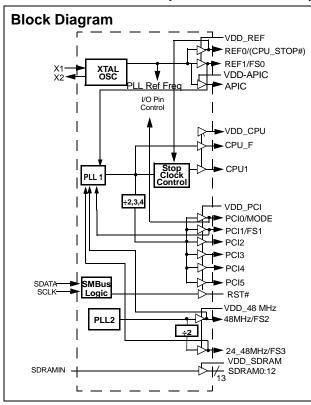


# Spread Spectrum FTG for VIA Chipset

### **Features**

- Single-chip system frequency synthesizer for VIA SDRAM chipset
- Pin compatible with W144 and W211B
- Programmable clock output frequency with less than 1 MHz increment
- · Integrated fail-safe Watchdog Timer for system recov-
- · Automatically switch to HW selected or SW programmed clock frequency when Watchdog Timer time-
- Capable of generate system RESET after a Watchdog Timer time-out occurs or a change in output frequency via SMBus interface
- Support SMBus byte read/write and block read/ write operations to simplify system BIOS development
- Vendor ID and Revision ID support
- Programmable drive strength for CPU, SDRAM and PCI output clocks
- · Programmable output skew between CPU, PCI and SDRAM
- Maximized EMI Suppression using Cypress's Spread Spectrum technology
- Available in 48-pin SSOP

### **Key Specifications**


| CPU to CPU Output Skew:            | 175 ps |
|------------------------------------|--------|
| PCI to PCI Output Skew:            | 500 ps |
| SDRAMIN to SDRAM0:12 Delay:4.5 – 6 |        |

### Table 1. Mode Input Table

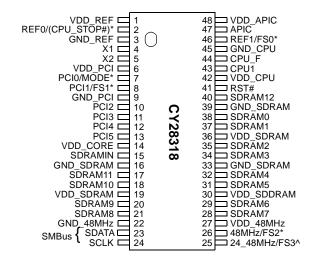

| Mode | Pin 2     |
|------|-----------|
| 0    | CPU_STOP# |
| 1    | REF0      |

Table 2. Pin Selectable Frequency

| I   | Input Address |     | CPU_F, CPU1 | PCI_F, 1:5 |       |
|-----|---------------|-----|-------------|------------|-------|
| FS3 | FS2           | FS1 | FS0         | (MHz)      | (MHz) |
| 1   | 1             | 1   | 1           | 133.6      | 33.4  |
| 1   | 1             | 1   | 0           | 75         | 37.5  |
| 1   | 1             | 0   | 1           | 100.2      | 33.4  |
| 1   | 1             | 0   | 0           | 66.8       | 33.4  |
| 1   | 0             | 1   | 1           | 79         | 39.5  |
| 1   | 0             | 1   | 0           | 110        | 36.7  |
| 1   | 0             | 0   | 1           | 115        | 38.3  |
| 1   | 0             | 0   | 0           | 120        | 30    |
| 0   | 1             | 1   | 1           | 133.3      | 33.3  |
| 0   | 1             | 1   | 0           | 83         | 27.7  |
| 0   | 1             | 0   | 1           | 100.0      | 33.3  |
| 0   | 1             | 0   | 0           | 66.6       | 33.3  |
| 0   | 0             | 1   | 1           | 122        | 30.5  |
| 0   | 0             | 1   | 0           | 129        | 32.3  |
| 0   | 0             | 0   | 1           | 138        | 34.5  |
| 0   | 0             | 0   | 0           | 95         | 31.7  |



## Pin Configuration<sup>[1]</sup>



### Note:

 Internal pull-up resistors should not be relied upon for setting I/O pins HIGH. Pin function with parentheses determined by MODE pin resistor strapping. Unlike other I/O pins, input FS3 has an internal pull-down resistor. Pins marked with ^ are internal pull-down resistors. Pins marked with \* are internal pull-up resistors.



## **Pin Definitions**

| Pin Name           | Pin No.                                                     | Pin Type              | Pin Description                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------|-------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CPU_F              | 44                                                          | 0                     | <b>Free-running CPU Clock:</b> Free-running CPU output clock. See <i>Table 2</i> and <i>Table 7</i> for detailed frequency information.                                                                                                                                                                                                                                                   |  |
| CPU1               | 43                                                          | 0                     | <b>CPU Clock Output 1:</b> This CPU clock output is controlled by the CPU_STOP# and control pin.                                                                                                                                                                                                                                                                                          |  |
| PCI2:5             | 10, 11, 12, 13                                              | 0                     | <b>PCI Clock Outputs 2 through 5:</b> Frequency is set by FS0:3 inputs or through serial input interface, see <i>Table 2</i> and <i>Table 7</i> for details.                                                                                                                                                                                                                              |  |
| PCI1/FS1           | 8                                                           | I/O                   | Fixed PCI Clock Output/Frequency Select 1: As an output, frequency is set by FS0:3 inputs or through serial input interface. This pin also serves as a power-on strap option to determine device operating frequency as described in Table 2 and Table 7.                                                                                                                                 |  |
| PCI0/MODE          | 7                                                           | I/O                   | <b>Fixed PCI Clock Output/Mode:</b> As an output, frequency is set by the FS0:3 inputs or through serial input interface, see <i>Table 2</i> and <i>Table 7</i> . This pin also serves as a power-on strap option to determine the function of pin 2, see <i>Table 1</i> for details.                                                                                                     |  |
| RST#               | 41                                                          | l<br>(Open-<br>Drain) | Reset# Output: Open drain system reset output.                                                                                                                                                                                                                                                                                                                                            |  |
| APIC               | 47                                                          | 0                     | APIC Clock Output: Provides 14.318-MHz fixed frequency.                                                                                                                                                                                                                                                                                                                                   |  |
| 48MHz/FS2          | 26                                                          | I/O                   | <b>48-MHz Output/Frequency Select 2:</b> 48 MHz is provided in normal operation. In standard PC systems, this output can be used as the reference for the Universal Serial Bus host controller. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 2</i> and <i>Table 7</i> .                                               |  |
| 24_48MHz/<br>FS3   | 25                                                          | I/O                   | <b>24_48-MHz Output/Frequency Select 3:</b> In standard PC systems, this output can be used as the clock input for a Super I/O chip. The output frequency is controlled by Configuration Byte 3 bit[6]. The default output frequency is 24 MHz. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 2</i> and <i>Table 7</i> |  |
| REF1/FS0           | 46                                                          | I/O                   | Reference Clock Output 1/Frequency Select 2: 3.3V 14.318-MHz output clock. This pin also serves as a power-on strap option to determine device operating frequency as described in Table 2 and Table 7.                                                                                                                                                                                   |  |
| REF0/<br>CPU_STOP# | 2                                                           | I/O                   | Reference Clock Output 0 or CPU_STOP# Input Pin: Function is determined by the MODE pin. When CPU_STOP# input is asserted LOW, it will disable CPU1 output and drive it to logic 0. When this pin is configured as an output, this pin becomes a 3.3V 14.318-MHz output clock.                                                                                                            |  |
| SDRAMIN            | 15                                                          | I                     | <b>Buffered Input Pin:</b> The signal provided to this input pin is buffered to 13 outputs (SDRAM0:12).                                                                                                                                                                                                                                                                                   |  |
| SDRAM0:12          | 38, 37, 35,<br>34, 32, 31,<br>29, 28, 21,<br>20, 18, 17, 40 | 0                     | <b>Buffered Outputs:</b> These thirteen dedicated outputs provide copies of the signal provided at the SDRAMIN input, and they are deactivated when PWRDWN# input is set LOW.                                                                                                                                                                                                             |  |
| SCLK               | 24                                                          | I                     | Clock pin for SMBus circuitry.                                                                                                                                                                                                                                                                                                                                                            |  |
| SDATA              | 23                                                          | I/O                   | Data pin for SMBus circuitry.                                                                                                                                                                                                                                                                                                                                                             |  |
| X1                 | 4                                                           | ı                     | Crystal Connection or External Reference Frequency Input: This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input.                                                                                                                                                                                           |  |
| X2                 | 5                                                           | 0                     | <b>Crystal Connection:</b> An input connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.                                                                                                                                                                                                                                     |  |



## Pin Definitions (continued)

| Pin Name                                                      | Pin No.                     | Pin Type | Pin Description                                                                                                                                                                  |
|---------------------------------------------------------------|-----------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VDD_REF,<br>VDD_PCI,<br>VDD_CORE,<br>VDD_SDRAM,<br>VDD_48 MHz | 1, 6, 14, 19,<br>27, 30, 36 | Р        | <b>Power Connection:</b> Power supply for core logic, PLL circuitry, SDRAM outputs, PCI outputs, reference outputs, 48-MHz output, and 24_48-MHz output, connect to 3.3V supply. |
| VDD_CPU,<br>VDD_APIC                                          | 42, 48                      | Р        | Power Connection: Connect to 2.5V supply                                                                                                                                         |
| GND_REF,<br>GND_PCI,<br>GND_SDRAM,<br>GND_48MHz<br>GND_CPU    | 3, 9, 16, 22,<br>33, 39, 45 | G        | <b>Ground Connections:</b> Connect all ground pins to the common system ground plane.                                                                                            |



### **Serial Data Interface**

The CY28318 features a two-pin, serial data interface that can be used to configure internal register settings that control particular device functions.

