

133-MHz Spread Spectrum Clock Synthesizer with Differential CPU Outputs

Features	Benefits
Compliant with Intel [®] CK-Titan and CK-408 clock synthesizer/driver specifications	Supports next generation Pentium® processors using differential clock drivers
Multiple output clocks at different frequencies	Motherboard clock generator
— Two pairs of differential CPU outputs, up to 200 MHz	 Support multiple CPUs and a chipset
-Nine synchronous PCI clocks, three free-running	—Support for PCI slots and chipset
—Six 3V66 clocks	— Supports AGP, DRCG reference, and Hub Link
— Two 48-MHz clocks	 Supports USB host and graphic controllers
— One reference clock at 14.318 MHz	— Supports ISA slots and I/O chip
— One VCH clock	
Spread Spectrum clocking (down spread)	Enables reduction of EMI and overall system cost
Power-down features (PCI_STOP#, CPU_STOP# PWR_DWN#)	Enables ACPI-compliant designs
Two select inputs (Mode select & IC Frequency Select)	Supports up to four CPU clock frequencies
48-pin TSSOP package	Widely available, standard package enables lower cost

Pin Summary

Pin Name	Pin Number	Pin Description
REF0	47	3.3V 14.318-MHz clock output
XTAL_IN	1	14.318-MHz crystal input
XTAL_OUT	2	14.318-MHz crystal input
CPU, CPU# [1:2]	43, 39, 42, 38	Differential CPU clock outputs
3V66_0	29	3.3V 66-MHz clock output
3V66_1/VCH	31	3.3V selectable through SMBus to be 66 MHz or 48 MHz
66IN/3V66_5	20	66-MHz input to buffered 66BUFF and PCI or 66-MHz clock from internal VCO
66BUFF [2:0] /3V66 [4:2]	17, 18, 19	66-MHz buffered outputs from 66Input or 66-MHz clocks from internal VCO
PCI_F [0:2]	4, 5, 6	33 MHz clocks divided down from 66Input or divided down from 3V66
PCI [0:5]	8, 9, 10, 12, 13, 14	PCI clock outputs divided down from 66Input or divided down from 3V66
USB	35	Fixed 48-MHz clock output
DOT	34	Fixed 48-MHz clock output
S2	36	Special 3.3V 3-level input for Mode selection
S1	46	3.3V LVTTL inputs for CPU frequency selection
IREF	37	A precision resistor is attached to this pin which is connected to the internal current reference
PWR_DWN#	21	3.3V LVTTL input for Power_Down# (active LOW)
PCI_STOP#	30	3.3V LVTTL input for PCI_STOP# (active LOW)
CPU_STOP#	45	3.3V LVTTL input for CPU_STOP# (active LOW)
PWRGD#	24	3.3V LVTTL input is a level sensitive strobe used to determine when S[2:1] inputs are valid and OK to be sampled (Active LOW). Once PWRGD# is sampled LOW, the status of this output will be ignored.
SDATA	25	SMBus compatible SDATA
SCLK	26	SMBus compatible Sclk
VDD_PCI, VDD_3V66, VDD_CPU,VDD_REF	11, 15, 28, 40, 44, 48	3.3V power supply for outputs
VDD_48 MHz	33	3.3V power supply for 48 MHz
VDD_CORE	22	3.3V power supply for PLL
GND_REF, GND_PCI, GND_3V66, GND_IREF, GND_CPU	3, 7, 16, 27, 32, 41	Ground for outputs
GND_CORE	23	Ground for PLL

Function Table^[1]

S2	S 1	CPU (MHz)	3V66[0:1] (MHz)	66BUFF[0:2]/3 V66[2:4] (MHz)	66IN/3V66_5 (MHz)	PCI_F/PCI (MHz)	REF0(MHz)	USB/DOT (MHz)	Notes
1	0	100 MHz	66 MHz	66IN	66 MHz Input	66IN/2	14.318 MHz	48 MHz	2, 3, 4
1	1	133 MHz	66 MHz	66IN	66 MHz Input	66IN/2	14.318 MHz	48 MHz	2, 3, 4
0	0	100 MHz	66 MHz	66 MHz	66 MHz	33 MHz	14.318 MHz	48 MHz	2, 3, 4
0	1	133 MHz	66 MHz	66 MHz	66 MHz	33 MHz	14.318 MHz	48 MHz	2, 3, 4
Mid	0	TCLK/2	TCLK/4	TCLK/4	TCLK/4	TCLK/8	TCLK	TCLK/2	7, 8, 5
Mid	1	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	_

