
 1 of 6 071699

I. TMEX EXTENDED FILE STRUCTURE
The Extended File Structure is the foundation of the Presentation Layer of iButton-TMEX. It provides a
directory structure for iButtonTM

 data, allowing named files to be randomly accessed as they are on a
diskette. The “Book of DS19xx iButton Standards” provides a basic specification of the Extended File
Structure. This document extends the basic definition to include bitmap files for large capacity iButtons,
multiple sub-directories, extended file attributes, passwords, date-stamps, owner identification, and other
useful constructs.

The definitions and rules of the Extended File Structure are sufficient to store multiple files in nested
directories using device capacities up to 64 kbytes. These devices may be organized as 4...256 pages of
32...256 bytes. The rules given in this document are scaleable to all combinations of memory
organization within this range. (Note that in all discussions of iButton data structure, the first available
page of memory is called page 0.)

A. Data Organization
The data organization of the Extended File Structure is very similar to that of a floppy disk. A sector of a
floppy roughly corresponds to a page of an iButton. The directory tells which files are stored, where the
data is located in the device, and how many pages it occupies. In this way information can be randomly
accessed for quick response.

The organization of data within a page of a file or directory is shown below. (The numbers shown
assume a 32-byte page length, but the same structure applies for devices with page lengths up to 256
bytes.)

DATA PACKET Figure 1

length
binary
1… 29
1 byte

data ASCII or binary

0 to 28 bytes

cont.-
pointer
binary
1 byte

CRC16
binary

2 bytes

not
 used

28 to 0

Each page of a file or directory begins with a length byte, contains a continuation pointer, and ends with
an inverted CRC16 check. The continuation pointer is the page address where the file or directory is
continued. A continuation pointer value of 0 marks the last page. The length byte indicates how many
valid bytes a page contains, not counting the length byte itself or the CRC. The CRC calculation,
however, also includes the length byte. The CRC accumulator is initialized by setting it equal to the
iButton page number. Every byte of a page is transmitted to or from an iButton least significant bit first.
The length byte is the first to be transmitted. Of the 2 CRC bytes, the least significant will be sent first.

Each memory iButton must be formatted before it can be used with the extended file structure. During the
process of formatting, the root directory file is created. The root directory always begins in the first page

Application Note 114
TMEX Extended File Structure

Revision 3.10
www.dalsemi.com

APPLICATION NOTE 114

2 of 6

of the iButton (page 0). The organization of data within the first page of the root directory is shown
below:

ROOT DIRECTORY START Figure 2

length
binary
8… 29
1 byte

control
data

7 bytes

file entries
ASCII & binary

0 to 21 bytes

cont.-
pointer
binary
1 byte

CRC16
binary

2 bytes

not
used

21 to 0

directory
mark
“AA”
1 byte

re-
served
“00”

1 byte

bitmap
control

xyyyyyzp
1 byte

bitmap of used pages or
address of bitmap file
4-byte binary number
LS-byte/ / /MS-byte

Instead of data, the directory contains management information and file entries. The control field of 7
bytes has the same length as a file entry. The bitmap of used pages serves TMEX as a fast lookup table to
find free pages. In this bitmap, used pages are marked with a 1, empty pages with a 0. The least
significant bit corresponds to page 0. This local bitmap is only used for non-EPROM devices with less
then 32 pages of data. All other devices have remote bitmap files. In large NV-RAM iButtons the bitmap
file page number refers to normal data space. In EPROM devices the page number refers to status
memory. For EPROM devices the unprogrammed state is 1 and the programmed state is 0. Due to this
constraint the bits in the EPROM bitmaps are inverted. An empty page has a 1 and an occupied page has
a 0.

The most significant bit, “x”, of the bitmap control byte specifies whether the bitmap is stored
immediately in the first directory packet or in a separate file. If this bit is a 1, the 4-byte bitmap
immediately follows the bitmap control byte. If this bit is a 0, the 2 bytes following the bitmap control
byte are 0. The “y” bits in the bitmap control byte specify directory attributes. These bits are from most
significant to least significant. These attributes are not yet implemented in TMEX 3.10.

read–only: The directory that contains this attribute and all files and sub-directories can be read but
not deleted or modified. If it is set on the root level then the entire device is read only.

archive: The directory that contains this attribute has had some or all of its files modified since the
last backup.

system: The directory that contains this attribute is designated to have system files.

encrypt: The directory that contains this attribute has all of its files encrypted.

