
1 of 2 070600

INTRODUCTION
A host CPU can easily generate 1-Wire timing
signals itself if a true bus master is not present.
This is an example, written in C, of how to
perform the communication. There are several
system requirements for proper operation of the
code:

1. The communication port is bi-directional, its
output is open drain, and there is a weak
pull-up on the line. This is a requirement of
any 1-Wire bus.

2. The system is capable of generating an
accurate and repeatable 1us delay.

This code relies on the two C functions “outp”
and “inp” to write and read bytes of data to port
locations. They are located in the <conio.h>
standard library. Usage:

int outp(unsigned port, int byte);
int inp(unsigned port);

The constant PORTADDRESS in the code is
defined as the location of the communication
port. The code assumes bit 0 of this location is
the 1-Wire bus.

The function “Waitx” in this example is a user-
generated routine to wait a variable number of
microseconds. This function will vary for each
unique hardware platform running this code so it
cannot possibly be described here. Usage:

//Pause for exactly x microseconds
void Waitx(int microseconds){}

FUNCTIONS
The four basic operations of a 1-Wire bus (Reset,
Write 1, Write 0, and Read Bit) are listed next.
They will be used to build more complex
functions later.

// Generate a 1-Wire reset, return 1 if no
// presence detect was found, return 0 otherwise.

int Reset(void)
{

int result;

outp(PORTADDRESS,0x00); //Drives DQ low
Waitx(480);
outp(PORTADDRESS,0x01); //Releases the bus
Waitx(120);

//Sample and return the Presence Detect
result = inp(PORTADDRESS) & 0x01;
Waitx(360);

return result;
}

// Generate a Write1.

void Write1(void)
{

outp(PORTADDRESS,0x00); //Drives DQ low
Waitx(1);
outp(PORTADDRESS,0x01); //Releases the bus
Waitx(59);

}

//Generate a Write0. I'm giving a 5us recovery
//time in case the rise time of your system is
//slower than 1us. This will not affect system
//performance.

void Write0(void)
{

outp(PORTADDRESS,0x00); //Drives DQ low
Waitx(55);
outp(PORTADDRESS,0x01); //Releases the bus
Waitx(5);

}

// Read 1 bit from the bus and return it

int Readx(void)
{

int result;

outp(PORTADDRESS,0x00); //Drives DQ low
Waitx(1);
outp(PORTADDRESS,0x01); //Releases the bus
Waitx(14);

//Sample after 15us
result = inp(PORTADDRESS) & 0x01; Waitx(45);

return result;
}

Application Note 126
1-Wire® Communication through Software

www.dalsemi.com



APPLICATION NOTE 126

2 of 2

This is all that is required to do bit-wise manipulation of the bus, however the above routines can be built
upon to create byte-wise manipulator functions.

// Write data byte

void WriteByte(int Data)
{

int loop;

//Do 1 complete byte
for(loop=0; loop<8; loop++)
{

//0x01,0x02,0x04,0x08,0x10,ect.
if(Data & (0x01<<loop))

Write1();
else

Write0();
}

}

// Read data byte and return it

int ReadByte(void)
{

int loop;
int result=0;

for(loop=0; loop<8; loop++)
{

result = result + (Readx<<loop);
}

return result;
}

These six functions plus the user’s “Waitx” function are all that are required for control of the 1-Wire bus
at byte level. The following example shows how a user would bring those functions together by reading
the ICA register of a DS2437.

//Read the Integrated Current Accumulator

int ReadICA(void)
{

// Recall Page 1
if(Reset()) return 0; //No devices found

WriteByte(0xCC); //Skip ROM
WriteByte(0xB8); //Recall memory
WriteByte(0x01); //Page 1

// Read Page 1
Reset();
WriteByte(0xCC); //Skip ROM
WriteByte(0xBE); //Read memory
WriteByte(0x01); //Page 1
ReadByte(); //Ignore first 4 bytes
ReadByte();
ReadByte();
ReadByte();
return ReadByte(); // The ICA register

}

If a software solution is unacceptable for the application, consult the DS1WM datasheet for an alternative
solution.

[1] DS1WM Datasheet, Dallas Semiconductor, online at http://www.dalsemi.com/datasheets/pdfs/1wm.pdf