Notes:

- TCLK is a test clock driven in on the XTALIN input in test mode.
 "Normal" mode of operation
 Range of reference frequency allowed is min. = 14.316 nominal = 14.31818 MHz, max = 14.32 MHz.
 Frequency accuracy of 48 MHz must be +167 PPM to match USB default.
 Mid is defined a voltage level between 1.0V and 1.8V for 3 level input functionality. Low is below 0.8V. High is above 2.0V.
 Required for DC output impedance verification.
 These modes are to use the same internal dividers as the CPU = 200-MHz mode. The only change is to slow down the internal VCO to allow under clock margining.
 All parameters specified with loaded outputs.

Document #: 38-07145 Rev. *A

Clock Driver Impedances

Buffer	V _{DD} Range	Buffer Type	Min. Ω	Typ. Ω	Max. Ω
CPU, CPU#		Type X1		50	
REF	3.135–3.465	Type 3	20	40	60
PCI, 3V66, 66BUFF	3.135-3.465	Type 5	12	30	55
USB	3.135-3.465	Type 3A	12	30	55
DOT	3.135-3.465	Type 3B	12	30	55

Clock Enable Configuration

PWR_DWN#	CPU_STOP#	PCI_STOP#	CPU	CPU#	3V66	66BUFF	PCI_F	PCI	USB/DOT	VCOS/ OSC
0	Х	Х	IREF*2	FLOAT	LOW	LOW	LOW	LOW	LOW	OFF
1	0	0	IREF*2	FLOAT	ON	ON	ON	OFF	ON	ON
1	0	1	IREF*2	FLOAT	ON	ON	ON	ON	ON	ON
1	1	0	ON	ON	ON	ON	ON	OFF	ON	ON
1	1	1	ON	ON	ON	ON	ON	ON	ON	ON

Serial Data Interface (SMBus)

To enhance the flexibility and function of the clock synthesizer, a two signal SMBus interface is provided according to SMBus specification. Through the Serial Data Interface, various device functions such as individual clock output buffers, can be individually enabled or disabled. CY28322-2 supports both block read and block write operations.

The registers associated with the Serial Data Interface initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts only block writes from the controller. The bytes must be accessed in sequential order from lowest to highest byte, (most significant bit first) with the ability to stop after any complete byte has been transferred. Indexed bytes are not allowed.

A block write begins with a slave address and a WRITE condition. The R/W bit is used by the SMBus controller as a data direction bit. A zero indicates a WRITE condition to the clock device. The slave receiver address is 11010010 (D2h).

A command code of 0000 0000 (00h) and the byte count bytes are required for any transfer. After the command code, the core logic issues a byte count which describes number of additional bytes required for the transfer, not including the command code and byte count bytes. For example, if the host has 20 data bytes to send, the first byte would be the number 20 (14h), followed by the 20 bytes of data. The byte count byte is required to be a minimum of 1 byte and a maximum of 32 bytes It may not be 0. *Figure 1* shows an example of a block write.

A transfer is considered valid after the acknowledge bit corresponding to the byte count is read by the controller.

