
1 of 20 110899

INTRODUCTION
This application note describes the principle of operation of Dallas Semiconductor’s line of direct–to–
digital temperature sensors, and outlines a method of achieving high (<0.05°C) resolution with these
devices. An example C code listing is given for use with the DS1620.

DIRECT–TO–DIGITAL TEMPERATURE SENSOR PRINCIPLE OF OPERATION
The Dallas Direct–to–Digital Temperature Sensors measure temperature through the use of an onboard
proprietary temperature measurement technique. A block diagram of the temperature measurement
circuitry is shown in Figure 1.

Each temperature sensor measures temperature by counting the number of clock cycles that an oscillator
with a low temperature coefficient goes through during a gate period determined by a high temperature
coefficient oscillator. The counter is preset with a base count that corresponds to –55°C. If the counter
reaches zero before the gate period is over, the temperature register, which is also preset to the –55°C
value, is incremented, indicating that the temperature is higher than –55°C.

At the same time, the counter is then preset with a value determined by the slope accumulator circuitry.
This circuitry is needed to compensate for the parabolic behavior of the oscillators over temperature. The
counter is then clocked again until it reaches zero. If the gate period is still not finished, then this process
repeats.

The slope accumulator is used to compensate for the nonlinear behavior of the oscillators over
temperature, yielding a high resolution temperature measurement (0.5°C for almost all the products). This
is done by changing the number of counts necessary for the counter to go through for each incremental
degree in temperature. To obtain the desired resolution, therefore, both the value of the counter and the
number of counts per degree C (the value of the slope accumulator) at a given temperature must be
known.

Application Note 105
High Resolution Temperature Measurement

With Dallas Direct-to-Digital
Temperature Sensors

www.dalsemi.com



APPLICATION NOTE 105

2 of 20

TEMPERATURE MEASUREMENT CIRCUITRY  Figure 1

INCREASING TEMPERATURE RESOLUTION
Most of Dallas’ direct–to–digital temperature sensors provide 0.5°C resolution directly. This is
accomplished by the device determining whether to set or clear the least significant bit (LSB), based on
the actual temperature.  The device attempts to keep errors within ½ LSB, by quantizing different
readings into the LSB step size.  For example, a part which is ramping up in temperature from 25°C to
+26°C, or down in temperature from –10°C to –11°C, would exhibit this behavior:

ACTUAL
TEMPERATURE

SET/CLEAR
LSB

DIRECT
READING

ACTUAL
TEMPERATURE

SET/CLEAR
LSB

DIRECT
READING

25 Clear 25 -10 Clear -10
25.1 Clear 25 -10.1 Clear -10
25.2 Clear 25 -10.2 Clear -10
25.3 Set 25.5 -10.3 Set -10.5
25.4 Set 25.5 -10.4 Set -10.5
25.5 Set 25.5 -10.5 Set -10.5
25.6 Set 25.5 -10.6 Set -10.5
25.7 Set 25.5 -10.7 Set -10.5
25.8 Clear 26 -10.8 Clear -11
25.9 Clear 26 -10.9 Clear -11
26 Clear 26 -11 Clear -11

SLOPE ACCUMULATOR

PRESET COMPARE

LOW TEMPERATURE
COEFFICIENT OSCILLATOR COUNTER PRESET

=0 TEMPERATURE REGISTER

HIGH TEMPERATURE
COEFFICIENT OSCILLATOR COUNTER

=0

INC

STOP

SET/CLEAR
LSB



APPLICATION NOTE 105

3 of 20

This example shows then that every reading is rounded up (in absolute value) by ½ LSB. For most parts,
this is 0.25°C. This is important to remember, since in doing calculations to achieve higher resolutions,
this rounding factor must be taken into account.

With the exception of devices intended for battery management (DS2434 and DS2435), the temperature
sensors can measure temperature over the range of –55°C to +125°C in 0.5°C increments. For Fahrenheit
usage, a lookup table or conversion factor must be used.

