

High-frequency Flash Programmable PLL Die with Spread Spectrum

Features	Benefits
Flash-programmable die for in-package programming of crystal oscillators	Enables quick turnaround of custom oscillators, and lowers inventory costs through stocking blank parts. In addition, the part can be programmed up to 100 times, which reduces programming errors and provides an easy upgrade path for existing designs
High-resolution phase-locked loop (PLL) with 10-bit multiplier and seven-bit divider	Enables synthesis of highly accurate and stable output clock frequencies with zero or low PPM
Flash-programmable capacitor tuning array	Enables fine-tuning of output clock frequency by adjusting C_{Load} of the crystal
Simple two-pin programming interface (excluding V _{DD} and V _{SS} pins)	Allows the device to go into standard four- or six-pin packages.
On-chip oscillator used with external 25.1-MHz fundamental tuned crystal	Lowers cost of oscillator, as PLL can be programmed to a high frequency using a low-frequency, low-cost crystal
Flash-programmable spread spectrum with eight discrete spread percentages and 30- to 33-kHz modulation frequencies	Provides various spread percentage and modulation frequencies
Spread Spectrum On/Off function	Provides ability to enable or disable Spread Spectrum with an external pin
Operating frequency —1–170 MHz at 3.3V ± 10%	Services most PC, networking, and consumer applications
Seven-bit linear post divider with divide options from divide-by-2 to divide-by-127	Provides flexibility in output configurations and testing
Programmable PD# or OE pin	Enables low-power operation or output enable function
Programmable asynchronous or synchronous OE and PD# modes	Provides flexibility for system applications, through selectable instantaneous or synchronous change in outputs
 Low jitter outputs < 200 ps (pk-pk) at 3.3V ± 10% 	Suitable for most PC, consumer, and networking applications
Controlled rise and fall times and output slew rate	Has lower EMI than oscillators

Die Pad Summary

Name	Die Pad	Description
VDD	1,2	Power supply
VSS	6,7	Ground
XIN	4	Crystal gate pin
XOUT	3	Crystal drain pin
PD#/OE	5	Flash-programmable to function as power down or output enable. Acts as the VPP (super voltage) input and data pin in programming mode. There is an internal pull-up resistor on this pin.
SSON#	10	Active LOW Spread Spectrum control. Asserting LOW turns the internal modulation waveform on. Acts as the clock pin in programming mode. Should be double bonded to the OUT pad for pinouts not using the SSON# function. There is an internal pull-down resistor on this pad.
OUT	9	Clock output. There is an internal pull-down resistor on this pad.
NC	8	No connect pin. (Do not connect this pad.)

Functional Description

The CY5057 is a flash-programmable, high-accuracy, PLL-based die designed for the crystal oscillator market. It also contains Spread Spectrum circuitry that can be enabled or disabled with an external pin. The die is packaged with a low-cost 25.1-MHz fundamental tuned crystal in a four- or six-pin through-hole or surface mount package. The oscillator devices can be stocked as blank parts and custom frequencies can be programmed in-package at the last stage before shipping. This enables fast-turn manufacturing of custom and standard crystal oscillators without the need for dedicated, expensive crystals.

The CY5057 contains an on-chip oscillator and unique oscillator tuning circuit for fine-tuning the output frequency. The crystal C_{load} can be selectively adjusted by programming a set of flash memory bits. This feature can be used to compensate for crystal variations or to obtain a more accurate synthesized frequency.

The CY5057 uses a simple two-pin programming interface excluding the V_{SS} and V_{DD} pins. Clock outputs can be generated from 1 MHz to 170 MHz at 3.3V \pm 10% operating voltage. The entire Flash configuration can be reprogrammed multiple times, allowing programmed inventory to be altered or reused.

The CY5057 PLL die has been designed for very high resolution. It has a 10-bit feedback counter multiplier and a seven-bit reference counter divider. This enables the synthesis of highly accurate and stable output clock frequencies with zero or low PPM error. The output of the PLL or the oscillator can be further modified by a seven-bit linear post divider with a total of 126 divider options (2 to 127).

The CY5057 also contains flexible power management controls. These parts include both power-down mode (PD# = 0) and output enable mode (OE = 1). The power-down and output enable modes have an additional setting to determine timing (asynchronous or synchronous) with respect to the output signal.

Controlled rise and fall times, unique output driver circuits, and innovative circuit layout techniques enable the CY5057 to have low jitter and accurate outputs making it suitable for most PC, networking and consumer applications.

The CY5057 also has an additional spread spectrum feature that can be disabled or enabled with an external pin. Please refer to Spread Spectrum section for details.

Flash Configuration and Spread Spectrum Storage Block

The following table summarizes the features which are configurable by flash memory bits. Please refer to the "CY5057"

Programming Specification" for programming details. The specification can be obtained from your Cypress factory representative.