Start Bit	Slave Address 1 1 0 1 0 0 1 0		A	Command Code 0 0 0 0 0 0 0 0	A	Byte Count = N	Α	Data Byte 0	Α	 Data Byte N-1	A	Stop Bit
1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit

From Master to Slave
From Slave to Master

Figure 1. An Example of a Block Write

Document #: 38-07145 Rev. *A Page 3 of 17

Data Byte Configuration Map

Data Byte 0: Control Register (0 = Enable, 1 = Disable)

Bit	Affected Pin#	Name	Description	Туре	Power-on Default
Bit 7	4, 5, 6, 10, 11, 12, 13, 16, 17, 18, 33, 35	PCI [0:6] CPU[2:1] 3V66[1:0]	Spread Spectrum Enable 0 = Spread Off, 1 = Spread On	R/W	0
Bit 6	-	TBD	TBD	R	0
Bit 5	31	3V66_1/VCH	VCH Select 66 MHz/48 MHz 0 = 66 MHz, 1 = 48 MHz	R/W	0
Bit 4	39, 43, 38, 42	CPU [2:1] CPU# [2:1]	CPU_STOP# Reflects the current value of the external CPU_STOP# pin	R	N/A
Bit 3	8, 9, 10, 11, 12, 13, 14,	PCI [5:0]	PCI_STOP# (Does not affect PCI_F [2:0] pins)	R/W	N/A
Bit 2	_	_	S2–Reflects the value of the S2 pin sampled on power-up	R	N/A
Bit 1	_	_	S1-Reflects the value of the S1 pin sampled on power-up	R	N/A
Bit 0	_	_	Reserved	R	1

Data Byte 1

Bit	Pin#	Name	Description	Туре	Power-on Default
Bit 7	_	N/A	CPU Mult0 Value	R	N/A
Bit 6	43,39,	CPU1:2	Three-state CPU1:2 during power-down 0 = Normal; 1 = Three-stated	R/W	0
Bit 5	38, 39	CPU2 CPU2#	Allow Control of CPU2 with assertion of CPU_STOP# 0 = Not free running; 1 = Free running	R/W	0
Bit 4	42, 43	CPU1 CPU1#	Allow Control of CPU1 with assertion of CPU_STOP# 0 = Not free running;1 = Free running	R/W	0
Bit 3	_	Reserved	Reserved	R/W	0
Bit 2	38, 39	CPU2 CPU2#	CPU2 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 1	42, 43	CPU1 CPU1#	CPU1Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 0	_	Reserved	Reserved	R/W	1

Data Byte 2

Bit	Pin#	Name	Pin Description	Туре	Power-on Default
Bit 7		N/A	N/A	R	0
Bit 6	14	PCI5	PCI5 Output Enable 1 = Enabled, 0 = Disabled	R/W	1
Bit 5	13	PCI4	PCI4 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 4	12	PCI3	PCI3 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 3	10	PCI2	PCI2Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 2	9	PCI1	PCI1 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 1	8	PCI0	PCI0 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 0		Reserved	Write to"0"	R/W	1

Document #: 38-07145 Rev. *A

Data Byte 3

Bit	Pin#	Name	Pin Description	Туре	Power-on Default
Bit 7	34	DOT	DOT 48-MHz Output Enable	R/W	1
Bit 6	35	USB	USB 48-MHz Output Enable	R/W	1
Bit 5	6	PCI_F2	Allow control of PCI_F2 with assertion of PCI_STOP# 0 = Free running; 1 = Stopped with PCI_STOP#	R/W	0
Bit 4	5	PCI_F1	Allow control of PCI_F1 with assertion of PCI_STOP# 0 = Free running; 1 = Stopped with PCI_STOP#	R/W	0
Bit 3	4	PCI_F0	Allow control of PCI_F0 with assertion of PCI_STOP# 0 = Free running; 1 = Stopped with PCI_STOP#	R/W	0
Bit 2	6	PCI_F2	PCI_F2 Output Enable	R/W	1
Bit 1	5	PCI_F1	PCI_F1Output Enable	R/W	1
Bit 0	4	PCI_F0	PCI_F0 Output Enable	R/W	1

Data Byte 4

Bit	Pin#	Name	Pin Description	Туре	Power-on Default
Bit 7	_	TBD	N/A	R	0
Bit 6	_	TBD	N/A	R	0
Bit 5	29	3V66_0	3V66_0 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 4	31	3V66_1/VCH	3V66_1/VCH Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 3	20	66IN/3V66_5	3V66_5 Output Enable 1 = Enable; 0 = Disable Note. This bit should be used when pin 24 is configured as 3v66_5 output. Do not clear this bit when pin 24 is configured as 66lN input.	R/W	1
Bit 2	19	66BUFF2	66-MHz Buffered 2 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 1	18	66BUFF1	66-MHz Buffered 1 Output Enable 1 = Enabled; 0 = Disabled	R/W	1
Bit 0	17	66BUFF0	66-MHz Buffered 0 Output Enable 1 = Enabled; 0 = Disabled	R/W	1

