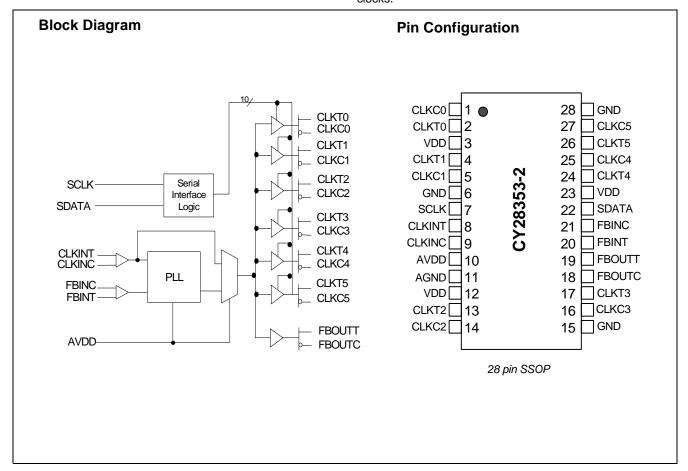


Differential Clock Buffer/Driver

Features

- . Phase-locked loop (PLL) clock distribution for double data rate synchronous DRAM applications
- Distributes one differential clock input to six differential outputs
- · External feedback pins (FBINT, FBINC) are used to synchronize the outputs to the clock input
- · Conforms to the DDRI specification
- Spread Aware for electromagnetic interference (EMI) reduction
- 28-pin SSOP package


Description

This PLL clock buffer is designed for 2.5 V_{DD} and 2.5 AV_{DD} operation and differential data input and output levels.

This device is a zero delay buffer that distributes a differential clock input pair (CLKINT, CLKINC) to six differential pairs of clock outputs (CLKT[0:5], CLKC[0:5]) and one differential pair feedback clock outputs (FBOUTT, FBOUTC). The clock outputs are controlled by the input clocks (CLKINT, CLKINC) and the feedback clocks (FBINT, FBINC).

The two-line serial bus can set each output clock pair (CLKT[0:5], CLKC[0:5]) to the Hi-Z state. When AVDD is grounded, the PLL is turned off and bypassed for test purposes.

The PLL in this device uses the input clocks (CLKINT, CLKINC) and the feedback clocks (FBINT, FBINC) to provide high-performance, low-skew, low-jitter output differential clocks.

Pin Description [1]

Pin Number	Pin Name	I/O	Pin Description	Electrical Characteristics
8	CLKINT	I	Complementary Clock Input.	LV Differential Input
9	CLKINC	I	Complementary Clock Input.	
21	FBINC	I	Feedback Clock Input. Connect to FBOUTC for accessing the PLL.	Differential Input
20	FBINT	I	Feedback Clock Input. Connect to FBOUTT for accessing the PLL.	
2,4,13,17,24,26	CLKT(0:5)	0	Clock Outputs.	Differential Outputs
1,5,14,16,25,27	CLKC(0:5)	0	Clock Outputs.	
19	FBOUTT	0	Feedback Clock Output. Connect to FBINT for normal operation. A bypass delay capacitor at this output will control Input Reference/ Output Clocks phase relationships.	Differential Output
18	FBOUTC	0	Feedback Clock Output. Connect to FBINC for normal operation. A bypass delay capacitor at this output will control Input Reference/Output Clocks phase relationships.	
7	SCLK	I, PU	Serial Clock Input. Clocks data at SDATA into the internal register.	Data Input for the two-line serial bus
22	SDATA	I/O, PU	Serial Data Input. Input data is clocked to the internal register to enable/disable individual outputs. This provides flexibility in power management.	Data Input and Output for the two-line serial bus
3,12,23	VDD		2.5V Power Supply for Logic.	2.5V Nominal
10	AVDD		2.5V Power Supply for PLL.	2.5V Nominal
6,15,28	GND		Ground.	
11	AGND		Analog Ground for PLL.	

Note:

A bypass capacitor (0.1µF) should be placed as close as possible to each positive power pin (< 0.2"). If these bypass capacitors are not close to the pins their high-frequency filtering characteristic will be cancelled by the lead inductance of the traces.