Higher resolutions may be obtained by reading the temperature and truncating the least significant bit
from the read value. From the example above, it should be apparent that this must be done on the raw, 9–
bit number, in two’s–complement arithmetic, in order for the correct reading to result. After the
truncation, the number can then be converted into a signed integer. This value is referred to below as
temp_read. The value left in the counter can then be read by issuing a special command protocol to the
sensor. This value is the count remaining (count_remain) after the gate period has ceased. Reading the
value of the slope accumulator (by using another command protocol or set of protocols, as outlined
below) yields the number of counts per degree C (count_per_degree) at that temperature. Once these
parameters are all known, the actual temperature can be calculated from the following equation:

TEMPERATURE=temp_read-1/2LSB+
degreecount_per_

in)count_rema-_degree(count_per

A simple routine in C, called CalcHiResTemp, is given in the listing of Figure 7.

PROCEDURES FOR READING COUNTER VALUES AND CALCULATING
HIGH RESOLUTION TEMPERATURE READINGS
The following is a list of procedures for performing high resolution temperature readings from various
digital thermometers. For all parts, conversions must be done in oneshot mode (if applicable). XXh refers
to the protocol to send to the part; if two protocols are listed together (e.g., 84h A0h), both protocols
should be sent in the given order, without resetting the part between protocols.  A variable name XXX is
designated as “named XXX.”

NOTE:
The high–resolution temperature equation is slightly different for the DS1821 as compared to the
DS1620, DS1623, DS1625, DS2434, and DS2435.

DS1620, DS1623, and DS1625:
1. Issue Start Convert protocol (EEh).

2. When conversion is finished, read 9–bit temperature value (AAh).

3. Truncate half–degree bit from reading.

4. Convert truncated value from 2’s complement to signed integer (named temp_read).

5. Read 9–bit counter value (A0h; named count_remain).

6. Send undocumented Load Counter protocol (41h).

7. Read 9–bit counter value (A0h; named count_per_degree).



APPLICATION NOTE 105

4 of 20

8. Calculate high–resolution temperature using the high resolution temperature equation given in the
previous section.  ½ LSB = 0.25.

DS1621, DS1624, and DS1820:
The procedure to find the high resolution temperature parameters and the calculation to use are given in
the respective product data sheets for these products.  Note that since the DS1624 already provides a 13–
bit number with 0.03125°C resolution, no further processing is possible to achieve any higher
temperature resolution.

DS1821:
1. Issue Start Convert protocol (EEh).

2. When conversion is finished, read 8–bit temperature value (AAh).

3. Convert value from 2’s complement to signed integer (named temp_read).

4. Read 9–bit counter value (A0h; named count_remain).

5. Send undocumented Load Counter protocol (41h).

6. Read 9–bit counter value (A0h; named count_per_degree).

7. Calculate high–resolution temperature using the high resolution temperature equation given in the
previous section. Note that for the DS1821, ½ LSB = 0.5.

DS2434 and DS2435:
1. Issue Start Convert protocol (D2h).

2. When conversion is finished, read 8–bit temperature value (B2h 61h).

3. Convert temperature value from 2’s complement to signed integer (named temp_read).

4. Read 9–bit counter value (84h A0h; named count_remain).

5. Send undocumented Load Counter protocol (84h 41h).

6. Read 9–bit counter value (84h A0h; named count_per_degree).

7. Calculate high–resolution temperature using the high resolution temperature equation given in the
previous section.  ½ LSB = 0.25.

EXAMPLE C CODE
The following example is a simple exerciser for the DS1620 from an IBM–PC compatible computer. It
reads temperature and displays it in both the normal 0.5°C resolution and in high resolution. The DS1620
is inter-faced to the parallel port of the PC using the circuit shown in Figure 2, which is the schematic of
the DS1620K demo kit.