Data Byte 5

Bit	Pin#	Name	Pin Description	Туре	Power-on Default
Bit 7		N/A	N/A	R	0
Bit 6		N/A	N/A	R	0
Bit 5		66BUFF [2:0]	Tpd 66IN to 66BUFF propagation delay control	R/W	0
Bit 4		66BUFF [2:0]		R/W	0
Bit 3		DOT	DOT edge rate control	R/W	0
Bit 2		DOT		R/W	0
Bit 1		USB	USB edge rate control	R/W	0
Bit 0		USB	1	R/W	0

Byte 6: Vendor ID

Bit	Description	Туре	Power-on Default
Bit 7	Revision Code Bit 3	R	0
Bit 6	Revision Code Bit 2	R	0
Bit 5	Revision Code Bit 1	R	0

Byte 6: Vendor ID (continued)

Bit	Description	Туре	Power-on Default
Bit 4	Revision Code Bit 0	R	0
Bit 3	Vendor ID Bit 3	R	1
Bit 2	Vendor ID Bit 2	R	0
Bit 1	Vendor ID Bit 1	R	0
Bit 0	Vendor ID Bit 0	R	0

Maximum Ratings

Supply Voltage-0.5 to +7.0V Input Voltage-0.5V to V_{DD} +0.5

Storage Temperature (Non-condensing)65°C to +150)°C
Max. Soldering Temperature (10 sec) +260)°C
Junction Temperature+150)°C
Package Power Dissipation	1Ω
Static Discharge Voltage)0\/
(per MIL-31D-003, Metriod 3015)> 200	JUV

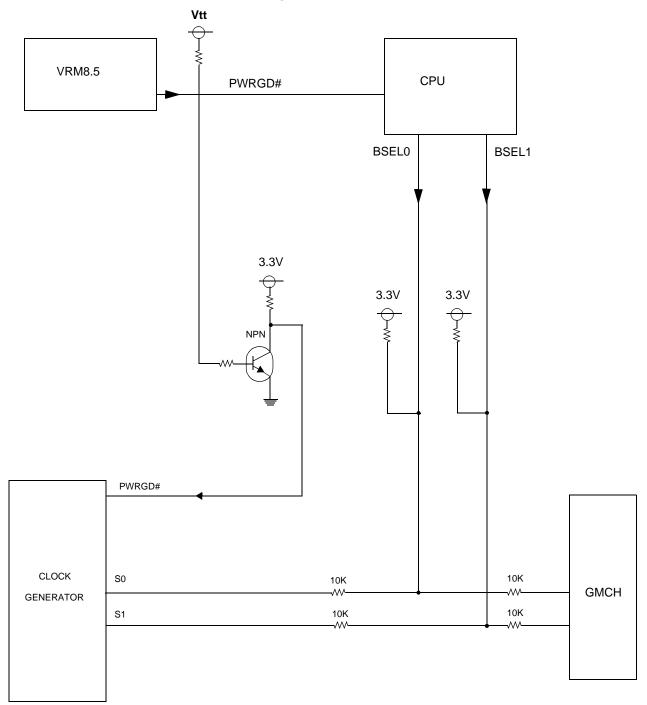
Operating Conditions Over which Electrical Parameters are Guaranteed

Parameter	Description	Min.	Max.	Unit
V _{DD_REF} , V _{DD_PCI} , V _{DD_CORE} , V _{DD_3} , V _{DD_CPU} ,	3.3V Supply Voltages	3.135	3.465	V
V _{DD_48 MHz}	48-MHz Supply Voltage	2.85	3.465	V
T _A	Operating Temperature, Ambient	0	70	°C
C _{in}	Input Pin Capacitance		5	pF
C _{XTAL}	XTAL Pin Capacitance		22.5	pF
CL	Max. Capacitive Load on USBCLK, REF PCICLK, 3V66		20 30	pF
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz

Electrical Characteristics Over the Operating Range

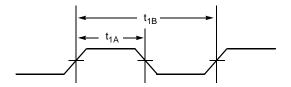
Parameter	Description	Test Conditions		Min.	Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Pads. Threshold voltage for crystal pads = V _{DD} /2		2.0		V
V_{IL}	Low-level Input Voltage	Except Crystal Pads			0.8	V
V _{OH}	High-level Output Voltage	USB, REF, 3V66	$I_{OH} = -1 \text{ mA}$	2.4		V
		PCI	$I_{OH} = -1 \text{ mA}$	2.4		V
V _{OL}	Low-level Output Voltage	USB, REF, 3V66	I _{OL} = 1 mA		0.4	V
		PCI	I _{OL} = 1 mA		0.55	V
I _{IH}	Input High Current	$0 \le V_{IN} \le V_{DD}$		- 5	5	mA
I _{IL}	Input Low Current	$0 \le V_{IN} \le V_{DD}$		- 5	5	mA
I _{OH}	High-level Output Current	CPU	Type X1, V _{OH} = 0.65V	12.9		mA
		For I _{OH} =6*IRef Configuration	Type X1, V _{OH} = 0.74V		14.9	1
		REF, DOT, USB	Type 3, V _{OH} = 1.00V	-29		1
			Type 3, $V_{OH} = 3.135V$		-23	
		3V66, DOT, PCI	Type 5, V _{OH} = 1.00V	-33		1
			Type 5, V _{OH} = 3.135V		-33	1
I _{OL}	Low-level Output Current	REF, DOT, USB	Type 3, V _{OL} = 1.95V	29		mA
			Type 3, V _{OL} = 0.4V		27	1
		3V66, PCI	Type 5, V _{OL} =1.95 V	30		1
			Type 5, $V_{OL} = 0.4V$		38	1
l _{oz}	Output Leakage Current	Three-state			10	mA
I _{DD3}	3.3V Power Supply Current	VDD_CORE/VDD3.3 = 3.465V, F _{CPU} = 13	33 MHz		360	mA
I _{DDPD3}	3.3V Shutdown Current	VDD_CORE/VDD3.3 = 3.465V and @ IREF = 2.32 mA (Byte1, Bit [6] = 0)			25	mA
I _{DDPD3}	3.3V Shutdown Current	VDD_CORE/VDD3.3 = 3.465V and @ IREF = 5.0 mA (Byte1, Bit [6] = 0)			45	mA
I _{DDPD3}	3.3V Shutdown Current	VDD_CORE/VDD3.3 = 3.465V (Byte1, Bit [6] = 1)			1.5	mA

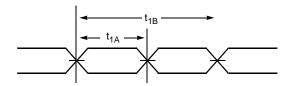
Switching Characteristics^[8] Over the Operating Range