Maximum Ratings

Input Voltage Relative to V _{SS} :	V _{SS} – 0.3V
Input Voltage Relative to $V_{\mbox{\scriptsize DDQ}}$ or	AV_{DD} : $V_{DD} + 0.3V$
Storage Temperature:	65°C to +150°C
Operating Temperature:	0°C to +85°C
Maximum Power Supply:	3.5V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range:

 $V_{SS} < (V_{IN} \text{ or } V_{OUT}) < V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Parameters $V_{DDA} = V_{DDQ} = 2.5V + 5\%$, $T_A = 0$ °C to +70°C^[2]

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
VIL	Input Low Voltage	SDATA, SCLK			1.0	V
VIH	Input High Voltage		2.2			V
VID	Differential Input Voltage ^[3]	CLKINT, FBINT	0.35		V _{DDQ} + 0.6	V
VIX	Differential Input Crossing Voltage ^[4]	CLKINT, FBINT	$(V_{DDQ}/2) - 0.2$	V _{DDQ} /2	$(V_{DDQ}/2) + 0.2$	V
IIN	Input Current	V _{IN} = 0V or V _{IN} = V _{DDQ} , CLKINT, FBINT	-10		10	μΑ
IOL	Output Low Current	$V_{DDQ} = 2.375V, V_{OUT} = 1.2V$	26	35		mA
IOH	Output High Current	V _{DDQ} = 2.375V, V _{OUT} =1V	-18	-32		mA
VOL	Output Low Voltage	$V_{DDQ} = 2.375V, I_{OL} = 12 \text{ mA}$			0.6	V
VOH	Output High Voltage	$V_{\rm DDQ} = 2.375 \text{V}, I_{\rm OH} = -12 \text{ mA}$	1.7			V
VOUT	Output Voltage Swing[5]		1.1		V _{DDQ} – 0.4	V
VOC	Output Crossing Voltage ^[6]		$(V_{DDQ}/2) - 0.2$	V _{DDQ} /2	$(V_{DDQ}/2) + 0.2$	V
IOZ	High-impedance Output Current	$V_O = GND \text{ or } V_O = V_{DDQ}$	-10		10	μA
IDDQ	Dynamic Supply Current ^[7]	All V_{DDQ} and V_{DDI} , $F_{O} = 170$ MHz		235	300	mA
IDSTAT	Static Supply Current				1	mA
IDD	PLL Supply Current	V _{DDA} only		9	12	mA
Cin	Input Pin Capacitance			4	6	pF

AC Parameters $V_{DD} = V_{DDQ} = 2.5V \pm 5\%$, $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}^{[8,9]}$

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
fCLK	Operating Clock Frequency	AV_{DD} , $V_{DD} = 2.5V \pm 0.2V$	60		170	MHz
tDC	Input Clock Duty Cycle		40		60	%
tlock	Maximum PLL lock Time				100	μs
Tr / Tf	Output Clocks Slew Rate	20% to 80% of V _{OD}	1		2.5	V/ns
tpZL, tpZH	Output Enable Time ^[10] (all outputs)			3		ns
tpLZ, tpHZ	Output Disable Time ^[10] (all outputs)			3		ns

Notes:

- Unused inputs must be held HIGH or LOW to prevent them from floating.

 Differential input signal voltage specifies the differential voltage |VTR VCP| required for switching, where VTR is the true input level and VCP is the Differential rollage specifies the differential voltage |VR| = VCP| required to switching, where VR is the true input level complementary input level. Differential cross-point input voltage is expected to track VDDQ and is the voltage at which the differential signals must be crossing. For load conditions see Figure 7. The value of VOC is expected to be |VR| + VCP|/2. In case of each clock directly terminated by a 120 Ω resistor. See Figure 7. All outputs switching loaded with 16 pF in 60 Ω environment. See Figure 7. Parameters are guaranteed by design and characterization. Not 100% tested in production

- PLL is capable of meeting the specified parameters while supporting SSC synthesizers with modulation frequency between 30kHz and 33.3kHz with a down spread of -0.5%
- 10. Refers to transition of non-inverting output

