A, #30H
LCALL WRI TE_DATA
RET
READ_DATA:

16 of 18



APPLICATION NOTE 95

JNB Rl , READ_DATA ; LOOP WHILE RI BIT IS LOWV
CLR RI ;
MoV A, SBUF ; GET DATA BYTE FROM SERI AL
. BUFFER
RET
VRl TE_DATA:
JNB TI, \RI TE_DATA ; LOOP WHILE TI BIT IS LOWV
CLR TI ;
MoV SBUF, A ;. SEND DATA BYTE TO SERI AL
. BUFFER
RET
WRI TE_TEXT:
PUSH ACC ;. SAVE ACC BYTE ON STACK
WI'l:
CLR A ; CLEAR ACC
MOvVC A, @G\+DPTR ;. MOVE FI RST BYTE OF STRI NG
;. TO ACC
I NC DPTR ;I NC DATA PO NTER
CINE A, #0, WI'2 ; CHECK FOR STRI NG
; TERM NATOR - 0
POP ACC
; RESTORE ACC
RET ; RETURN WHEN STRI NG | S SENT
WI2:
LCALL WRI TE_DATA ; SEND BYTE OF STRI NG OVER
;. SERI AL PORT
SIMP Wr'l

; TEXT STRI NGS

USED FOR USER | NTERFACE OVER SERI AL PORT

YEAR:
MONTH:
DAY:
DAYW
HOUR:

M NUTE:
SECOND:
TR ER:

TEXTO:

TEXT2:
TEXT3:

TEXT4:

TEXT5:

DB

DB

DB

"0
"0

PRESS ANY KEY TO SET THIS TIME ', CR, LF, 0

xasxkxk DALLAS SEM CONDUCTOR **** %%

PLEASE CHOOSE AN OPTI ON TO CONTI NUE

’

B.
D.
E

H.
J.

SET RAM’
READ RAM’
OSC OFF

SQW QUT ON-4KHZ'
SQW QUT ON-32KHZ'

DB CR LF,’ YEAR (0 - 99)
DB CR LF,” MONTH (1 - 12)
DB CR, LF,” DAY OF MONTH :
DB CR, LF, ' DAY OF WEEK :
DB CR LF," HOUR (0 - 23)
DB CR LF,” M NUTE (0 - 59)
DB CR LF,” SECOND (0 - 59)
DB CR LF,”’
DB CR LF,”’
DB CR, LF,’ DS1307 TEST PROGRAM ', CR, LF
DB CR LF,”’
DB CR LF,”’
DB CR LF," A, SET TI ME( MANUAL)
DB CR LF,’ C. READ DATE/ TI ME
DB CR LF,"E. OSC ON
CR LF
DB CR LF,’ G SQW OUT ON-1HZ
DB CR LF,’|. SQWN OUT ON-8KHZ
CR LF
CR LF,’ K. SQW OUT OFF
CR LF,’ L. WRITE RAM UNI QUE PATTERN ’
DB CR LF,”ESC. TOQUT ’',0 TEXT1:
DB CR 'DATE: ', 0
DB "TIME: ", 0
DB CR LF, 0
DB CR, LF,’ PRESS ANY KEY TO RETURN
DB C R LF, 0

17 of 18



APPLICATION NOTE 95

DB CR, LF,” ENTER THE BYTE VALUE WHICH WLL FILL THE RAM
DB CR LF, 0
TEXT6:
DB CR, LF,’” RAM RAM
DB CR, LF,’ ADDR DATA
DB CR LF,”’ '
DB CR LF, 0

R R R R
’

s kkk ok ENDO: PRmM *kkkkkkkkhkkkk*

IR R R R R
’

END

18 of 18