The “z” bit in the bitmap control byte is not used. The least significant bit “p” is an in-progress bit. This
bit can be set when doing non-interruptible operations like file optimization. Note that TMEX does not
set this attribute because none of its operations are non-interruptible. The bit is cleared after the
operations are complete.

APPLICATION NOTE 114

3 of 6

The next 2 bytes contain the starting page address and the number of pages required by the bitmap file.
Note that the bitmap or the nameless bitmap file is created during the process of formatting. Continuation
pages of the directory don’t need a control field. This space is available to store another file entry.

File entries consist of the 4-byte file name, 1-byte file extension, the starting page address where the file
begins, and the number of pages the file occupies. This structure is shown below:

FILE ENTRY Figure 3

file name
ASCII, blank filled

left justified
4 bytes

extension
binary

aeeeeeee
1 byte

start page
binary

1 byte

pages
binary

1 byte

File names must consist of ASCII characters only, as with DOS. However, if the first byte of a file entry
has a value greater than 127, then it represents the first byte of an extended directory entry. The extended
directory entry is a 7-byte or multiple 7-byte data packet that applies to the next directory entry. Each 7-
byte data packet must have a first byte greater than 127. The additional bytes in an extended directory
entry may be used to specify additional file attributes, passwords, file ownership, date/time stamps, and
other special-purpose information regarding the file. The extended directory entry is not supported in
TMEX 3.10.

The 7 least significant “e” bits of the extension represent the extension number of the file entry.
Extensions 0-99 decimal are reserved for normal file entries, 100 for an AddFile that resides on an
EPROM iButton device and 101 for a Monetary File that is only created on a DS1962, DS1963, DS2422
and DS2423. The data page of the Monetary File can only be located on a page that has a corresponding
counter. If a page with a counter is not available on the device then the Monetary File will not be created.
Extension 127 decimal designates a subdirectory. Extensions 102-126 are reserved for future specialty
file types. The most significant bit of the file extension “a” is an attribute flag for the entry. If it is set and
the entry is a normal file with extensions 0-99 then the file is read-only. If it is set and the entry is a sub-
directory with extension 127 then the subdirectory is hidden. File entries denoting subdirectories contain
the real “start page” of the subdirectory file. The “# pages” specifier for a subdirectory entry does not
contain a valid number. It always contains 0 and need not be updated when the length of a subdirectory
file changes. A subdirectory file contains a back reference to the next higher directory file. If there is no
higher subdirectory file the entry will be “ROOT.” The start page of ROOT is always 0. The first packet
of a subdirectory file has the following structure:

SUB-DIRECTORY START Figure 4

length
binary
8… 29
1 byte

control
data

7 bytes

file entries
ASCII & binary

0 to 21 bytes

cont.-
pointer
binary
1 byte

CRC16
binary

2 bytes

not
used

21 to 0

directory
mark
“AA”
1 byte

re-
served
“00”

1 byte

reference to higher
directory level

ASCII
4 bytes

start page
higher dir.

binary
1 byte

APPLICATION NOTE 114

4 of 6

Again, the numbers shown above presume a 32-byte page length, but the basic structure applies for
greater page lengths. A continuation packet of a root directory or a subdirectory file follows the definition
of a data packet. It has the following structure:

(SUB-)DIRECTORY CONTINUATION Figure 5

length
binary
1… 29
1 byte

data
ASCII or binary

(0… 4)
0 to 28 bytes

cont.-
pointer
binary
1 byte

CRC16
binary

2 bytes

not
used

28 to 0

B. Features
The iButton Extended File Structure is carefully designed to provide high speed and the best performance
in a Touch environment. Every memory page can be read, CRC-checked or written without the need to
access other pages. If a file is modified, only the affected pages need to be rewritten. This provides a
significant speed advantage. Pages of a file need not be contiguous. Files can be extended by redefining
continuation pointers. Files can be grouped into nested subdirectories. Attributes defined for a directory
apply for all files within it. The iButton file structure also accommodates future types of iButtons with up
to 256 pages with a maximum of 256 bytes per page.