### **Data Protocol**

The clock driver serial protocol supports byte/word write, byte/word read, block write and block read operations from the

controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. For byte/word write and byte read operations, system controller can access individual indexed byte. The offset of the indexed byte is encoded in the command code.

The definition for the command code is defined in Table 3.

**Table 3. Command Code Definition** 

| Bit | Descriptions                                                                                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 7   | 0 = Block read or block write operation 1 = Byte/Word read or byte/word write operation                                        |
| 6:0 | Byte offset for byte/word read or write operation. For block read or write operations, these bits need to be set at '0000000'. |

Table 4. Block read and block write protocol

| Block Write Protocol |                                                             |       | Block Read Protocol                                            |
|----------------------|-------------------------------------------------------------|-------|----------------------------------------------------------------|
| Bit                  | Bit Description                                             |       | Description                                                    |
| 1                    | Start                                                       | 1     | Start                                                          |
| 2:8                  | Slave address - 7 bits                                      | 2:8   | Slave address - 7 bits                                         |
| 9                    | Write                                                       | 9     | Write                                                          |
| 10                   | Acknowledge from slave                                      | 10    | Acknowledge from slave                                         |
| 11:18                | Command Code - 8 bits '00000000' stands for block operation | 11:18 | Command Code - 8 bits<br>'00000000' stands for block operation |
| 19                   | Acknowledge from slave                                      | 19    | Acknowledge from slave                                         |
| 20:27                | Byte Count - 8 bits                                         | 20    | Repeat start                                                   |
| 28                   | Acknowledge from slave                                      | 21:27 | Slave address - 7 bits                                         |
| 29:36                | Data byte 0 - 8 bits                                        | 28    | Read                                                           |
| 37                   | Acknowledge from slave                                      | 29    | Acknowledge from slave                                         |
| 38:45                | Data byte 1 - 8 bits                                        | 30:37 | Byte count from slave - 8 bits                                 |
| 46                   | Acknowledge from slave                                      | 38    | Acknowledge                                                    |
|                      | Data Byte N/Slave Acknowledge                               | 39:46 | Data byte from slave - 8 bits                                  |
|                      | Data Byte N - 8 bits                                        | 47    | Acknowledge                                                    |
|                      | Acknowledge from slave                                      | 48:55 | Data byte from slave - 8 bits                                  |
|                      | Stop                                                        | 56    | Acknowledge                                                    |
|                      |                                                             |       | Data bytes from slave/Acknowledge                              |
|                      |                                                             |       | Data byte N from slave - 8 bits                                |
|                      |                                                             |       | Not Acknowledge                                                |
|                      |                                                             |       | Stop                                                           |

Document #: 38-07272 Rev. \*\*



Table 5. Word Read and Word Write Protocol

| Word Write Protocol |                                                                                                                                                    |       | Word Read Protocol                                                                                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit                 | Description                                                                                                                                        | Bit   | Description                                                                                                                                        |
| 1                   | Start                                                                                                                                              | 1     | Start                                                                                                                                              |
| 2:8                 | Slave address - 7 bits                                                                                                                             | 2:8   | Slave address - 7 bits                                                                                                                             |
| 9                   | Write                                                                                                                                              | 9     | Write                                                                                                                                              |
| 10                  | Acknowledge from slave                                                                                                                             | 10    | Acknowledge from slave                                                                                                                             |
| 11:18               | Command Code - 8 bits '1xxxxxxx' stands for byte or word operation bit[6:0] of the command code represents the off- set of the byte to be accessed | 11:18 | Command Code - 8 bits '1xxxxxxx' stands for byte or word operation bit[6:0] of the command code represents the off- set of the byte to be accessed |
| 19                  | Acknowledge from slave                                                                                                                             | 19    | Acknowledge from slave                                                                                                                             |
| 20:27               | Data byte low- 8 bits                                                                                                                              | 20    | Repeat start                                                                                                                                       |
| 28                  | Acknowledge from slave                                                                                                                             | 21:27 | Slave address - 7 bits                                                                                                                             |
| 29:36               | Data byte high - 8 bits                                                                                                                            | 28    | Read                                                                                                                                               |
| 37                  | Acknowledge from slave                                                                                                                             | 29    | Acknowledge from slave                                                                                                                             |
| 38                  | Stop                                                                                                                                               | 30:37 | Data byte low from slave - 8 bits                                                                                                                  |
|                     |                                                                                                                                                    | 38    | Acknowledge                                                                                                                                        |
|                     |                                                                                                                                                    | 39:46 | Data byte high from slave - 8 bits                                                                                                                 |
|                     |                                                                                                                                                    | 47    | NOT acknowledge                                                                                                                                    |
|                     |                                                                                                                                                    | 48    | Stop                                                                                                                                               |

Table 6. Byte Read and Byte Write Protocol

|       | Byte Write Protocol                                                                                                                        |       | Byte Read Protocol                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Bit   | Description                                                                                                                                | Bit   | Description                                                                                                                                |
| 1     | Start                                                                                                                                      | 1     | Start                                                                                                                                      |
| 2:8   | Slave address - 7 bits                                                                                                                     | 2:8   | Slave address - 7 bits                                                                                                                     |
| 9     | Write                                                                                                                                      | 9     | Write                                                                                                                                      |
| 10    | Acknowledge from slave                                                                                                                     | 10    | Acknowledge from slave                                                                                                                     |
| 11:18 | Command Code - 8 bits '1xxxxxxx' stands for byte operation bit[6:0] of the command code represents the off- set of the byte to be accessed | 11:18 | Command Code - 8 bits '1xxxxxxx' stands for byte operation bit[6:0] of the command code represents the off- set of the byte to be accessed |
| 19    | Acknowledge from slave                                                                                                                     | 19    | Acknowledge from slave                                                                                                                     |
| 20:27 | Data byte - 8 bits                                                                                                                         | 20    | Repeat start                                                                                                                               |
| 28    | Acknowledge from slave                                                                                                                     | 21:27 | Slave address - 7 bits                                                                                                                     |
| 29    | Stop                                                                                                                                       | 28    | Read                                                                                                                                       |
|       |                                                                                                                                            | 29    | Acknowledge from slave                                                                                                                     |
|       |                                                                                                                                            | 30:37 | Data byte from slave - 8 bits                                                                                                              |
|       |                                                                                                                                            | 38    | Not Acknowledge                                                                                                                            |
|       |                                                                                                                                            | 39    | Stop                                                                                                                                       |



## **CY28318 Serial Configuration Map**

1. The serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- 2. All unused register bits (reserved and N/A) should be written to a "0" level.
- 3. All register bits labeled "Write with 1" must be written to one during initialization.