The hardware for the DS1620K demo kit “steals” power from a parallel port using D1, D2, D3, and C3.
Not all PC parallel ports are able to supply sufficient current to make this hardware work, so be advised
that if this circuit does not work, try connecting a +5V power source to the +5V line in this circuit and try
again. R1 and C1 serve to filter the CLK line and prevent negative under-shoots.  Likewise, C2 helps
prevent negative under-shoot on the DQ line.



APPLICATION NOTE 105

5 of 20

The code is written in an attempt to make it easy to adapt to any of the digital temperature sensors. All
that needs to be done to use it with other devices is to change the command header file to account for the
protocols and resolution of the device being used, and change the files which manipulate the hardware
interface to the device to account for either 1, 2 or 3–wire interfaces.

DS1620K HARDWARE SCHEMATIC  Figure 2



APPLICATION NOTE 105

6 of 20

THREEWIR.H C CODE LISTING  Figure 3
/* THREEWIR.H
This file defines the method for setting the 3–wire interface lines from an IBM–PC
compatible computer. The interface is through the parallel port. The parallel port
lines used are as follows:

/SELIN pin 17 DQ
Data4 pin 5 CLK
Data3 pin 4 /RST
GND pin 18 GND

The inportb, outportb, and delay functions are defined in most PC–based C compil-ers
in dos.h
*/

#include <dos.h>

#define CLK_HI p_data|= 0x08; outportb(p_addr,p_data); delay(1);
#define CLK_LOW p_data&=~0x08; outportb(p_addr,p_data); delay(1);
#define RSTB_HI p_data|= 0x04; outportb(p_addr,p_data); delay(1);
#define RSTB_LOW p_data&=~0x04; outportb(p_addr,p_data); delay(1);
#define DQ_HI outportb(p_addr+2,0x02); delay(1);
#define DQ_LOW outportb(p_addr+2,0x0A); delay(1);
#define READ_BACK –((inportb(p_addr+2) & 0x08) >> 3)+1

#define p_addr peek(0,0x0408) /* Finds the address of the parallel port */

char p_data = 0xFF;



APPLICATION NOTE 105

7 of 20

DS3WIRE.C C CODE LISTING Figure 4

/* DS3wire.C
These routines handle a Dallas 3–wire interface. Methods of changing the individual
bit states in the hardware need to be defined in ”threewir.h”.
*/

#include ”threewir.h”

/*
Bit level drivers, used in routines for handling the protocol and data interface to
a 3–wire device.
*/

/* Drives RSTB signal high (state=1) or low (state=0) */

void rb3w( int state )
{

if (state==0) {RSTB_LOW;}
else {RSTB_HI}

}

/* Drives CLK signal high (state=1) or low (state=0) */

void c3w( int state )
{

if (state==0) {CLK_LOW}
else {CLK_HI}

}

/* Drives DQ signal high (state=1) or low (state=0) */
void dq3w( int state )

{
if (state==0) {DQ_LOW}
else {DQ_HI}

}

/* Reads data back from port */

int rd_back()
{
char i;
i=READ_BACK;
return( i );
}



APPLICATION NOTE 105

8 of 20

/* Writes a 0 (w_bit=0) or a 1 (w_bit=1) to a three wire device. */

void write_bit( int w_bit )
{
if ( w_bit == 0 ) dq3w( 0 );
else dq3w( 1 );
c3w( 0 );
c3w( 1 );
dq3w( 1 );
}

/* Reads a 0 (return 0) or a 1 (return 1) from a three wire device. */

int read_bit()
{
int i;

c3w( 0 );
i=rd_back();
c3w( 1 );

return(i);
}

/*
Routines to read and write a Dallas 3–wire part. The three wire interface typically
requires that the part be sent an eight–bit protocol, followed by data. The
exception to this are the digital potentiometers, which use no protocols but send
only data. All transfers are LSB first.

If writing, the data must follow the protocol immediately, but there is no fixed
number of bits that may be data.

If reading, the part must be written with an eight bit protocol; the DQ pin must
then be changed to READ back data. As with writing, there is no fixed number of bits
that may be data.