Flash Programmable Features					
Adjust	Feedback counter value (P)				
Frequency	Reference counter value (Q)				
	Output divider selection				
	Oscillator Tuning (load capacitance values)				
	Oscillator direct output				
Pov	ver management mode (OE or PD#)				
Power manag	Power management timing (synchronous or asynchronous)				
	Spread Spectrum				

PLL Output Frequency

The CY5057 contains a high-resolution PLL with a 10-bit multiplier and a seven-bit divider. The output frequency of the PLL is determined by the following formula:

$$\mathsf{F}_{\mathsf{PLL}} = \frac{2 \bullet (\mathsf{PBL} + 4) + \mathsf{Po}}{(\mathsf{QL} + 2)} \bullet \mathsf{F}_{\mathsf{REF}}$$

where Q_L is the loaded or programmed reference counter value (Q counter), P_{BL} is the loaded or programmed feedback counter value (P counter), and Po is the P offset bit (can only be 0 or 1). In Spread Spectrum mode, the time-averaged P value is used to calculate the average frequency.

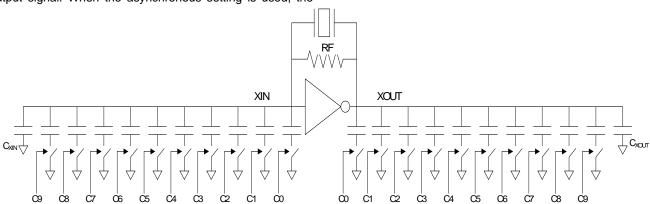
Power Management Features

The CY5057 contains Flash-programmable PD# (active LOW) and OE (active HIGH) functions. If power-down mode is selected (PD# = 0), the oscillator and PLL are placed in a low supply current standby mode and the output is tri-stated and weakly pulled low. The oscillator and PLL circuits must re-lock when the part leaves Powerdown Mode. If output enable mode is selected (OE = 0), the output is tri-stated and weakly pulled low. In this mode the oscillator and PLL circuits continue to operate, allowing a rapid return to normal operation when the output is enabled.

In addition, the PD# and OE modes can be programmed to occur synchronously or asynchronously with respect to the output signal. When the asynchronous setting is used, the

powerdown or output disable occurs immediately (allowing for logic delays) irrespective of position in the clock cycle. However, when the synchronous setting is used, the part waits for a falling edge at the output before powerdown or output enable signal initiated, thus preventing output glitches. In either asynchronous or synchronous setting, the output is always enabled synchronously by waiting for the next falling edge of the output.

Spread Spectrum


The CY5057 contains spread spectrum with flash programmable spread percentage and modulation frequency. Center spread non-linear "Hershey kiss" style modulation can be obtained. The modulation frequency range is limited from 30 to 33 kHz. Eight discrete levels of spread percentage are delivered.

The CY5057 has a spread spectrum On/Off function. The spread spectrum can be enabled or disabled by users through an external pin. Timing of this feature is shown in "switching waveform" section.

Generic spread spectrum profile programming software is not available to customers at this time. The modulation profiles for the eight discrete spread percentages are given in the "Spread Spectrum Profile" section and will be delivered by the factory.

Crystal Oscillator Tuning Cap Values

Bit	Capacitance per Bit (pF)
C ₉	24.32
C ₈	12.16
C ₇	6.08
C ₆	3.04
C ₅	1.52
C ₄	0.76
C ₃	0.38
	0.19
C ₁	0.095
C ₀	0.0475

Figure 1. Crystal Oscillator Tuning Circuit

Spread Spectrum Profile Tables

The modulation profile information based on the eight discrete spreads (table below) and 16 nominal output frequencies (table below) will be delivered to customers. The input reference is limited to 25.1 MHz only.

Only one spread profile (for one specific percentage spread and for one output frequency) can be programmed into the device.

Spread Percentage (Center Spread Only)
<u>+</u> 0.250%
<u>+</u> 0.500%
<u>+</u> 0.625%
<u>+</u> 0.750%
<u>+</u> 1.00%
<u>+</u> 1.25%
<u>+</u> 1.50%
<u>+</u> 2.00%

Output Nominal Frequency (Spread On)
F _{nom} = 6.00MHz, Center spread
F _{nom} = 20.00MHz, Center spread
F _{nom} = 20.75MHz, Center spread
F _{nom} = 24.00MHz, Center spread
F _{nom} = 24.576MHz, Center spread
F _{nom} = 33.00MHz, Center spread
F _{nom} = 33.3333MHz, Center spread
F _{nom} = 50.00MHz, Center spread
F _{nom} = 65.7408MHz, Center spread
F _{nom} = 66.00MHz, Center spread
F _{nom} = 66.6666MHz, Center spread
F _{nom} = 75.00MHz, Center spread
F _{nom} = 80.00MHz, Center spread
F _{nom} = 100.00MHz, Center spread
F _{nom} = 120.00MHz, Center spread
F _{nom} = 166.00MHz, Center spread