### Byte 0: Control Register 0

| Bit   | Pin# | Name           | Default | Description                                                                                                 |
|-------|------|----------------|---------|-------------------------------------------------------------------------------------------------------------|
| Bit 7 |      | Spread Select1 | 0       | See definition in Bit[0]                                                                                    |
| Bit 6 |      | SEL2           | 0       | See Table 7                                                                                                 |
| Bit 5 |      | SEL1           | 0       | See Table 7                                                                                                 |
| Bit 4 |      | SEL0           | 0       | See Table 7                                                                                                 |
| Bit 3 |      | FS_Override    | 0       | 0 = Select operating frequency by FS[3:0] input pins<br>1 = Select operating frequency by SEL[4:0] settings |
| Bit 2 |      | SEL4           | 0       | See Table 7                                                                                                 |
| Bit 1 |      | SEL3           | 0       | See Table 7                                                                                                 |
| Bit 0 |      | Spread Select0 | 0       | '00' = OFF                                                                                                  |
|       |      |                |         | '01' = - 0.5%                                                                                               |
|       |      |                |         | '10' = ± 0.5%                                                                                               |
|       |      |                |         | '11' = ± 0.25%                                                                                              |

### Byte 1: Control Register 1

| Bit   | Pin# | Name              | Default | Description                                       |
|-------|------|-------------------|---------|---------------------------------------------------|
| Bit 7 | 25   | Latched FS3 input | Х       | Latched FS[3:0] inputs. These bits are read only. |
| Bit 6 | 26   | Latched FS2 input | Х       |                                                   |
| Bit 5 | 8    | Latched FS1 input | Х       |                                                   |
| Bit 4 | 46   | Latched FS0 input | Х       |                                                   |
| Bit 3 | 40   | SDRAM12           | 1       | (Active/Inactive)                                 |
| Bit 2 |      | Reserved          | 0       | Reserved                                          |
| Bit 1 | 43   | CPU1              | 1       | (Active/Inactive)                                 |
| Bit 0 | 44   | CPU_F             | 1       | (Active/Inactive)                                 |

### Byte 2: Control Register 2

| Bit   | Pin# | Name     | Default | Description       |
|-------|------|----------|---------|-------------------|
| Bit 7 |      | Reserved | 0       | Reserved          |
| Bit 6 | 7    | PCI0     | 1       | Reserved          |
| Bit 5 |      | Reserved | 0       | (Active/Inactive) |
| Bit 4 | 13   | PCI5     | 1       | (Active/Inactive) |
| Bit 3 | 12   | PCI4     | 1       | (Active/Inactive) |
| Bit 2 | 11   | PCI3     | 1       | (Active/Inactive) |
| Bit 1 | 10   | PCI2     | 1       | (Active/Inactive) |
| Bit 0 | 8    | PCI1     | 1       | (Active/Inactive) |



## Byte 3: Control Register 3

| Bit   | Pin#           | Name      | Default | Description              |
|-------|----------------|-----------|---------|--------------------------|
| Bit 7 |                | Reserved  | 0       | Reserved                 |
| Bit 6 |                | SEL_48MHz | 0       | 0 = 24 MHz<br>1 = 48 MHz |
| Bit 5 | 26             | 48MHz     | 1       | (Active/Inactive)        |
| Bit 4 | 25             | 24_48MHz  | 1       | (Active/Inactive)        |
| Bit 3 |                | Reserved  | 0       | Reserved                 |
| Bit 2 | 21, 20, 18, 17 | SDRAM8:11 | 1       | (Active/Inactive)        |
| Bit 1 | 32, 31, 29, 28 | SDRAM4:7  | 1       | (Active/Inactive)        |
| Bit 0 | 38, 37, 35, 34 | SDRAM0:3  | 1       | (Active/Inactive)        |

## Byte 4: Control Register 4

| Bit   | Pin# | Name     | Default | Description |
|-------|------|----------|---------|-------------|
| Bit 7 | -    | Reserved | 0       | Reserved    |
| Bit 6 | -    | Reserved | 0       | Reserved    |
| Bit 5 | -    | Reserved | 0       | Reserved    |
| Bit 4 | -    | Reserved | 0       | Reserved    |
| Bit 3 | -    | Reserved | 0       | Reserved    |
| Bit 2 | -    | Reserved | 0       | Reserved    |
| Bit 1 | -    | Reserved | 0       | Reserved    |
| Bit 0 | -    | Reserved | 0       | Reserved    |

### Byte 5: Control Register 5

| Bit   | Pin# | Name     | Default | Description       |
|-------|------|----------|---------|-------------------|
| Bit 7 | -    | Reserved | 0       | Reserved          |
| Bit 6 | -    | Reserved | 0       | Reserved          |
| Bit 5 | -    | Reserved | 0       | Reserved          |
| Bit 4 | 47   | APIC     | 1       | (Active/Inactive) |
| Bit 3 | -    | Reserved | 0       | Reserved          |
| Bit 2 | -    | Reserved | 0       | Reserved          |
| Bit 1 | 46   | REF1     | 1       | (Active/Inactive) |
| Bit 0 | 2    | REF0     | 1       | (Active/Inactive) |

## Byte 6: Watchdog TimeR Register

| Bit   | Name      | Default | Pin Description                                              |
|-------|-----------|---------|--------------------------------------------------------------|
| Bit 7 | PCI_Skew1 | 0       | PCI skew control                                             |
| Bit 6 | PCI_Skew0 | 0       | 00 = Normal<br>01 = -500 ps<br>10 = Reserved<br>11 = +500 ps |



## Byte 6: Watchdog TimeR Register (continued)

| Bit   | Name              | Default | Pin Description                                                                                                      |
|-------|-------------------|---------|----------------------------------------------------------------------------------------------------------------------|
| Bit 5 | WD_TIMER4         | 1       | These bits store the time-out value of the Watchdog Timer. The scale of the                                          |
| Bit 4 | WD_TIMER3         | 1       | timer is determine by the pre-scaler.  The timer can support a value of 150 ms to 4.8 sec when the pre-scalar is set |
| Bit 3 | WD_TIMER2         | 1       | to 150 ms. If the pre-scaler is set to 2.5 sec, it can support a value from 2.5                                      |
| Bit 2 | WD_TIMER1         | 1       | to 80 sec. When the Watchdog Timer reaches "0," it will set the WD_TO_STATUS bit and                                 |
| Bit 1 | WD_TIMER0         | 1       | generate Reset if RST_EN_WD is enabled.                                                                              |
| Bit 0 | WD_PRE_SC<br>ALER | 0       | 0 = 150 ms<br>1 = 2.5 sec                                                                                            |

## Byte 7: Control Register 7

| Bit   | Pin# | Name         | Default | Pin Description          |
|-------|------|--------------|---------|--------------------------|
| Bit 7 |      | Reserved     | 0       | Reserved                 |
| Bit 6 | 25   | 24_48Mhz_DRV | 1       | 0 = Norm, 1 = High Drive |
| Bit 5 | 26   | 48MHz_DRV    | 1       | 0 = Norm, 1 = High Drive |
| Bit 4 |      | Reserved     | 0       | Reserved                 |
| Bit 3 |      | Reserved     | 0       | Reserved                 |
| Bit 2 |      | Reserved     | 0       | Reserved                 |
| Bit 1 |      | Reserved     | 0       | Reserved                 |
| Bit 0 |      | Reserved     | 0       | Reserved                 |

### Byte 8: Vendor ID & Revision ID Register (Read Only)

| Bit   | Name         | Default | Pin Description                                                     |
|-------|--------------|---------|---------------------------------------------------------------------|
| Bit 7 | Revision_ID3 | 0       | Revision ID bit[3]                                                  |
| Bit 6 | Revision_ID2 | 0       | Revision ID bit[2]                                                  |
| Bit 5 | Revision_ID1 | 0       | Revision ID bit[1]                                                  |
| Bit 4 | Revision_ID0 | 0       | Revision ID bit[0]                                                  |
| Bit 3 | Vendor_ID3   | 1       | Bit[3] of Cypress Semiconductor's Vendor ID. This bit is read only. |
| Bit 2 | Vendor_ID2   | 0       | Bit[2] of Cypress Semiconductor's Vendor ID. This bit is read only. |
| Bit 1 | Vendor _ID1  | 0       | Bit[1] of Cypress Semiconductor's Vendor ID. This bit is read only. |
| Bit 0 | Vendor _ID0  | 0       | Bit[0] of Cypress Semiconductor's Vendor ID. This bit is read only. |

## Byte 9: System RESET and Watchdog Timer Register

| Bit   | Name      | Default | Pin Description                                                                                                        |
|-------|-----------|---------|------------------------------------------------------------------------------------------------------------------------|
| Bit 7 | SDRAM_DRV | 0       | SDRAM clock output drive strength 0 = Normal 1 = High Drive                                                            |
| Bit 6 | PCI_DRV   | 0       | PCI clock output drive strength 0 = Normal 1 = High Drive                                                              |
| Bit 5 | Reserved  | 0       | Reserved                                                                                                               |
| Bit 4 | RST_EN_WD | 0       | This bit will enable the generation of a Reset pulse when a Watchdog Timer time-out occurs.  0 = Disabled  1 = Enabled |
| Bit 3 | RST_EN_FC | 0       | This bit will enable the generation of a Reset pulse after a frequency change occurs.  0 = Disabled  1 = Enabled       |