These routines are set up to handle an arbitrary data length UP TO the size of an
int (which is typically 16 bits for most C compilers).
*/



APPLICATION NOTE 105

9 of 20

/* write_part
Write a command and data to a 3–wire part. param is the integer value of the data to
be written after the write protocol. n_bits is the number of bits to transfer in
param.
*/

void write_part(int protocol, int param, int n_bits)
{
int index,data;

rb3w(1); /* Raise the /RST line */
for (index = 0; index<8; index++) /* protocol is 8 bits */

{
data = protocol>>index;
data &= 0x01;
write_bit(data);
}

for (index = 0; index<n_bits; index++) /* Write out data */
{
data = param>>index;
data &= 0x01;
write_bit(data);
}

rb3w(0); /* Drop /RST line */
}

/* read_part
Reads data from a 3–wire part. protocol is command to be written to the part, and
n_bits is number of bits to read after the protocol is sent. Returns int value of
reading.
*/

int read_part(int protocol, int n_bits)
{
int index,data;
int r_data = 0;

rb3w(1); /* Raise the /RST line */
for (index = 0; index<8; index++) /* protocol is 8 bits */

{
data = protocol>>index;
data &= 0x01;
write_bit(data);
}

for (index = 0; index<n_bits; index++) /* Read in data */
{
r_data |= read_bit()<<index;
}

rb3w(0);
return(r_data);
}



APPLICATION NOTE 105

10 of 20

DS1620CMD.H Figure 5

/* 1620CMD.H
This file defines the protocols and bit masks needed for a specific device: the
DS1620.
*/

/* protocols */
#define Read_Temp 0xAA
#define Start_Convert 0xEE
#define Stop_Convert 0x22
#define Write_TH 0x01
#define Write_TL 0x02
#define Read_TH 0xA1
#define Read_TL 0xA2
#define Write_Config 0x0C
#define Read_Config 0xAC
#define Read_Counter 0xA0
#define Load_Counter 0x41

/* masks for configuration/status register */
#define mode_mask 0x03 /* masks off all but CPU and 1SHOT bits */
#define nvb_mask 0x10 /* masks off all but NVB bit */
#define done_mask 0x80 /* masks off all but DONE bit */
#define flags_mask 0x60 /* masks off all but THF and TLF flag

bits */
#define flag_offset 5 /* number of right shifts to right–justify

flags */

#define res (int) (1.0/LSB)
/* resolution factor, used in application to

calculate
actual temperatures from raw data */

float LSB = 0.5; /* The value of a LSB on the
DS1620 in degrees C */



APPLICATION NOTE 105

11 of 20

DEVFUNC.C C CODE LISTING Figure 6
/* Device Specific Functions
These are device specific functions for all 3–wire Dallas Temperature Sensors,
supporting all documented functions of the parts, including high resolution
temperature measurements.

Since these routines may be used with many different devices, no attempt is made in
these routines to interpret the data written or read; the application program which
uses these routines must assure that the data written or read is in the appropriate
format for use by these routines and by the application.
*/

/*
Place device–appropriate include file here for specific device commands.
*/
#include <stdio.h>
#include ”1620cmd.h” /* This example for DS1620 */

/*prototypes*/

extern void write_part();
extern int read_part();

/* StartTempConvert
This routine issues the Start Convert command. No further data is required and no
data is read back.
*/
void StartTempConvert(void)
{

write_part(Start_Convert,0,0);
}

/* StopTempConvert
This routine isses the Stop Convert command. No further data is required and no data
is read back.
*/
void StopTempConvert(void)
{

write_part(Stop_Convert,0,0);
}



APPLICATION NOTE 105

12 of 20

/* ReadTemp
This routine reads back the value of the converted temperature reading and returns
that value. num_bits is the number of bits to read back (up to size of int (16)).
Remember that this only returns the raw data; the calling program must know how to
interpret the data (for example, this routine will return an int with 9 bits when
called as ReadTemp(9); the user must then know that the LSB is 0.5•C, and make the
appropriate data conversion. Likewise, interpreting the sign of the returned
temperature is up to the calling program.)
*/
int ReadTemp (int num_bits)
{

int temperature;
temperature = read_part(Read_Temp,num_bits);
return(temperature);