AC Parameters $V_{DD} = V_{DDQ} = 2.5V \pm 5\%$, $T_A = 0$ °C to +70°C^[8,9]

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
tCCJ	Cycle to Cycle Jitter	f > 66 MHz	-100		100	ps
tjit(h-per)	Half-period jitter ^[12]	f > 66 MHz	-100		100	ps
tPLH	Low-to-High Propagation Delay, CLKINT to CLKT[0:5]		1.5	3.5	6	ns
tPHL	High-to-Low Propagation Delay, CLKINT to CLKT[0:5]		1.5	3.5	6	ns
tSKEW	Any Output to Any Output Skew ^[11]				100	ps
tPHASE	Phase Error ^[11]		-150		150	ps
tPHASEJ	Phase Error Jitter	f > 66MHz	-50		50	ps

Zero Delay Buffer

When used as a zero delay buffer the CY28353-2 will likely be in a nested clock tree application. For these applications the CY28353-2 offers a differential clock input pair as a PLL reference. The CY28353-2 then can lock onto the reference and translate with near zero delay to low skew outputs. For normal operation, the external feedback input, FBINT, is connected to the feedback output, FBOUTT. By connecting the feedback output to the feedback input the propagation delay through the device is eliminated. The PLL works to align the output edge with the input reference edge thus producing a near zero delay. The reference frequency affects the static phase offset of the PLL and thus the relative delay between the inputs and outputs.

When VDDA is strapped low, the PLL is turned off and bypassed for test purposes.

Power Management

The individual output enable/disable control of the CY28353-2 allows the user to implement unique power management schemes into the design. Outputs are tri-stated when disabled through the two-line interface as individual bits are set low in Byte0 and Byte1 registers. The feedback output pair (FBOUTT, FBOUTC) cannot be disabled via two line serial bus. The enabling and disabling of individual outputs is done in such a manner as to eliminate the possibility of partial "runt" clocks.

Serial Control Registers

Following the acknowledge of the Address Byte, two additional bytes must be sent:

- · Command Code byte
- · Byte Count byte.

Function Table

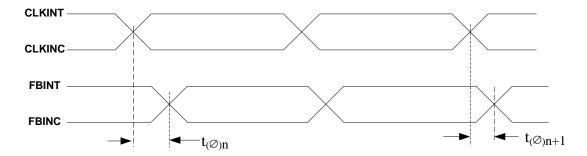
	Inputs		Outputs				PLL	
VDDA	CLKINT	CLKINC	CLKT(0:5) ^[13]	CLKC(0:5) ^[13]	FBOUTT	FBOUTC	1 1 2	
GND	L	Н	L	Н	L	Н	BYPASSED/OFF	
GND	Н	L	Н	L	Н	L	BYPASSED/OFF	
2.5V	L	Н	L	Н	L	Н	On	
2.5V	Н	L	Н	L	Н	L	On	
2.5V	< 20 MHz	< 20 MHz	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Off	

Byte0: Output Register (1 = Enable, 0 = Disable)

Bit	@Pup	Pin#	Description
7	1	2, 1	CLKT0, CLKC0
6	1	4, 5	CLKT1, CLKC1
5	1	_	Reserved
4	1	_	Reserved
3	1	13, 14	CLKT2, CLKC2
2	1	26, 27	CLKT5, CLKC5
1	1	_	Reserved
0	1	24, 25	CLKT4, CLKC4

Notes:

- 11. All differential input and output terminals are terminated with $120\Omega/16$ pF, as shown in Figure 7.
- Period Jitter and Half-period Jitter specifications are separate specifications that must be met independently of each other.
 Each output pair can be three-stated via the two-line serial interface.