Absolute Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply Voltage-0.5 to +7.0V Input Voltage-0.5V to V_{DD} + 0.5

Storage Temperature (Non-condensing) –55°C to +125°C
Junction Temperature -40°C to $+100^{\circ}\text{C}$
Data Retention @ Tj = 125°C> 10 years
Maximum Programming Cycles100
Static Discharge Voltage ≥ 2000V (per MIL-STD-883, Method 3015)

Operating Conditions

Parameter	Description	Min.	Max.	Unit	
V_{DD}	Supply Voltage (3.3V)	3.0	3.0 3.6	V	
T _{AJ} [1]	Operating Temperature, Junction	-40	100	°C	
C _{LC}	Max. Capacitive Load on the output (CMOS levels spec) $V_{DD} = 3.0V - 3.6V$, output frequency = 1-170 MHz		15	pF	
X _{REF}	Reference Frequency with spread spectrum disabled. Fundamental tuned crystals only.	25.1	25.1	MHz	
C _{in}	Input Capacitance (except crystal pins)		7	pF	
C _{XIN}	Crystal input capacitance (all internal caps off)	10	14	pF	
C _{Xout}	Crystal output capacitance (all internal caps off)	10	14	pF	

DC Electrical Characteristics, Tj = -40 to 100°C

Parameter	Description	Test Conditions	Min.	Max.	Unit	
V _{IL}	Input Low Voltage CMOS levels, 30% of V_{DD} PD#/OE and SSON# pins $V_{DD} = 3.0V - 3.6V$			0.3	V_{DD}	
V _{IH}	Input High Voltage PD#/OE and SSON# pins				V_{DD}	
V _{OL}	Output Low voltage, OUT pin	$V_{DD} = 3.0V - 3.6V, I_{OL} = 8 \text{ mA}$		0.4	V	
V _{OH}	Output high voltage, CMOS levels	$V_{DD} = 3.0V - 3.6V$, $I_{OH} = -8 \text{ mA}$	V _{DD} – 0.4		V	
I _{ILPDOE}	Input Low Current, PD#/OE pin	V _{IN} = V _{SS} (Internal pull-up = 100k typical)		50	μΑ	
I _{IHPDOE}	Input High Current, PD#/OE pin	V _{IN} = V _{DD} (Internal pull-up = 100k typical)		10	μΑ	
I _{ILSR}	Input Low Current, SSON# pin V _{IN} = V _{SS} (Internal pull-down = 100k typical)			10	μΑ	
I _{IHSR}	Input High Current, SSON# pin	V _{IN} = V _{DD} (Internal pull-down = 100k typical)		50	μΑ	
I _{DD}	Supply current	No Load, V _{DD} = 3.0V–3.6V, Fout = 170 MHz		50	mA	
l _{OZ}	Output leakage current, OUT pin	V _{DD} = 3.0V–3.6V, Output disabled with OE		50	μΑ	
I _{PD}	Stand by current	V_{DD} = 3.0V–3.6V, Device powered down with PD#		75	μА	
R _{UP}	Pull-up resistor on PD#/OE pin	$V_{DD} = 3.0V - 3.6V$, measured at $V_{IN} = 0.5V_{DD}$	80	150	kΩ	
R _{DN}	Pull-down resistor on SSON# and OUT pins	$V_{DD} = 3.0V - 3.6V$, measured at $V_{IN} = 0.5V_{DD}$	80	150	kΩ	
Rf	Crystal Feedback Resistor	V _{DD} = 3.0V–3.6V, measured at VDD/2.	200		kΩ	

Note:

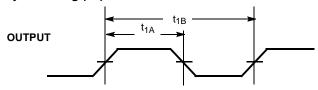
^{1.} In Cypress standard TSSOP packages with external crystal.