}

/* WriteTempHigh
This routine writes to the TH thermostat register. Param is value to place in TH,
and should be 9 bits wide. As with ReadTemp, the calling program must assure that
the data sent here is in the appropriate device–specific data form to be used
properly (is LSB 0.5•C or 1•C?, etc).
*/
void WriteTempHigh (int param, int num_bits)
{

write_part(Write_TH,param,num_bits);
}

/* WriteTempLo
This routine writes to the TL thermostat register. Param is value to place in TL,
and should be num_bits bits wide. As with ReadTemp, the calling program must assure
that the data sent here is in the appropriate device–specific data form to be used
properly (is LSB 0.5•C or 1•C?, etc).
*/
void WriteTempLo (int param, int num_bits)
{

write_part(Write_TL, param, num_bits);
}

/* ReadTempHigh
This routine reads back from the part the value stored in the TH thermostat regis-
ter and returns that value. num_bits is the number of bits to read back (up to size
of int (16)). Remember that this only returns the raw data; the calling pro-gram
must know how to interpret the data (for example, this routine will return an int
with 9 bits when called as ReadTempHigh(9); the user must then know that the LSB is
0.5•C, and make the appropriate data conversion. Likewise, interpreting the sign of
the returned temperature is up to the calling program.)
*/
int ReadTempHigh (int num_bits)
}



APPLICATION NOTE 105

13 of 20

int tHigh;

tHigh = read_part(Read_TH,num_bits);

return(tHigh);
}

/* ReadTempLo
This routine reads back from the part the value stored in the TL thermostat register
and returns that value. num_bits is the number of bits to read back (up to size of
int (16)). See the caveat for ReadTempHigh regarding returned data.
*/
int ReadTempLo (int num_bits)
{

int tLow;

tLow = read_part(Read_TL,num_bits);

return(tLow);
}

/* LoadCounter
This routine sends the Load Counter command. No further data is required and no data
is read back.
*/
void LoadCounter (void)
{

write_part(Load_Counter,0,0);
}

/* ReadCounter
This routine reads back from the part the value in the temp sensor count register
and returns that value. num_bits is the number of bits to read back (up to size of
int (16)).
*/
int ReadCounter (int num_bits)
{

int count;

count = read_part(Read_Counter,num_bits);

return(count);
}



APPLICATION NOTE 105

14 of 20

/* WriteConfig
This routine writes to the configuration register. Param is the byte to be written
into the configuration register, and it is always 8 bits wide.
*/
void WriteConfig (int param)
{

write_part(Write_Config,param,8);
}

/* ReadConfig
This routine reads back the value of the configuration byte and returns that value.
It always returns 8 bits.
*/
int ReadConfig(void)
{

int regvalue;

regvalue = read_part(Read_Config,8);
return(regvalue);

}

/* CheckIfBusy
This routine will check to see if the device is busy and cannot process further
writes to EEPROM. It checks the NVB flag in the configuration register. If the
device is busy, the function returns a 1; if it is not busy, the function will
return a 0.
*/
int CheckIfBusy(void)
{

if ((ReadConfig() & nvb_mask) == nvb_mask)
return(1);

else
return(0);

}

/* CheckIfDone
This routine will check to see if the device has completed a temperature conver-
sion. It checks the DONE flag in the configuration register. If the device is busy,
the function returns a 1; if it is not busy, the function will return a 0. NOTE: If
the mode is set so that the temp sensor is doing continuous conversions, DONE will
NEVER be set, so make sure you know what mode you’re in if you use this check
routine.
*/
int CheckIfDone(void)
{

if ((ReadConfig() & done_mask) == done_mask)
return(0);

else
return(1);