Byte1: Output Register (1 = Enable, 0 = Disable)

Bit	@Pup	Pin#	Description
7	1	_	Reserved
6	1	17, 16	CLKT3, CLKC3
5	0	_	Reserved
4	0	_	Reserved
3	0	_	Reserved
2	0	_	Reserved
1	0	_	Reserved
0	0	_	Reserved

Byte2: Test Register 3

Bit	@Pup	Pin#	Description
7	1	-	0 = PLL leakage test, 1 = disable test
6	1	_	Reserved
5	1	_	Reserved
4	1	_	Reserved
3	1	_	Reserved
2	1	_	Reserved
1	1	-	Reserved
0	1	_	Reserved

Differential Parameter Measurement Information

$$t_{(\varnothing)n} = \frac{\sum_{1}^{n=N} t_{(\varnothing)n}}{t_{(\varnothing)n}}$$
 (N is large number of samples)

Figure 1. Static Phase Offset

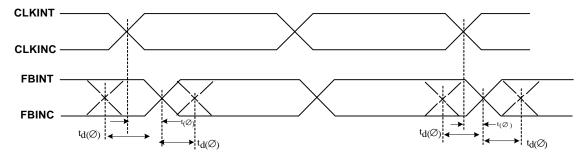


Figure 2. Dynamic Phase Offset

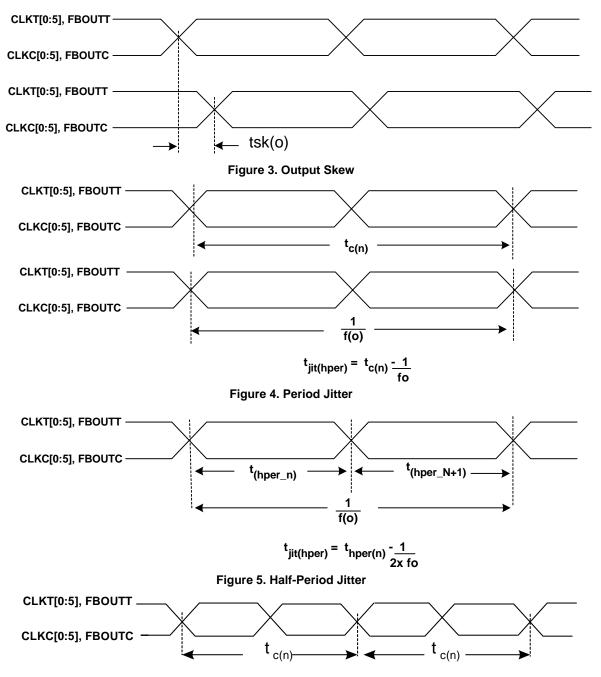
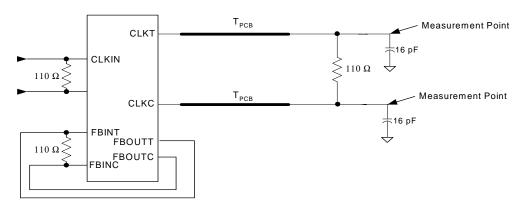
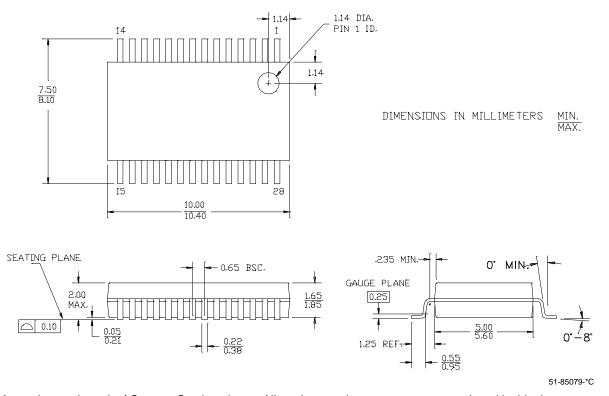


Figure 6. Cycle-to-Cycle Jitter

 $t_{\text{jit(cc)}} = t_{\text{c(n)}} - t_{\text{c(n+1)}}$




Figure 7. Differential Signal Using Direct Termination Resistor

Ordering Information

Part Number	Package Type	Product Flow
CY28353OC-2	28-pin SSOP	Commercial, 0° to 70°C
CY28353OC-2	28-pin SSOP-Tape and Reel	Commercial, 0° to 70°C

Package Diagram

28-lead (5.3 mm) Shrunk Small Outline Package O28

Spread Aware is a trademark of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-07372 Rev. ** Page 7 of 8

Document Title: CY28353-2 Differential Clock Buffer/Driver Document Number: 38-07372					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	112788	05/07/02	DMG	New Data Sheet	