Byte 9: System RESET and Watchdog Timer Register (continued)

| Bit   | Name         | Default | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 2 | WD_TO_STATUS | 0       | Watchdog Timer Time-out Status bit 0 = No time-out occurs (READ); Ignore (WRITE) 1 = Time-Out occurred (READ); Clear WD_TO_STATUS (WRITE)                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bit 1 | WD_EN        | 0       | 0 = Stop and re-load Watchdog Timer. Unlock CY28318 from recovery frequency mode. 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs.  Note: CY28318 will generate system reset, reload a recovery frequency, and lock itself into a recovery frequency mode after a watchdog timer time-out occurs. Under recovery frequency mode, CY28318 will not respond to any attempt to change output frequency via the SMBus control bytes. System software can unlock CY28318 from its recovery frequency mode by clearing the WD_EN bit. |
| Bit 0 | CPU_DRV      | 0       | CPU clock output drive strength 0 = Normal 1 = High Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Byte 10: Skew Control Register

| Bit   | Name             | Default | Description                                                                                                         |
|-------|------------------|---------|---------------------------------------------------------------------------------------------------------------------|
| Bit 7 | CPU_Skew2        | 0       | 000 = Normal                                                                                                        |
| Bit 6 | CPU_Skew1        | 0       | $ \begin{array}{l} 001 = -150 \text{ ps} \\ 010 = -300 \text{ ps} \end{array} $                                     |
| Bit 5 | CPU_Skew0        | 0       | 011 = -450 ps<br>100 = +150 ps<br>101 = +300 ps<br>110 = +450 ps<br>111 = +600 ps                                   |
| Bit 4 | SDRAM0:12_Delay2 | 0       | SDRAM skew control                                                                                                  |
| Bit 3 | SDRAM0:12_Delay1 | 0       | 000 = Normal<br>001 = -300 ps                                                                                       |
| Bit 2 | SDRAM0:12_Delay0 | 0       | 010 = -300 ps<br>010 = -600 ps<br>011 = -900 ps<br>100 = +150 ps<br>101 = +300 ps<br>110 = +600 ps<br>111 = +900 ps |
| Bit 1 | Reserved         | 0       | Reserved                                                                                                            |
| Bit 0 | Reserved         | 0       | Reserved                                                                                                            |

Byte 11: Recovery Frequency N-Value Register

| Bit   | Name         | Default | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 7 | ROCV_FREQ_N7 | 0       | If ROCV_FREQ_SEL is set, CY28318 will use the values programmed in                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bit 6 | ROCV_FREQ_N6 | 0       | ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] to determine the recovery CPU output frequency.when a Watchdog Timer time-out occurs                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bit 5 | ROCV_FREQ_N5 | 0       | The setting of FS_Override bit determines the frequency ratio for CPU and                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bit 4 | ROCV_FREQ_N4 | 0       | PCI. When it is cleared, CY28318 will use the same frequency ratio stated in the Latched FS[3:0] register. When it is set, CY28318 will use the frequency ratio stated in the SEL[4:0] register.  CY28318 supports programmable CPU frequency ranging from 50 MHz to 248 MHz.  CY28318 will change the output frequency whenever there is an update to either ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation. |
| Bit 3 | ROCV_FREQ_N3 | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bit 2 | ROCV_FREQ_N2 | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bit 1 | ROCV_FREQ_N1 | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bit 0 | ROCV_FREQ_N0 | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



Byte 12: Recovery Frequency M-Value Register

| Bit   | Name          | Default | Pin Description                                                                                                                                                                                                                                                                                                  |
|-------|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 7 | ROCV_FREQ_SEL | 0       | ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog Timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL.  0 = From latched FS[3:0]  1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0] |
| Bit 6 | ROCV_FREQ_M6  | 0       | If ROCV_FREQ_SEL is set, CY28318 will use the values programmed in                                                                                                                                                                                                                                               |
| Bit 5 | ROCV_FREQ_M5  | 0       | ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] to determine the recover CPU output frequency.when a Watchdog Timer time-out occurs  The setting of FS_Override bit determines the frequency ratio for CPU                                                                                                                 |
| Bit 4 | ROCV_FREQ_M4  | 0       |                                                                                                                                                                                                                                                                                                                  |
| Bit 3 | ROCV_FREQ_M3  | 0       | SDRAM and PCI. When it is cleared, CY28318 will use the same frequency ratio stated in the Latched FS[4:0] register. When it is set, CY28318 will use                                                                                                                                                            |
| Bit 2 | ROCV_FREQ_M2  | 0       | the frequency ratio stated in the SEL[4:0] register.                                                                                                                                                                                                                                                             |
| Bit 1 | ROCV_FREQ_M1  | 0       | CY28318 supports programmable CPU frequency ranging from 50 MHz to 248 MHz.                                                                                                                                                                                                                                      |
| Bit 0 | ROCV_FREQ_M0  | 0       | CY28318 will change the output frequency whenever there is an update to either ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation.                                                                      |

Byte 13: Programmable Frequency Select N-Value Register

| Bit   | Name        | Default | Pin Description                                                                                                                               |
|-------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 7 | CPU_FSEL_N7 | 0       | If Prog_Freq_EN is set, CY28318 will use the values programmed in                                                                             |
| Bit 6 | CPU_FSEL_N6 | 0       | CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] to determine the CPU output frequency. The new frequency will start to load whenever CPU_FSELM[6:0] is    |
| Bit 5 | CPU_FSEL_N5 | 0       | updated.                                                                                                                                      |
| Bit 4 | CPU_FSEL_N4 | 0       | The setting of FS_Override bit determines the frequency ratio for CPU, SDRAM and PCI. When it is cleared, CY28318 will use the same frequency |
| Bit 3 | CPU_FSEL_N3 | 0       | ratio stated in the Latched FS[3:0] register. When it is set, CY28318 will use                                                                |
| Bit 2 | CPU_FSEL_N2 | 0       | the frequency ratio stated in the SEL[4:0] register. CY28318 supports programmable CPU frequency ranging from 50 MHz to                       |
| Bit 1 | CPU_FSEL_N1 | 0       | 248 MHz.                                                                                                                                      |
| Bit 0 | CPU_FSEL_N0 | 0       |                                                                                                                                               |

Byte 14: Programmable Frequency Select M-Value Register

| Bit   | Name        | Default | Description                                                                                                                                   |
|-------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 7 | Pro_Freq_EN | 0       | Programmable output frequencies enabled 0 = Disabled 1 = Enabled                                                                              |
| Bit 6 | CPU_FSEL_M6 | 0       | If Prog_Freq_EN is set, CY28318 will use the values programmed in                                                                             |
| Bit 5 | CPU_FSEL_M5 | 0       | CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] to determine the CPU output frequency. The new frequency will start to load whenever CPU_FSELM[6:0] is    |
| Bit 4 | CPU_FSEL_M4 | 0       | updated.                                                                                                                                      |
| Bit 3 | CPU_FSEL_M3 | 0       | The setting of FS_Override bit determines the frequency ratio for CPU, SDRAM and PCI. When it is cleared, CY28318 will use the same frequency |
| Bit 2 | CPU_FSEL_M2 | 0       | ratio stated in the Latched FS[3:0] register. When it is set, CY28318 will use                                                                |
| Bit 1 | CPU_FSEL_M1 | 0       | the frequency ratio stated in the SEL[4:0] register.  CY28318 supports programmable CPU frequency ranging from 50 MHz to                      |
| Bit 0 | CPU_FSEL_M0 | 0       | 248 MHz.                                                                                                                                      |



## Byte 15: Reserved Register

| Bit   | Pin# | Name                | Default | Description               |
|-------|------|---------------------|---------|---------------------------|
| Bit 7 | -    | Reserved            | 0       | Reserved                  |
| Bit 6 | -    | Reserved            | 0       | Reserved                  |
| Bit 5 | -    | Reserved            | 0       | Reserved                  |
| Bit 4 | -    | Reserved            | 0       | Reserved                  |
| Bit 3 | -    | Reserved            | 0       | Reserved                  |
| Bit 2 | -    | Vendor test<br>Mode | 0       | Reserved. Write with '0'  |
| Bit 1 | -    | Vendor test<br>mode | 1       | Test mode. Write with '1' |
| Bit 0 | -    | Vendor test<br>mode | 1       | Test mode. Write with '1' |