}



APPLICATION NOTE 105

15 of 20

/* SetMode
This routine sets the operating mode of the digital temperature sensor. Mode is
determined by two bits in the configuration register: CPU and 1SHOT. The following
modes are possible:

Mode CPU 1SHOT
1 0 0 Standalone, continuous conversions

(typical for thermostat)
2 0 1 Standalone, one shot (used only if

conversions can be started by CONV pin)
3 1 0 CPU, continuous conversion (typical for

thermostat with readback)
4 1 1 CPU, one shot (typical for low–power

temp readings)

This routine will set the configuration register bits appropriately for the MODE
value passed to the routine in mode. It returns no data.
*/
void SetMode(int mode)
{

WriteConfig (mode–1);
}

/* ReadFlags
This routine will read the state of the two temperature flags, THF and TLF. It
returns an integer, t_flag, which is the number of the two bits (0 = 00, 1=01, 2=10,
3=11).
*/
int ReadFlags(void)
{

int t_flag;

t_flag =( ReadConfig() & flags_mask) >> flag_offset;
return(t_flag);

}



APPLICATION NOTE 105

16 of 20

SIMPLE DS1620 EXERCISER C CODE LISTING Figure 7

/* DS1620 Exerciser
Example program to show how to perform various functions of a DS1620 Digital Ther-
mometer. This example is console–driven; that is, it expects input from the user
via a console interface, to set the mode and TH, TL register values.
*/

#include <stdio.h>
#include ”devfunc.c”
#include ”ds3wire.c”

/*prototypes*/
void StartTempConvert(void);
void StopTempConvert(void);
int ReadTemp(int);
void WriteTempHigh(int,int);
void WriteTempLo(int,int);
int ReadTempHigh(int);
int ReadTempLo(int);
void LoadCounter(void);
int ReadCounter(int);
void WriteConfig(int);
int ReadConfig(void);
int CheckIfBusy(void);
int CheckIfDone(void);
void SetMode(int);
int ReadFlags(void);
void InitTempSensor(void);
void SetThermostat(void);
float CalcHiResTemp(int,int,int);

/* InitTempSensor
This routine will initialize the temperature sensor to a mode specified by the user.
*/
void InitTempSensor(void)
{

int mode, test;

printf(”1. Standalone mode, Continuous Conversions\n”);
printf(”2. Standalone mode, One Shot\n”);
printf(”3. CPU mode, Continuous Conversions\n”);
printf(”4. CPU mode, One Shot\n”);
printf(”Enter mode desired:”);
scanf(”%d”,&mode);
SetMode(mode); /*Write mode bits to Config register */



APPLICATION NOTE 105

17 of 20

do /* Wait until EEPROM write
complete */

{
test = CheckIfBusy();
printf(”Device Busy”);

} while (test);

}

/* SetThermostat
This routine sets the thermostat registers to the high and low values specified by
the user.
*/
void SetThermostat(void)
{

float t_hi, t_lo, high_t, low_t; /* Since TH and TL are 9–bit
numbers with a 0.5•C
LSB, they must be of type
float. This program
must then assure the data
passed to the other
routines is formatted
properly. */

int hi_t, lo_t, busy;

printf(”Enter a High Temperature Limit:”);
scanf(”%f”,&t_hi); /* Get TH limit */
printf(”Enter a Low Temperature Limit:”);
scanf(”%f”,&t_lo); /* Get TL limit */

hi_t = res*t_hi; /* turn into a 9–bit integer –
note that this routine
does not check to see if the
user enters some number that
can’t be used, like 22.635. An
actual application would
want to do such error trap
ping. */

WriteTempHigh(hi_t,9); /* Write to TH register*/

do /* Wait until EEPROM write
complete */

{
busy = CheckIfBusy();
printf(”Device Busy”);

} while (busy);