Parameter Output		Description Test Conditions		Min.	Max.	Unit	
t ₁	All	Output Duty Cycle ^[9]	Measured at 1.5V	45	55	%	
t ₃	USB, REF, DOT	Falling Edge Rate	Between 2.4V and 0.4V	0.5	2.0	ns	
t ₃	PCI,3V66	Falling Edge Rate	Between 2.4V and 0.4V	1.0	4.0	V/ns	
t ₅	3V66[0:1]	3V66-3V66 Skew	Measured at 1.5V		500	ps	
t ₅	66BUFF[0:2]	66BUFF-66BUFF Skew	Measured at 1.5V		175	ps	
t ₆	PCI	PCI-PCI Skew	Measured at 1.5V		500	ps	
t ₇	3V66, PCI	3V66-PCI Clock Jitter	3V66 leads. Measured at 1.5V	1.5	3.5	ns	
t ₉	3V66	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_9 = t_{9A} - t_{9B}$		250	ps	
t ₉	USB, DOT	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_9 = t_{9A} - t_{9B}$		350	ps	
t ₉	PCI	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_9 = t_{9A} - t_{9B}$		500	ps	
t ₉	REF	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_9 = t_{9A} - t_{9B}$		1000	ps	
CPU 1.0V S	witching Chara	cteristics		•	•	•	
t ₂	CPU	Rise Time	Measured differential waveform from -0.35V to +0.35V	175	467	ps	
t ₃	CPU	Fall Time	Measured differential waveform from -0.35V to +0.35V	175	467	ps	
t ₄	CPU	CPU-CPU Skew	Measured at Crossover		150	ps	
t ₈	CPU	Cycle-Cycle Clock Jitter	Measured at Crossover $t_8 = t_{8A} - t_{8B}$		150	ps	
	CPU	Rise/Fall Matching	Measured with test loads ^[10]		325	mV	
V _{oh}	CPU	High-level Output Voltage including overshoot	Measured with test loads ^[11]	0.92	1.45	V	
V _{ol}	CPU	Low-level Output Voltage including undershoot	Measured with test loads ^[11]	-0.2	0.35	V	
V _{crossover}	CPU	Crossover Voltage	Measured with test loads ^[11]	0.51	0.76	V	

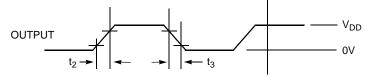
Notes:

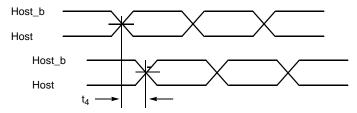
Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DD} = 2.5V, duty cycle is measured at 1.25V.
 Determined as a fraction of 2*(Trp – Trn)/(Trp +Trn) where Trp is a rising edge and Trn is an intersecting falling edge.
 The 1.0V test load is shown on test circuit page.

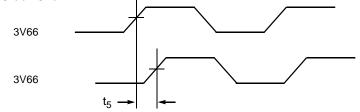

Definition and Application of PWRGD# Signal



Switching Waveforms

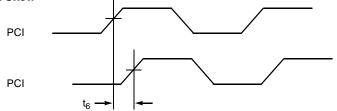

Duty Cycle Timing (Single-ended Output)


Duty Cycle Timing (CPU Differential Output)

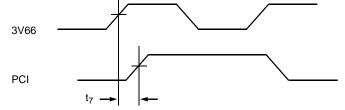

All Outputs Rise/Fall Time

CPU-CPU Clock Skew

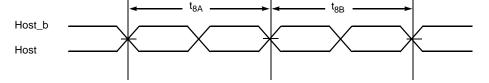
3V66-3V66 Clock Skew

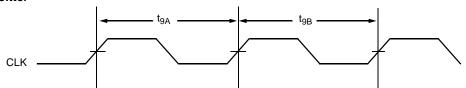


CY28322-2

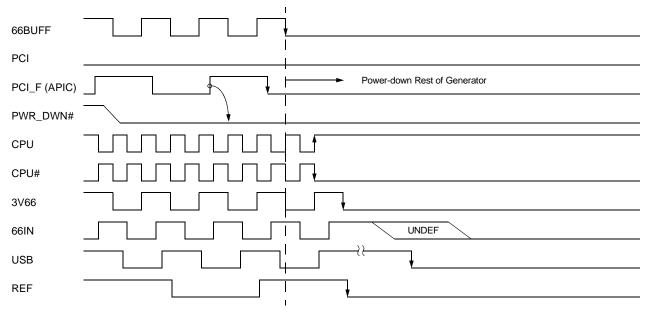


Switching Waveforms (continued)