## Byte 16: Reserved Register

| Bit   | Pin# | Name     | Default | Description |
|-------|------|----------|---------|-------------|
| Bit 7 | -    | Reserved | 0       | Reserved    |
| Bit 6 | -    | Reserved | 0       | Reserved    |
| Bit 5 | -    | Reserved | 0       | Reserved    |
| Bit 4 | -    | Reserved | 0       | Reserved    |
| Bit 3 | -    | Reserved | 0       | Reserved    |
| Bit 2 | -    | Reserved | 0       | Reserved    |
| Bit 1 | -    | Reserved | 0       | Reserved    |

## Byte 17: Reserved Register

| Bit   | Pin# | Name     | Default | Description |
|-------|------|----------|---------|-------------|
| Bit 7 | -    | Reserved | 0       | Reserved    |
| Bit 6 | -    | Reserved | 0       | Reserved    |
| Bit 5 | -    | Reserved | 0       | Reserved    |
| Bit 4 | -    | Reserved | 0       | Reserved    |
| Bit 3 | -    | Reserved | 0       | Reserved    |
| Bit 2 | -    | Reserved | 0       | Reserved    |
| Bit 1 | -    | Reserved | 0       | Reserved    |



Table 7. Additional Frequency Selections through Serial Data Interface Data Bytes

|                | Input Conditions |                 |                |                |       | equency |                     |
|----------------|------------------|-----------------|----------------|----------------|-------|---------|---------------------|
|                | Dat              | a Byte 0, Bit 3 | = 1            |                |       |         |                     |
| Bit 2<br>SEL_4 | Bit 1<br>SEL_3   | Bit 6<br>SEL_2  | Bit 5<br>SEL_1 | Bit 4<br>SEL_0 | CPU   | PCI     | Gear Con-<br>stants |
| 1              | 1                | 1               | 1              | 1              | 133.6 | 33.4    | 48.00741            |
| 1              | 1                | 1               | 1              | 0              | 75    | 37.5    | 48.00741            |
| 1              | 1                | 1               | 0              | 1              | 100.2 | 33.4    | 48.00741            |
| 1              | 1                | 1               | 0              | 0              | 66.8  | 33.4    | 48.00741            |
| 1              | 1                | 0               | 1              | 1              | 79    | 39.5    | 48.00741            |
| 1              | 1                | 0               | 1              | 0              | 110   | 36.7    | 48.00741            |
| 1              | 1                | 0               | 0              | 1              | 115   | 38.3    | 48.00741            |
| 1              | 1                | 0               | 0              | 0              | 120   | 30      | 48.00741            |
| 1              | 0                | 1               | 1              | 1              | 133.3 | 33.3    | 48.00741            |
| 1              | 0                | 1               | 1              | 0              | 83    | 27.7    | 48.00741            |
| 1              | 0                | 1               | 0              | 1              | 100.0 | 33.3    | 48.00741            |
| 1              | 0                | 1               | 0              | 0              | 66.6  | 33.3    | 48.00741            |
| 1              | 0                | 0               | 1              | 1              | 122   | 30.5    | 48.00741            |
| 1              | 0                | 0               | 1              | 0              | 129   | 32.3    | 48.00741            |
| 1              | 0                | 0               | 0              | 1              | 138   | 34.5    | 48.00741            |
| 1              | 0                | 0               | 0              | 0              | 95    | 31.7    | 48.00741            |
| 0              | 1                | 1               | 1              | 1              | 85    | 28.3    | 48.00741            |
| 0              | 1                | 1               | 1              | 0              | 87.5  | 29.2    | 48.00741            |
| 0              | 1                | 1               | 0              | 1              | 90    | 30      | 48.00741            |
| 0              | 1                | 1               | 0              | 0              | 92.5  | 30.8    | 48.00741            |
| 0              | 1                | 0               | 1              | 1              | 95    | 31.7    | 48.00741            |
| 0              | 1                | 0               | 1              | 0              | 147   | 36.8    | 48.00741            |
| 0              | 1                | 0               | 0              | 1              | 152   | 30.4    | 48.00741            |
| 0              | 1                | 0               | 0              | 0              | 154   | 30.8    | 48.00741            |
| 0              | 0                | 1               | 1              | 1              | 157   | 31.4    | 48.00741            |
| 0              | 0                | 1               | 1              | 0              | 159   | 31.8    | 48.00741            |
| 0              | 0                | 1               | 0              | 1              | 162   | 32.4    | 48.00741            |
| 0              | 0                | 1               | 0              | 0              | 166   | 33.2    | 48.00741            |
| 0              | 0                | 0               | 1              | 1              | 171   | 34.2    | 48.00741            |
| 0              | 0                | 0               | 1              | 0              | 180   | 36      | 48.00741            |
| 0              | 0                | 0               | 0              | 1              | 190   | 38      | 48.00741            |
| 0              | 0                | 0               | 0              | 0              | 200   | 40      | 48.00741            |



# Programmable Output Frequency, Watchdog Timer and Recovery Output Frequency Functional Description

The Programmable Output Frequency feature allows users to generate any CPU output frequency from the range of 50 MHz to 248 MHz. Cypress offers the most dynamic and the simplest programming interface for system developers to utilize this feature in their platforms.

The Watchdog Timer and Recovery Output Frequency features allow users to implement a recovery mechanism when the system hangs or getting unstable. System BIOS or other

control software can enable the Watchdog timer before they attempt to make a frequency change. If the system hangs and a Watchdog Timer time-out occurs, a system reset will be generated and a recovery frequency will be activated.

All the related registers are summarized in Table 8.

Table 8. Register Summary.

| Name                                  | Description                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pro_Freq_EN                           | Programmable output frequencies enabled 0 = Disabled (default) 1 = Enabled                                                                                                                                                                                                                                                                                                  |
|                                       | When it is disabled, the operating output frequency will be determined by either the latched value of FS[3:0] inputs or the programmed value of SEL[4:0]. If FS_Override bit is clear, latched FS[3:0] inputs will be used. If FS_Override bit is set, programmed value of SEL[4:0] will be used.                                                                           |
|                                       | When it is enabled, the CPU output frequency will be determined by the programmed value of CPUFSEL_N, CPUFSEL_M and the PLL Gear Constant. The program value of FS_Override, SEL[4:0] or the latched value of FS[3:0] will determine the PLL Gear Constant and the frequency ratio between CPU and other frequency outputs                                                  |
| FS_Override                           | When Pro_Freq_EN is cleared or disabled,  0 = Select operating frequency by FS input pins (default)  1 = Select operating frequency by SEL bits in SMBus control bytes                                                                                                                                                                                                      |
|                                       | When Pro_Freq_EN is set or enabled, 0 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the latched value of FS input pins (default) 1 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the programmed value of SEL bits in SMBus control bytes                  |
| CPU_FSEL_N,<br>CPU_FSEL_M             | When Prog_Freq_EN is set or enabled, the values programmed in CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] determines the CPU output frequency. The new frequency will start to load whenever there is an update to either CPU_FSEL_N[7:0] or CPU_FSEL_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation. |
|                                       | The setting of FS_Override bit determines the frequency ratio for CPU and PCI. When FS_Override is cleared or disabled, the frequency ratio follows the latched value of the FS input pins. When FS_Override is set or enabled, the frequency ratio follows the programmed value of SEL bits in SMBus control bytes.                                                        |
| ROCV_FREQ_SEL                         | ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog Timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL.  0 = From latched FS[3:0]  1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0]                                                            |
| ROCV_FREQ_N[7:0],<br>ROCV_FREQ_M[6:0] | When ROCV_FREQ_SEL is set, the values programmed in ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output frequency when a Watchdog Timer time-out occurs                                                                                                                                                                                 |
|                                       | The setting of FS_Override bit determines the frequency ratio for CPU and SDRAM. When it is cleared, the same frequency ratio stated in the Latched FS[3:0] register will be used. When it is set, the frequency ratio stated in the SEL[4:0] register will be used.                                                                                                        |
|                                       | The new frequency will start to load whenever there is an update to either ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation.                                                                                                                                     |



Table 8. Register Summary.

