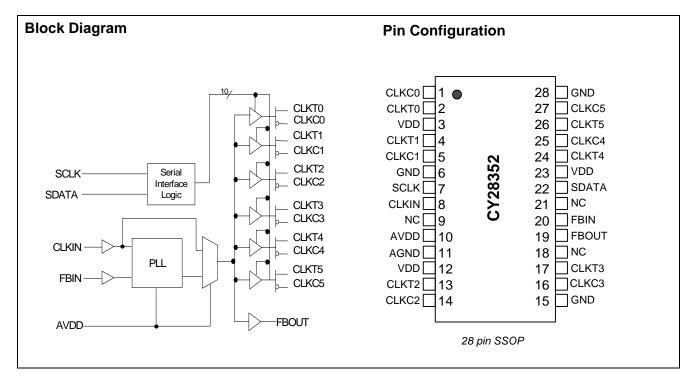


Differential Clock Buffer/Driver

Features

- Phase-locked loop (PLL) clock distribution for double data rate synchronous DRAM applications
- Distributes one clock input to six differential outputs
- External feedback pin FBIN is used to synchronize output to clock input
- Conforms to DDRI specification
- Spread Aware™ for electromagnetic interference (EMI) reduction
- 28-pin SSOP package


Description

This PLL clock buffer is designed for 2.5-V_{DD} and 2.5-AV_{DD} operation and differential output levels.

This device is a zero delay buffer that distributes a clock input CLKIN to six differential pairs of clock outputs (CLKT[0:5], CLKC[0:5]) and one feedback clock output FBOUT. The clock outputs are controlled by the input clock CLKIN and the feedback clock FBIN.

The two-line serial bus can set each output clock pair (CLKT[0:5], CLKC[0:5]) to the Hi-Z state. When AV_{DD} is grounded, the PLL is turned off and bypassed for test purposes.

The PLL in this device uses the input clock CLKIN and the feedback clock FBIN to provide high-performance, low-skew, low-jitter output differential clocks.

Pin Description^[1]

Pin Number	Pin Name	I/O	Pin Description	Electrical Characteristics	
8	CLKIN	Ι	Complementary Clock Input.	Input	
20	FBIN	Ι	Feedback Clock Input. Connect to FBOUT for accessing the PLL.	Input	
2,4,13,17,24, 26	CLKT(0:5)	0	Clock Outputs	Differential Outputs	
1,5,14,16,25, 27	CLKC(0:5)	0	Clock Outputs	Differential Outputs	
19	FBOUT	0	Feedback Clock Output . Connect to FBIN for normal operation. A bypass delay capacitor at this output will control Input Reference/Output Clocks phase relationships.	Output	
7	SCLK	Ι	Serial Clock Input. Clocks data at SDATA into the internal register.	Data Input for the two line serial bus	
22	SDATA	I/O	Serial Data Input . Input data is clocked to the internal register to enable/disable individual outputs. This provides flexibility in power management.	Data Input and Output for the two line serial bus	
3,12,23	VDD		2.5V Power Supply for Logic	2.5V Nominal	
10	AVDD		2.5V Power Supply for PLL	2.5V Nominal	
6,15,28	GND		Ground		
11	AGND		Analog Ground for PLL		
9, 18, 21	NC		Not Connected		

Note:

A bypass capacitor (0.1μF) should be placed as close as possible to each positive power pin (< 0.2"). If these bypass capacitors are not close to the pins, their high-frequency filtering characteristic will be cancelled by the lead inductance of the traces.

Maximum Ratings

Input Voltage Relative to V _{SS} :	V _{SS} – 0.3V
Input Voltage Relative to VDDQ or AV _{DD} :	V _{DD} + 0.3V
Storage Temperature:	–65°C to + 150°C
Operating Temperature:	0°C to +70°C
Maximum Power Supply:	3.5V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range:

 $V_{SS} < (V_{IN} \text{ or } V_{OUT}) < V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (either V_{SS} or V_{DD}).

DC Parameters $V_{DDA} = V_{DDQ} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C^{[22]}$

Parameter	Description Condition		Min.	Тур.	Max.	Unit	
VIL	Input Low Voltage	oltage SDATA , SCLK			1.0	V	
VIH	Input High Voltage	SDATA , SCLK	2.2			V	
VIL	Input Voltage Low	CLKIN, FBIN			0.4	V	
VIH	Input Voltage High	CLKIN, FBIN	2.1			V	
IIN	Input Current	$V_{IN} = 0V \text{ or } V_{IN} = V_{DDQ}, CLKIN, FBIN$	-10		10	μΑ	
IOL	Output Low Current	V _{DDQ} = 2.375V, V _{OUT} = 1.2V	26	35		mA	
IOH	Output High Current	V _{DDQ} = 2.375V, V _{OUT} = 1V	–18	-32		mA	
VOL	Output Low Voltage	V _{DDQ} = 2.375V, I _{OL} = 12 mA			0.6	V	
VOH	Output High Voltage	$V_{DDQ} = 2.375V, I_{OH} = -12 \text{ mA}$	1.7			V	
VOUT	Output Voltage Swing ^[3]		1.1		V _{DDQ} - 0.4	V	
VOC	Output Crossing Voltage ^[4]		(V _{DDQ} /2) – 0.2	V _{DDQ} /2	(V _{DDQ} /2) + 0.2	V	
IOZ	High-Impedance Output Current	$V_{O} = GND \text{ or } V_{O} = V_{DDQ}$	-10		10	μΑ	
IDDQ	Dynamic Supply Current ^[5]	All V _{DDQ} and V _{DDI} , FO = 170 MHz		235	300	mA	
IDSTAT	Static Supply Current				1	mA	
IDD	PLL Supply Current	V _{DDA} only		9	12	mA	
Cin	Input Pin Capacitance			4	6	pF	