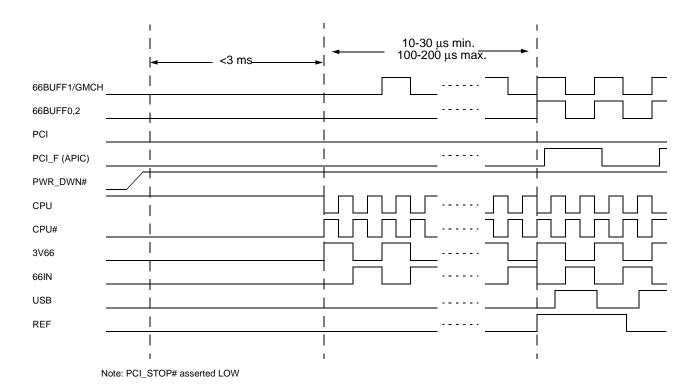

PCI-PCI Clock Skew


3V66-PCI Clock Skew

CPU Clock Cycle-Cycle Jitter



Cycle-Cycle Clock Jitter



PWRDWN# Assertion

Note: PCI_STOP# asserted LOW

PWRDWN# Deassertion

Document #: 38-07145 Rev. *A

PWRGD# Timing Diagrams

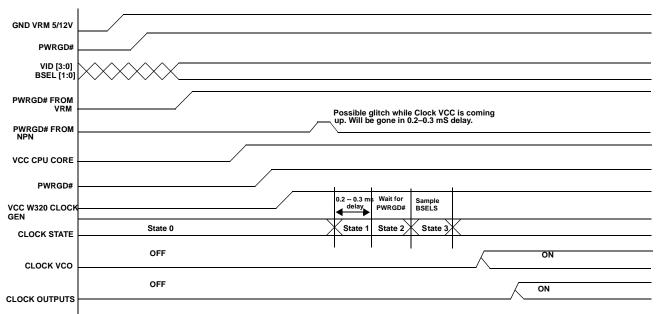


Figure 2. CPU Power BEFORE Clock Power

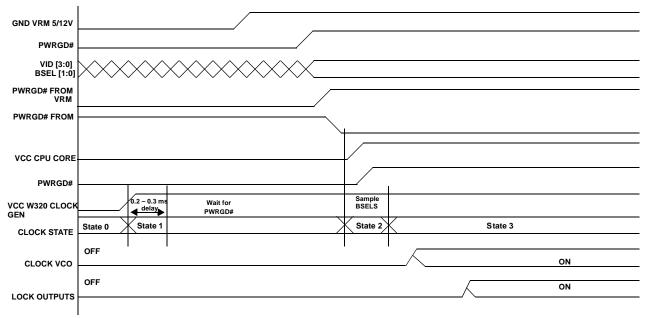
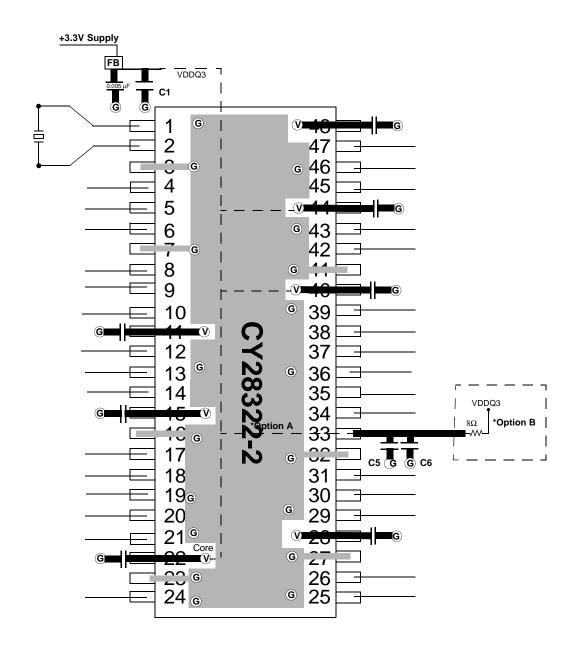