| Name          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WD_EN         | 0 = Stop and re-load Watchdog Timer. Unlock CY28318 from recovery frequency mode. 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs.  Note: CY28318 will generate system reset, reload a recovery frequency, and lock itself into a recovery frequency mode after a Watchdog Timer time-out occurs. Under recovery frequency mode, CY28318 will not respond to any attempt to change output frequency via the SMBus control bytes. System software can unlock CY28318 from its recovery frequency mode by clearing the WD_EN bit. |
| WD_TO_STATUS  | Watchdog Timer Time-out Status bit 0 = No time-out occurs (READ); Ignore (WRITE) 1 = Time-out occurred (READ); Clear WD_TO_STATUS (WRITE)                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WD_TIMER[4:0] | These bits store the time-out value of the Watchdog Timer. The scale of the timer is determine by the prescaler.  The timer can support a value of 150 ms to 4.8 sec when the pre-scaler is set to 150 ms. If the prescaler is set to 2.5 sec, it can support a value from 2.5 sec to 80 sec.  When the Watchdog Timer reaches "0," it will set the WD_TO_STATUS bit.                                                                                                                                                                                                  |
| WD_PRE_SCALER | 0 = 150 ms<br>1 = 2.5 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RST_EN_WD     | This bit will enable the generation of a Reset pulse when a watchdog timer time-out occurs.  0 = Disabled  1 = Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RST_EN_FC     | This bit will enable the generation of a Reset pulse after a frequency change occurs.  0 = Disabled  1 = Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

### How to program CPU output frequency?

When the programmable output frequency feature is enabled (Pro\_Freq\_EN bit is set), the CPU output frequency is determined by the following equation:

Fcpu = G \* (N+3)/(M+3)

"N" and "M" are the values programmed in Programmable Frequency Select N-Value Register and M-Value Register, respectively.

"G" stands for the PLL Gear Constant, which is determined by the programmed value of FS[4:0] or SEL[4:0]. The value is listed in *Table 5*.

The ratio of (N+3) and (M+3) need to be greater than "1" [(N+3)/(M+3) > 1].

The following table lists set of N and M values for different frequency output ranges. This example use a fixed value for the M-Value Register and select the CPU output frequency by changing the value of the N-Value Register.

Table 9. Examples of N and M Value for Different CPU Frequency Range

| Frequency Ranges  | Gear Constants | Fixed Value for<br>M-Value Register | Range of N-Value Register for Different CPU Frequency |
|-------------------|----------------|-------------------------------------|-------------------------------------------------------|
| 50 MHz – 129 MHz  | 48.00741       | 93                                  | 97 – 255                                              |
| 130 MHz – 248 MHz | 48.00741       | 45                                  | 127 – 245                                             |



## **Absolute Maximum Ratings**

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

| Parameter                         | Description                            | Rating       | Unit |
|-----------------------------------|----------------------------------------|--------------|------|
| V <sub>DD</sub> , V <sub>IN</sub> | Voltage on any pin with respect to GND | -0.5 to +7.0 | V    |
| T <sub>STG</sub>                  | Storage Temperature                    | -65 to +150  | °C   |
| T <sub>B</sub>                    | Ambient Temperature under Bias         | -55 to +125  | °C   |
| T <sub>A</sub>                    | Operating Temperature                  | 0 to +70     | °C   |
| ESD <sub>PROT</sub>               | Input ESD Protection                   | 2 (min.)     | kV   |

## DC Electrical Characteristics: T<sub>A</sub> = 0°C to +70°C, V<sub>DD</sub> = 3.3V±5%, V<sub>DD\_CPU</sub> & V<sub>DD\_APIC</sub> = 2.5V±5%

| Parameter       | Descrip                           | tion          | Test Condition                                     | Min.      | Тур. | Max.                  | Unit |
|-----------------|-----------------------------------|---------------|----------------------------------------------------|-----------|------|-----------------------|------|
| Supply Curr     | ent                               |               |                                                    | •         |      |                       |      |
| I <sub>DD</sub> | 3.3V Supply Current               |               | CPU_F;CPU1=100MHz<br>Outputs Loaded <sup>[2]</sup> |           | 260  |                       | mA   |
| I <sub>DD</sub> | 2.5V Supply Current               |               | CPU_F;CPU1=100MHz<br>Outputs Loaded <sup>[2]</sup> |           | 25   |                       | mA   |
| Logic Inputs    | <b>5</b>                          |               |                                                    |           |      |                       |      |
| $V_{IL}$        | Input Low Voltage                 |               |                                                    | GND - 0.3 |      | 0.8                   | V    |
| V <sub>IH</sub> | Input High Voltage                |               |                                                    | 2.0       |      | V <sub>DD</sub> + 0.3 | V    |
| I <sub>IL</sub> | Input Low Current <sup>[3]</sup>  |               |                                                    |           |      | -25                   | μΑ   |
| I <sub>IH</sub> | Input High Current <sup>[3]</sup> |               |                                                    |           |      | 10                    | μΑ   |
| Clock Outpu     | its                               |               |                                                    |           |      |                       |      |
| V <sub>OL</sub> | Output Low Voltage                |               | I <sub>OL</sub> = 1 mA                             |           |      | 50                    | mV   |
| V <sub>OH</sub> | Output High Voltage               |               | I <sub>OH</sub> = -1 mA                            | 3.1       |      |                       | V    |
| V <sub>OH</sub> | Output High Voltage               | CPU_F:1, APIC | I <sub>OH</sub> = -1 mA                            | 2.2       |      |                       | V    |
| I <sub>OL</sub> | Output Low Current                | CPU_F, CPU1   | V <sub>OL</sub> = 1.25V                            | 27        | 57   | 97                    | mA   |
|                 |                                   | PCI0:5        | V <sub>OL</sub> = 1.5V                             | 20.5      | 53   | 139                   | mA   |
|                 |                                   | APIC          | V <sub>OL</sub> = 1.25V                            | 40        | 85   | 140                   | mA   |
|                 |                                   | REF0:1        | V <sub>OL</sub> = 1.5V                             | 25        | 37   | 76                    | mA   |
|                 |                                   | 48-MHz        | V <sub>OL</sub> = 1.5V                             | 25        | 37   | 76                    | mA   |
|                 |                                   | SDRAM0:12     | V <sub>OH</sub> = 1.5V                             | 75        | 95   | 120                   | mA   |
|                 |                                   | 24-MHz        | V <sub>OL</sub> = 1.5V                             | 25        | 37   | 76                    | mA   |
| I <sub>OH</sub> | Output High Current               | CPU_F, CPU1   | V <sub>OH</sub> = 1.25V                            | 25        | 55   | 97                    | mA   |
|                 |                                   | PCI0:5        | V <sub>OH</sub> = 1.5V                             | 31        | 55   | 139                   | mA   |
|                 |                                   | APIC          | V <sub>OH</sub> = 1.25V                            | 40        | 87   | 155                   | mA   |
|                 |                                   | REF0:1        | V <sub>OH</sub> = 1.5V                             | 27        | 44   | 94                    | mA   |
|                 |                                   | 48-MHz        | V <sub>OH</sub> = 1.5V                             | 27        | 44   | 94                    | mA   |
|                 |                                   | 24-MHz        | V <sub>OH</sub> = 1.5V                             | 25        | 37   | 76                    | mA   |
|                 |                                   | SDRAM0:12     | V <sub>OL</sub> = 1.5V                             | 95        | 110  | 130                   | mA   |

### Notes:

Document #: 38-07272 Rev. \*\*

All clock outputs loaded with six 60Ω transmission lines with 22-pF capacitors. CY28318 logic inputs (except FS3) have internal pull-up devices (pull-ups not full CMOS level). Logic input FS3 has an internal pull-down device.