Notes:

Unused inputs must be held HIGH or LOW to prevent them from floating.

2. 3. 4.

For load conditions, see Figure 7. The value of V_{OC} is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120 Ω resistor. See Figure 7. All outputs switching loaded with 16 pF in 60 Ω environment. See Figure 7

5.

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
fCLK	Operating Clock Frequency		60		170	MHz
tDC	Input Clock Duty Cycle		40		60	%
tlock	Maximum PLL lock Time				100	μs
Tr / Tf	Output Clocks Slew Rate	20% to 80% of V _{OD}	1		2.5	V/ns
tpZL, tpZH	Output Enable Time ^[8] (all outputs)			3		ns
tpLZ, tpHZ	Output Disable Time ^[8] (all outputs)			3		ns
tCCJ	Cycle-to-Cycle Jitter ^[10]	f > 66 MHz	-100		100	ps
tjit(h-per)	Half-period jitter ^[10]	f > 66 MHz	-100		100	ps
tPLH	LOW-to-HIGH Propagation Delay, CLKIN to CLKT[0:5]		1.5	3.5	6	ns
tPHL	HIGH-to-LOW Propagation Delay, CLKIN to CLKT[0:5]		1.5	3.5	6	ns
tSKEW	Any Output to Any Output Skew ^[9]				100	ps
tPHASE	Phase Error ^[9]		-150	1	150	ps
tPHASEJ	Phase Error Jitter	f > 66 MHz	-50		50	ps

AC Parameters $V_{DD} = V_{DDQ} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C^{[6, 7]}$

Zero Delay Buffer

When used as a zero delay buffer the CY28352 will likely be in a nested clock tree application. For these applications the CY28352 offers a clock input as a PLL reference. The CY28352 can then lock onto the reference and translate with near zero delay to low-skew outputs. For normal operation, the external feedback input, FBIN, is connected to the feedback output, FBOUT. By connecting the feedback output to the feedback input the propagation delay through the device is eliminated. The PLL works to align the output edge with the input reference edge thus producing a near zero delay. The reference frequency affects the static phase offset of the PLL and thus the relative delay between the inputs and outputs.

When $\mathsf{V}_{\mathsf{DDA}}$ is strapped LOW, the PLL is turned off and bypassed for test purposes.

Power Management

The individual output enable/disable control of the CY28352 allows the user to implement unique power management schemes into the design. Outputs are three-stated when disabled through the two-line interface as individual bits are set low in Byte0 and Byte1 registers. The feedback output FBOUT cannot be disabled via two line serial bus. The enabling and disabling of individual outputs is done in such a manner as to eliminate the possibility of partial "runt" clocks.

Function Table

Inp	Inputs		Outputs	PLL	
VDDA	CLKIN	CLKT(0:5) ^[1111]	CLKC(0:5) ^[1111]	FBOUT	
GND	L	L	Н	L	BYPASSED/OFF
GND	Н	Н	L	Н	BYPASSED/OFF
2.5V	L	L	Н	L	On
2.5V	Н	Н	L	Н	On
2.5V	<20MHz	Hi-Z	Hi-Z	Hi-Z	Off

Notes:

Parameters are guaranteed by design and characterization. Not 100% tested in production. PLL is capable of meeting the specified parameters while supporting SSC synthesizers with modulation frequency between 30 kHz and 33.3 kHz, with a down spread of -0.5%.

8.

Refers to transition of non-inverting output. All differential input and output terminals are terminated with $120\Omega/16$ pF as shown in *Figure 7*. Period Jitter and Half-Period Jitter specifications are separate, and must be met independently of each other. 10.

Each output pair can be three-stated via the two-line serial interface.

a

Serial Control Registers

Following the acknowledge of the Address Byte, two additional bytes must be sent:

- Command Code byte
- Byte Count byte.