C. Properties
The notes below summarize many of the significant properties of the Extended File Structure as specified
above. These notes may be helpful in understanding the implications of the Extended File Structure with
regard to data storage and management.

§ The page length is derived from the family code. iButton devices currently available have a 32-byte
page length, but the definition of the Extended File Structure also supports greater page lengths.

§ Each page of data in the Extended File Structure is a Universal Data Packet (UDP), starting at a
page boundary. The Universal Data Packet of the Extended File Structure is somewhat limited
compared with the general Universal Data Packet. This Universal Data Packet may be shorter but
never longer than one page.

§ Each Universal Data Packet starts with a length byte, contains a continuation pointer and ends
with a CRC16 check. The pointer indicates the number of the page where a file is continued. A
continuation pointer 0 marks the last packet of a file.

§ The length byte indicates the number of bytes between length byte and CRC. The CRC calculation
includes all of the preceding data, including the length byte. The CRC accumulator is initialized by
setting it equal to the iButton page number.

§ Each Universal Data Packet may be read and CRC-checked independently, without reference to
data from other packets.

§ All types of files consist of one or several Universal Data Packets. The Universal Data Packets
contain either application data (data packet) or directory information (directory packet).

§ Every byte of a data packet is transmitted least significant bit first. The length byte is the first to be
transmitted.

APPLICATION NOTE 114

5 of 6

§ The maximum number of application data bytes within a data packet is (page length - 4).

§ There is exactly one main directory file in a memory iButton. This file is called the root directory
and always starts at page 0.

§ The maximum number of entries in the first packet of a (sub)directory file is (page length-11)/7. The
maximum number of entries in continuation packets is (page length-4)/7.

§ The bitmap serves TMEX as a fast lookup table to find free pages. The data of the bitmap is
treated as a 4-byte binary number. The least significant bit corresponds to page 0. A used page is
marked with a 1, an empty page with a 0. The least significant byte of the bitmap is stored at the
lower address and is transmitted first. The bitmap file must be used with iButtons of capacity greater
than 32 pages. It may be used with smaller devices depending on formatting.

§ Reserved extensions are: 100 for an AddFile, 101 for a Monetary File, 102 - 126 (to be assigned),
and 127 is for sub–directories; the extensions 0 - 99 are available for general purpose application files.

§ There may be empty or partially filled data packets. An empty packet consists of the length byte,
pointer and CRC16 bytes and acts as pointer to the next data packet of the same file or (sub-)
directory. A partly filled data packet contains less than 29 bytes of data. The unused space must
follow the CRC. There is no restriction on the use of empty and partly filled data packets.

II. UNIVERSAL DATA PACKET (UDP)
The Universal Data Packet (UDP) is a structure used to store data on iButtons. It contains one to two
length bytes, data and two inverted CRC16 bytes.
The structure is:

UNIVERSAL DATA PACKET Figure 6

length
binary
0… 508

1 or 2 bytes

data
ASCII or binary

0 to 508 bytes

CRC16
binary

(LO/HI)
2 bytes

The UDPs always start on page boundaries but can end anywhere. The length is the number of data bytes
not including the length byte(s) and the CRC16 bytes. There is 1 length byte if the number of data bytes is
less then 255. If there are 255 or more data bytes then the first length byte is 255 and the next length byte
is 0 to 253. The first and second length bytes added together provide the number of data bytes. The
CRC16 is first initialized to the starting page number. This provides a check to verify the page that was
intended is being read. The CRC16 is then calculated using the length and data bytes. The CRC16 is then
inverted and stored low byte first followed by the high byte. A detailed description of the CRC16 can be
found in Application Note 27.

The Extended File Structure implemented in TMEX uses a subset of the Universal Data Packet. It limits
the length so that the whole structure will fit in one page. For the current devices with 32 bytes per page
the length is limited to 29 data bytes. The last data byte is used as a continuation pointer leaving 28 true
data bytes.

APPLICATION NOTE 114

6 of 6

The Default Data Structure (DDS) is a previous standard that specifies only one Universal Data Packet
starting at page 0. This standard does not provide a directory or file type operations but it has speed
advantages for simple applications.