## **DC Electrical Characteristics:** $T_A = 0$ °C to +70°C, $V_{DD} = 3.3V \pm 5\%$ , $V_{DD\_CPU} \& V_{DD\_APIC} = 2.5V \pm 5\%$ (continued)

| Parameter          | Description                                                  | Test Condition     | Min. | Тур. | Max. | Unit |
|--------------------|--------------------------------------------------------------|--------------------|------|------|------|------|
| Crystal Osc        | illator                                                      | <u>.</u>           | •    |      |      |      |
| V <sub>TH</sub>    | X1 Input Threshold Voltage <sup>[4]</sup>                    | $V_{DD} = 3.3V$    |      | 1.65 |      | V    |
| C <sub>LOAD</sub>  | Load Capacitance, Imposed on External Crystal <sup>[5]</sup> |                    |      | 14   |      | pF   |
| C <sub>IN,X1</sub> | X1 Input Capacitance <sup>[6]</sup>                          | Pin X2 unconnected |      | 28   |      | pF   |
| Pin Capacita       | ance/Inductance                                              | <u>.</u>           | •    |      |      |      |
| C <sub>IN</sub>    | Input Pin Capacitance                                        | Except X1 and X2   |      |      | 5    | pF   |
| C <sub>OUT</sub>   | Output Pin Capacitance                                       |                    |      |      | 6    | pF   |
| L <sub>IN</sub>    | Input Pin Inductance                                         |                    |      |      | 7    | nΗ   |

### **AC Electrical Characteristics**

## $\rm T_{A} = 0^{\circ}C \ to \ +70^{\circ}C, \ V_{DD} = 3.3V \pm 5\%, V_{DD\_CPU \ \&} \ V_{DD\_APIC} = 2.5V \pm \ 5\% \ f_{XTL} = 14.31818 \ MHz$

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output; Spread Spectrum is disabled.

### CPU Clock Outputs, CPU\_F, 1 (Lump Capacitance Test Load = 20 pF)

|                 |                                                             | Test Condition/                                                                                                     | CPU  | = 66.6 | MHz  | CPU  | J = 100 | MHz  | CPU  | = 133 | MHz  |      |
|-----------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|--------|------|------|---------|------|------|-------|------|------|
| Parameter       | Description                                                 | Comments                                                                                                            | Min. | Тур.   | Max. | Min. | Тур.    | Max. | Min. | Тур.  | Max. | Unit |
| t <sub>P</sub>  | Period                                                      | Measured on rising edge at 1.25                                                                                     | 15   |        | 15.5 | 10   |         | 10.5 | 7.5  |       | 8.0  | ns   |
| t <sub>H</sub>  | High Time                                                   | Duration of clock cycle above 2.0V                                                                                  | 5.2  |        |      | 3.0  |         |      | 1.87 |       |      | ns   |
| t_              | Low Time                                                    | Duration of clock cycle below 0.4V                                                                                  | 5.0  |        |      | 2.8  |         |      | 1.67 |       |      | ns   |
| t <sub>R</sub>  | Output Rise<br>Edge Rate                                    | Measured from 0.4V to 2.0V                                                                                          | 1    |        | 4    | 1    |         | 4    | 1    |       | 4    | V/ns |
| t <sub>F</sub>  | Output Fall Edge<br>Rate                                    | Measured from 2.0V to 0.4V                                                                                          | 1    |        | 4    | 1    |         | 4    | 1    |       | 4    | V/ns |
| t <sub>D</sub>  | Duty Cycle                                                  | Measured on rising and falling edge at 1.25V                                                                        | 45   |        | 55   | 45   |         | 55   | 45   |       | 55   | %    |
| t <sub>JC</sub> | Jitter,<br>Cycle-to-Cycle                                   | Measured on rising edge<br>at 1.25V. Maximum differ-<br>ence of cycle time be-<br>tween two adjacent cycles.        |      |        | 200  |      |         | 200  |      |       | 250  | ps   |
| t <sub>SK</sub> | Output Skew                                                 | Measured on rising edge at 1.25V                                                                                    |      |        | 175  |      |         | 175  |      |       | 175  | ps   |
| f <sub>ST</sub> | Frequency<br>Stabilization<br>from Power-up<br>(cold start) | Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization. |      |        | 3    |      |         | 3    |      |       | 3    | ms   |
| Z <sub>o</sub>  | AC Output Impedance                                         | Average value during switching transition. Used for determining series termination value.                           |      | 20     |      |      | 20      |      |      | 20    |      | Ω    |

#### Notes:

X1 input threshold voltage (typical) is V<sub>DD</sub>/2.
The CY28318 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 14 pF; this includes typical stray capacitance of short PCB traces to crystal.
X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).



## PCI Clock Outputs, PCI0:5 (Lump Capacitance Test Load = 30 pF

| Parameter       | Description                                        | Test Condition/Comments                                                                                             | Min. | Тур. | Max. | Unit |
|-----------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>P</sub>  | Period                                             | Measured on rising edge at 1.5V                                                                                     | 30   |      |      | ns   |
| t <sub>H</sub>  | High Time                                          | Duration of clock cycle above 2.4V                                                                                  | 12   |      |      | ns   |
| t_              | Low Time                                           | Duration of clock cycle below 0.4V                                                                                  | 12   |      |      | ns   |
| t <sub>R</sub>  | Output Rise Edge Rate                              | Measured from 0.4V to 2.4V                                                                                          | 1    |      | 4    | V/ns |
| t <sub>F</sub>  | Output Fall Edge Rate                              | Measured from 2.4V to 0.4V                                                                                          | 1    |      | 4    | V/ns |
| t <sub>D</sub>  | Duty Cycle                                         | Measured on rising and falling edge at 1.5V                                                                         | 45   |      | 55   | %    |
| t <sub>JC</sub> | Jitter, Cycle-to-Cycle                             | Measured on rising edge at 1.5V. Maximum difference of cycle time between two adjacent cycles.                      |      |      | 250  | ps   |
| t <sub>SK</sub> | Output Skew                                        | Measured on rising edge at 1.5V                                                                                     |      |      | 500  | ps   |
| t <sub>O</sub>  | CPU to PCI Clock Skew                              | Covers all CPU/PCI outputs. Measured on rising edge at 1.5V. CPU leads PCI output.                                  | 1.5  |      | 4    | ns   |
| f <sub>ST</sub> | Frequency Stabilization from Power-up (cold start) | Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization. |      |      | 3    | ms   |
| Z <sub>o</sub>  | AC Output Impedance                                | Average value during switching transition. Used for determining series termination value.                           |      | 30   |      | Ω    |

## APIC Clock Output (Lump Capacitance Test Load = 20 pF)

| Parameter       | Description                                        | Test Condition/Comments                                                                                             | Min.   | Тур. | Max. | Unit |
|-----------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|------|------|------|
| f               | Frequency, Actual                                  | Frequency generated by crystal oscillator                                                                           | 14.318 |      | •    | MHz  |
| t <sub>R</sub>  | Output Rise Edge Rate                              | Measured from 0.4V to 2.0V                                                                                          | 1      |      | 4    | V/ns |
| t <sub>F</sub>  | Output Fall Edge Rate                              | Measured from 2.0V to 0.4V                                                                                          | 1      |      | 4    | V/ns |
| t <sub>D</sub>  | Duty Cycle                                         | Measured on rising and falling edge at 1.25V                                                                        | 45     |      | 55   | %    |
| f <sub>ST</sub> | Frequency Stabilization from Power-up (cold start) | Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization. |        |      | 1.5  | ms   |
| Z <sub>o</sub>  | AC Output Impedance                                | Average value during switching transition. Used for determining series termination value.                           |        | 15   |      | Ω    |

## REF0:1 Clock Outputs (Lump Capacitance Test Load = 20 pF)

| Parameter       | Description                                        | Test Condition/Comments                                                                                             | Min.   | Тур. | Max. | Unit |
|-----------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|------|------|------|
| f               | Frequency, Actual                                  | Frequency generated by crystal oscillator                                                                           | 14.318 |      |      | MHz  |
| t <sub>R</sub>  | Output Rise Edge Rate                              | Measured from 0.4V to 2.4V                                                                                          | 0.5    |      | 2    | V/ns |
| t <sub>F</sub>  | Output Fall Edge Rate                              | Measured from 2.4V to 0.4V                                                                                          | 0.5    |      | 2    | V/ns |
| t <sub>D</sub>  | Duty Cycle                                         | Measured on rising and falling edge at 1.5V                                                                         | 45     |      | 55   | %    |
| f <sub>ST</sub> | Frequency Stabilization from Power-up (cold start) | Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization. |        |      | 3    | ms   |
| Z <sub>o</sub>  | AC Output Impedance                                | Average value during switching transition. Used for determining series termination value.                           |        | 40   |      | Ω    |