Figure 3. CPU Power AFTER Clock Power

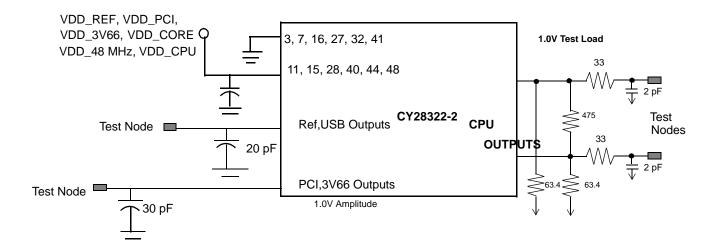
Layout Example

μF

FB = Dale ILB1206-300 or 2TDKACB2012L-120 or 2 Murata BLM21B601S Ferrite bead

Ceramic Caps C1 = 10–22 μF C2 = 0.005 μF C5 = 0.1 μF C6 = 10 μF

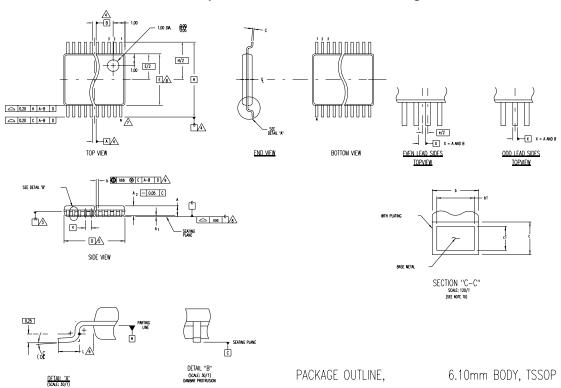
G = VIA to GND plane layer V = VIA to respective supply plane layer

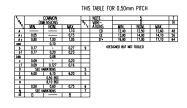

Note: Each supply plane or strip should have a ferrite bead and capacitors.

 * If on board video uses 48-MHz or Dot clock add the Option B 8 Ω series resistor

All Bypass cap's on VDD pin = 0.1 μ F Low ESR

Test Circuit


Ordering Information


Ordering Code	Package Type	Operating Range
CY28322ZC-2	48-pin TSSOP	Commercial

Package Diagram

48-pin Thin Shrink Small Outline Package

ALL DIMENSIONS IN MILLIMETERS

DIE THICKNESS ALLOWABLE IS 0.2790.0127 (.0110DIE THICKNESS ALLOWABLE IS 0.279.0005 INCHES) DIMENSIONING & TOLERANCES PER ASME. Y14.5M-1994.

ATUM PLANE H LOCATED AT MOLD PARTING LINE AND CONCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE

DATUMS A-B AND D TO BE DETERMINED WHERE CENTERLINE BETWEEN LEADS EXITS PLASTIC BODY AT DATUM PLANE H.

SINUAL SHE AND I OF EVERNING WHERE CENTERING
ENTWEN LEADS EXITS PLASTIC BODY AT DATUM PAREN H.

"D" & "E" ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH OR
PROTRUSIONS, AND ARE MEASURED AT ITHE BOTTOM PARTING LINE WOLD
FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15mm ON D AND 0.25mm

ON E PER SIDE.

DIMENSION IS THE LENGTH OF TERMINAL
FOR SOLERING TO A SUBSTRAY.

FERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.

CORRED LEADS SHALL BE PLANAR WITH RESPECT TO

ONE ANOTHER WITHIN 0.076mm AT SEATING PLANE.

THE LEAD WOTH DAMENSION DOES NOT WICLUDE DAMBAR
PROTRUSION, ALLOWAGE LE DAMBAR PROTRUSION SHALL BE

LOCATED ON THE LOWER BOULS OR THE FOOT, MINIMUM
SPACE BETWEEN PROTRUSIONS AND AN ADMICTIN LEAD TO

DE 0.10MM FOR 0.65MM PITCH, 0.08MM FOR 0.55MM PITCH AND

OUTHIN FOR OAMM PITCH PLOKER BOULS OR THE FOOT,

SECTION "C" OF USE OF THE COMPANY OF THE COMPANY

10 0.25 mm from the lead tip.
Controlling dimension: millimeters,
This part is compliant with jedec specification
MO-153, variations DB, DC, DE, ED, EE, AND FE.

Intel and Pentium are registered trademarks of Intel Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document Title: CY28322-2 133-MHz Spread Spectrum Clock Synthesizer with Differential CPU Outputs Document Number: 38-07145				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	112664	03/01/02	IKA	New Data Sheet
*A	114703	04/29/02	INA	Corrections on some PIN numbers.