<u>Byte0</u>: Output Register1 (1 = Enable, 0 = Disable)

Bit	@Pup	Pin#	Description
7	1	2, 1	CLKT0, CLKC0
6	1	4, 5	CLKT1, CLKC1
5	1	-	Reserved
4	1	-	Reserved
3	1	13, 14	CLKT2, CLKC2
2	1	26, 27	CLKT5, CLKC5
1	1	-	Reserved
0	1	24, 25	CLKT4, CLKC4

<u>Byte1</u>: Output Register 2 (1 = Enable, 0 = Disable)

Bit	@Pup	Pin#	Description
7	1	_	Reserved
6	1	17, 16	CLKT3, CLKC3
5	0	_	Reserved
4	0	_	Reserved
3	0	-	Reserved
2	0	_	Reserved
1	0	-	Reserved
0	0	_	Reserved

Byte2: Test Register 3

Bit	@Pup	Pin#	Description
7	1	-	0 = PLL leakage test, 1 = disable test
6	1	-	Reserved
5	0	-	Reserved
4	0	-	Reserved
3	0	-	Reserved
2	0	-	Reserved
1	0	-	Reserved
0	0	_	Reserved

Parameter Measurement Information

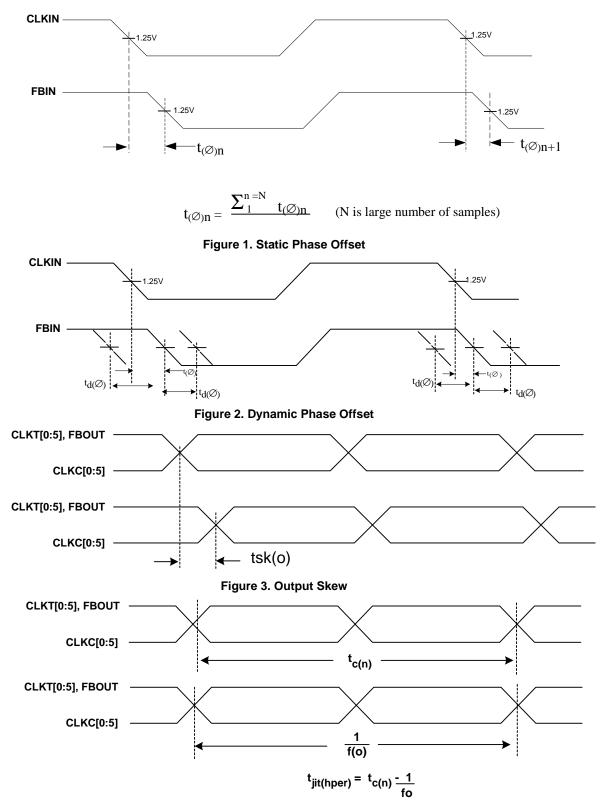
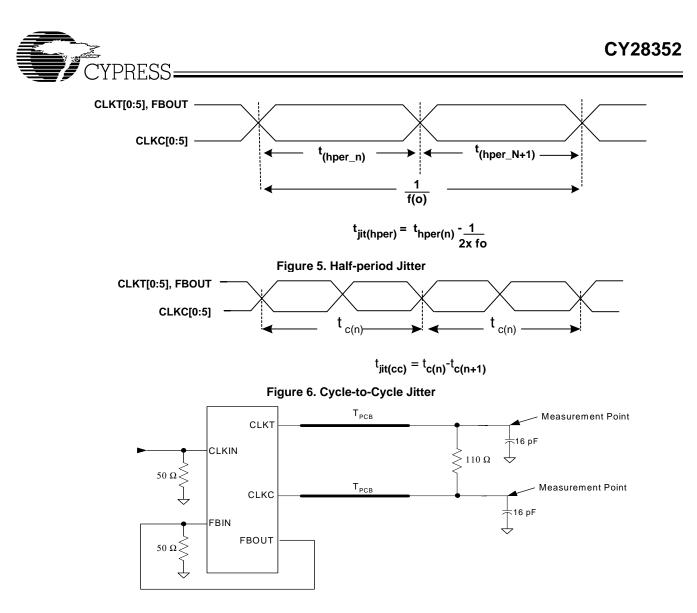
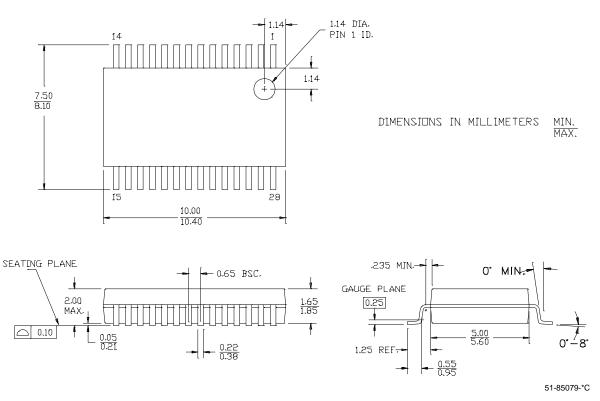


Figure 4. Period Jitter




Figure 7. Differential Signal Using Direct Termination Resistor

Ordering Information

Part Number	Package Type	Product Flow
CY28352OC	28-pin SSOP	Commercial, 0° to 70°C
CY28352OCT	28-pin SSOP–Tape and Reel	Commercial, 0° to 70°C

Package Drawing and Dimensions

28-lead (5.3 mm) Shrunk Small Outline Package O28

Spread Aware is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor products not adultorize to convey or imply any license under patent or other rights. Cypress Semiconductor des not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY28352 Differential Clock Buffer/Driver Document Number: 38-07371

REV.	ECN No.	Issue Date	Orig. of Change	Description of Change		
**	112787	05/08/02	DMG	New Data Sheet		