APPLICATION NOTE 105

18 of 20

lo_t= res*t_lo; /* same comments as for TH
*/

WriteTempLo(lo_t,9); /* Write to TL register
*/

do /* Wait until EEPROM write
complete */

{
busy = CheckIfBusy();
printf(”Device Busy”);

} while (busy);

}

/* CalcHiResTemp
This routine handles the calculation of temperature in high resolution mode.
Requires that the part has provided the values of temperature, count_per_degree,
and count_remain. This routine assumes 9 bit data is read back, and that the user
has defined the value of LSB and res in the appropriate DSXXXXCMD.H file.
*/
float CalcHiResTemp(int temp9, int count_per_degree, int count_remain)
{

int temp_read;
float frac_deg;

temp_read = temp9/res; /* temp9 is raw data – convert
for LSB value */

if(temp_read>>8>0) /* check to see if MSB set –
works for 9–bit data. */

temp_read –=256; /* convert to negative temper
ature */

if(count_per_degree !=0)
frac_deg = (count_per_degree–count_remain)/((float)count_per_degree);

else
frac_deg = LSB/2.0;

return(((float)temp_read–(LSB/2.0))+frac_deg);
}

void main(void)
{

signed int temperature;
float read_temp;
int Countrem,CountC;
float hires_temp;
int busy,key;
InitTempSensor(); /* Initialize sensor with mode

Bits */
SetThermostat(); /* Load in Thermostat values,

if used */
StartTempConvert(); /* Start Temperature

Conversion(s) */

switch(ReadConfig()& mode_mask) /* Checks for conversion done.
This switch is used to
determine what to do depending
upon the mode the
DS1620 is in. If continuous
conversions are going on,
temperature readings should
only be made periodically
based on time. If ONE–SHOT



APPLICATION NOTE 105

19 of 20

mode is used, then you can
poll the status register for
the DONE bit to set. */

{
case 0: /* Continuous conversions – so

read based on time */
delay(1000);
break;

case 1: /* One Shot mode – poll status
register for DONE bit */

do
{

busy =CheckIfDone();
printf(”\nConversion in progess”);

}while(busy);
break;

case 2: /* Continuous conversions – so
read based on time */

delay(1000);
break;

case 3: /* One Shot mode – poll status
register for DONE bit */

do
{

busy =CheckIfDone();
printf(”\nConversion in progess”);

}while(busy);
break;

}/* end switch */



APPLICATION NOTE 105

20 of 20

read_temp = (float)ReadTemp(9)*LSB; /* Reads temperature and con
verts for LSB value*/

if ((int)read_temp>>7>0) /* Check if MSB set
*/

read_temp –=256; /* if it is, correct for it
*/

printf(”\nThe temperature is:%5.2f”,read_temp);
/* prints temperature on console, to 0.5•C resolution */

StopTempConvert(); /* In case you were previously
in continuous mode, stop

*/
SetMode(4); /* MUST BE in ONE–SHOT to do

High Res */
StartTempConvert(); /* Start Temperature

Conversion(s) */
do /* Check to see when conver

sion completes by polling DONE
bit */

{
busy =CheckIfDone();
printf(”\nConversion in progess”);

}while(busy);

read_temp = (float)ReadTemp(9); /* get raw 9–bit temperature
data */

if ((int)read_temp>>8>0) /* Check if MSB set*/
read_temp –=512; /* if it is, correct for it –

9 bits now! */

temperature = (signed int) read_temp; /* make sure temp is now a
signed integer */

Countrem = ReadCounter(9); /* reads count remaining
*/

LoadCounter(); /* Loads counter reg with
counts per degree */

CountC = ReadCounter(9);

hires_temp = CalcHiResTemp(temperature,CountC,Countrem);

printf(”\n The temperature is :%5.2f”,hires_temp);
/* prints temperature on console, to 0.01•C resolution */

}

RELATED PRODUCTS:
DS1620, DS1621, DS1623, DS1625, DS1820, DS1821, DS2434, DS2435