AC Electrical Characteristics $Tj = -40 \text{ to } 100^{\circ}\text{C}$ [1]

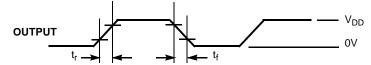
Parameter	Description	Test Conditions	Min.	Max.	Unit	
F _{out}	Output Frequency	15 pF Load, V _{DD} = 3.0 to 3.6V	1	170	MHz	
tr	OUT rise time	V _{DD} = 3.0V–3.6V, 20% to 80% VDD		2.7	ns	
tf	OUT fall time	VDD = 3.0V-3.6V, 80% to 20% VDD		2.7	ns	
DC	OUT Duty Cycle	·				
t _{J1} ^[2]	Peak to Peak Period Jitter	$F_{out} \ge 133 \text{ MHz}, \text{ VDD/2}, \text{ SS off.}$ 25 MHz $\le F_{out} < 133 \text{ MHz}, \text{ VDD/2}, \text{ SS off.}$ $F_{out} < 25 \text{MHz}, \text{ VDD/2}, \text{ SS off.}$		200 400 1% of 1/F _{out}	ps ps s	
t _{J2} ^[2]	Cycle to Cycle Jitter	F_{out} >133 MHz, VDD/2, SS on. 25MHz \leq F_{out} < 133 MHz, VDD/2, SS on. F_{out} < 25 MHz, VDD/2, SS on.		200 400 1% of 1/F _{out}	ps ps s	
F _{MOD}	Modulation frequency		30	33	kHz	
DL	Crystal drive level	Measured at 25.1 MHz, with 20Ω R, $C_{LOAD} = 10$ pF		150	μW	
–R	Negative Resistance	Measured at 25.1 MHz		-300	Ω	

Timing Parameters^[1]

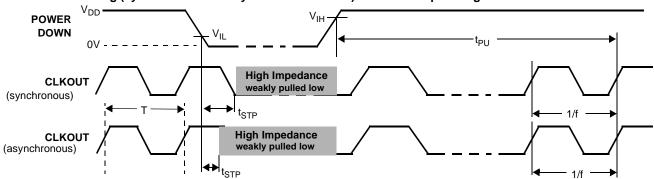
Parameter	Description	Min.	Max.	Unit
T _{SSON1}	Time from steady state spread to steady state non-spread		100	us
T _{SSON2}	Time from steady state non-spread to steady state spread		100	us
T _{SSON3}	Minimum SSON# pulse width (positive or negative)	250		us
T _{MOD}	Spread Spectrum Modulation period	30	33.33	us
T _{STP,SYNC}	Time from falling edge on PD# to stopped outputs, synchronous mode, $T = 1/F_{out}$		T + 350	ns
T _{STP,ASYNC}	Time from falling edge on PD# to stopped outputs, asynchronous mode		350	ns
T _{PU,SYNC}	Time from rising edge on PD# to outputs at valid frequency, synchronous mode		3	ms
T _{PU,ASYNC}	Time from rising edge on PD# to outputs at valid frequency, asynchronous mode		3	ms
T _{PXZ,SYNC}	Time from falling edge on OE to high-impedance outputs, synchronous mode, $T = 1/F_{out}$		T+350	ns
T _{PXZ,ASYNC}	Time from falling edge on OE to high-impedance outputs, asynchronous mode		350	ns
T _{PZX,SYNC}	Time from rising edge on OE to running outputs, synchronous mode, T=1/F _{out}		1.5T + 350	ns
T _{PZX,ASYNC}	Time from rising edge on OE to running outputs, asynchronous mode		350	ns
T _{PU}	Power-up time		10	ms

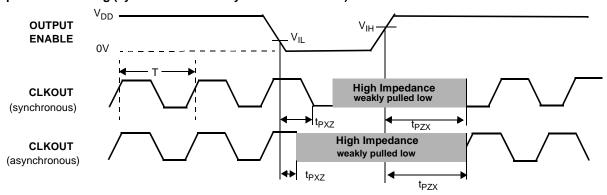

Notes:

^{2.} The jitter spec might be adjusted after the first silicon characterization.

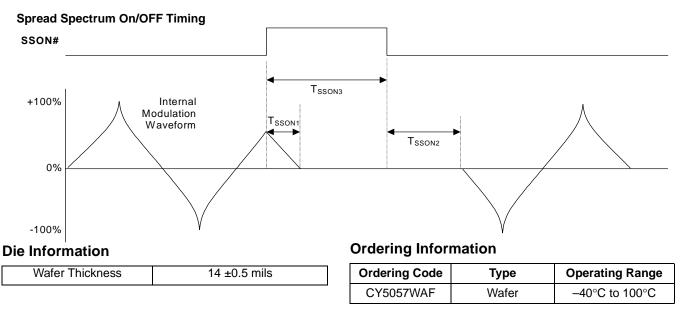


Switching Waveforms


Duty Cycle Timing (dc)


Output Rise/Fall Time

Power-down Timing (synchronous and asynchronous modes) and Power-up Timing



Output Enable Timing (synchronous and asynchronous modes)

Switching Waveforms (continued)

All product and company names mentioned in this document are the trademarks of their respective holders.

Document Title: CY5057 High-frequency Flash Programmable PLL Die with Spread Spectrum Document Number: 38-07363					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	112486	05/01/02	CKN	New Data Sheet	