## SDRAM 0:12 Clock Outputs (Lump Capacitance Test Load = 22 pF)

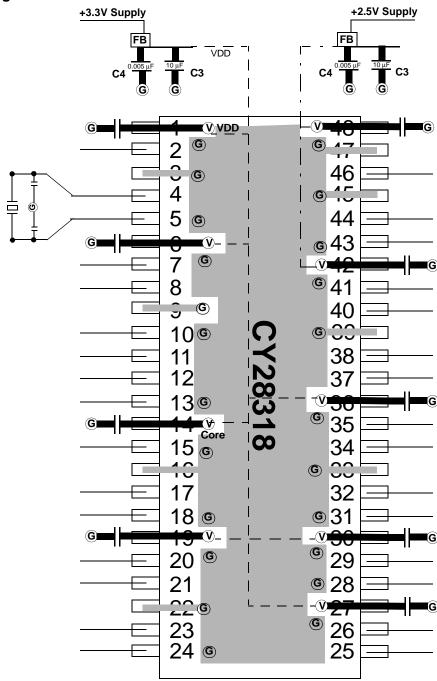
|                 |                          |                                                                                           |      | RAMI<br>6.8 MI |      |      | RAMI<br>00 MH |      |      | RAMI<br>33 MH |      |      |
|-----------------|--------------------------|-------------------------------------------------------------------------------------------|------|----------------|------|------|---------------|------|------|---------------|------|------|
| Parameter       | Description              | Test Condition/Comments                                                                   | Min. | Тур.           | Max. | Min. | Тур.          | Max. | Min. | Тур.          | Max. | Unit |
| t <sub>P</sub>  | Period                   | Measured on rising edge at 1.5V                                                           | 15   |                | 15.5 | 10   |               | 10.5 | 7.5  |               | 8.0  | ns   |
| t <sub>H</sub>  | High Time                | Duration of clock cycle above 2.4V                                                        | 5.2  |                |      | 3.0  |               |      | 1.87 |               |      | ns   |
| t_              | Low Time                 | Duration of clock cycle below 0.4V                                                        | 5.0  |                |      | 2.0  |               |      | 1.67 |               |      | ns   |
| t <sub>R</sub>  | Output Rise Edge<br>Rate | Measured from 0.4V to 2.4V                                                                | 1    |                | 4    | 1    |               | 4    | 1    |               | 4    | V/ns |
| t <sub>F</sub>  | Output Fall Edge<br>Rate | Measured from 2.4V to 0.4V                                                                | 1    |                | 4    | 1    |               | 4    | 1    |               | 4    | V/ns |
| t <sub>D</sub>  | Duty Cycle               | Measured on rising and falling edge at 1.5V                                               | 45   |                | 55   | 45   |               | 55   | 45   |               | 55   | %    |
| t <sub>SK</sub> | Output Skew              | Measured on rising and falling edge at 1.5V                                               |      |                | 250  |      |               | 250  |      |               | 250  | ps   |
| t <sub>PD</sub> | Propagation<br>Delay     | Measured from SDRAMIN                                                                     | 4.5  |                | 6.0  | 4.5  |               | 6.0  | 4.5  |               | 6.0  | ns   |
| Z <sub>o</sub>  | AC Output<br>Impedance   | Average value during switching transition. Used for determining series termination value. |      | 15             |      |      | 15            |      |      | 15            |      | Ω    |

## 48-MHz Clock Output (Lump Capacitance Test Load = 20 pF)

| Parameter       | Description                                        | Test Condition/Comments                                                                                             | Min.  | Тур.   | Max. | Unit |
|-----------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|--------|------|------|
| f               | Frequency, Actual                                  | Determined by PLL divider ratio (see m/n below)                                                                     |       | 48.008 |      | MHz  |
| f <sub>D</sub>  | Deviation from 48 MHz                              | (48.008 – 48)/48                                                                                                    |       | +167   |      | ppm  |
| m/n             | PLL Ratio                                          | (14.31818 MHz x 57/17 = 48.008 MHz)                                                                                 | 57/17 |        |      |      |
| t <sub>R</sub>  | Output Rise Edge Rate                              | Measured from 0.4V to 2.4V                                                                                          | 0.5   |        | 2    | V/ns |
| t <sub>F</sub>  | Output Fall Edge Rate                              | Measured from 2.4V to 0.4V                                                                                          | 0.5   |        | 2    | V/ns |
| t <sub>D</sub>  | Duty Cycle                                         | Measured on rising and falling edge at 1.5V                                                                         | 45    |        | 55   | %    |
| f <sub>ST</sub> | Frequency Stabilization from Power-up (cold start) | Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization. |       |        | 3    | ms   |
| Z <sub>o</sub>  | AC Output Impedance                                | Average value during switching transition. Used for determining series termination value.                           |       | 40     |      | Ω    |



## 24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)

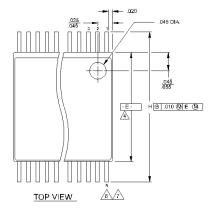

| Parameter       | Description                                        | Test Condition/Comments                                                                                             | Min. | Тур.   | Max. | Unit |
|-----------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|--------|------|------|
| f               | Frequency, Actual                                  | Determined by PLL divider ratio (see m/n below)                                                                     |      | 24.004 |      | MHz  |
| f <sub>D</sub>  | Deviation from 24 MHz                              | (24.004 – 24)/24                                                                                                    |      | +167   |      | ppm  |
| m/n             | PLL Ratio                                          | (14.31818 MHz x 57/34 = 24.004 MHz)                                                                                 |      | 57/34  |      |      |
| t <sub>R</sub>  | Output Rise Edge Rate                              | Measured from 0.4V to 2.4V                                                                                          | 0.5  |        | 2    | V/ns |
| t <sub>F</sub>  | Output Fall Edge Rate                              | Measured from 2.4V to 0.4V                                                                                          | 0.5  |        | 2    | V/ns |
| t <sub>D</sub>  | Duty Cycle                                         | Measured on rising and falling edge at 1.5V                                                                         | 45   |        | 55   | %    |
| f <sub>ST</sub> | Frequency Stabilization from Power-up (cold start) | Assumes full supply voltage reached within 1 ms from power-up. Short cycles exist prior to frequency stabilization. |      |        | 3    | ms   |
| Z <sub>o</sub>  | AC Output Impedance                                | Average value during switching transition. Used for determining series termination value.                           |      | 40     |      | Ω    |

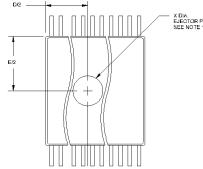
## Ordering Information

| Ordering Code | Package<br>Name | Package Type           |
|---------------|-----------------|------------------------|
| CY28318       | PV              | 48-pin SSOP (300 mils) |



## **Layout Diagram**

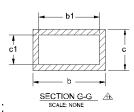




FB = Dale ILB1206 - 300 (300 $\Omega$  @ 100 MHz) or TDK ACB2012L-120 Ceramic Caps C3 = 10–22  $\mu$ F C4 = 0.005  $\mu$ F C6 = 0.1  $\mu$ F © = VIA to GND plane layer  $\Psi$  = VIA to respective supply plane layer Note: Each supply plane or strip should have a ferrite bead and capacitors



## **Package Diagram**

### 48-Pin Small Shrink Outline Package (SSOP, 300 mils)






BOTTOM VIEW

SEE DETAIL A

END VIEW



## NOTES:

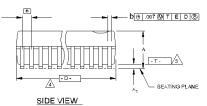
⚠ MAXIMUM DIE THICKNESS ALLOWABLE IS .025.

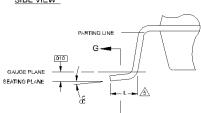
DIMENSIONING & TOLERANCING PER ANSI Y14.5M - 1982.

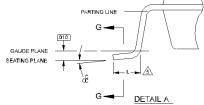
↑ TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.

↑ TERMINAL POSITIONS ARE SHOWN FOR REFERENCE ONLY.

↑ FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 003 INCHES AT SEATING PLANE.


↑ CONTROLLING DIMENSION: INCHES.


10. COLUMPY OF ORIGIN LOCATION AND EJECTOR PIN ON PACKAGE BOTTOM IS OPTIONAL AND DEPENDS ON ASSEMBLY LOCATION.


↑ THESE DIMENSIONS APPLY TO THE FLAT SECTION.

OF THE LEAD RETWEEN 006 INCHES AND OLI INCHES.

, THESE DIMENSIONS APPLY TO THE FLAT SECTION
OF THE LEAD BETWEEN, 0.05 INCHES AND .010 INCHES
FROM THE LEAD TIPS.
THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION
MO-118, VARIATIONS AA, AB, EXCEPT CHAMPER DIMENSION
h. JEDEC SPECIFICATION FOR h IS .015",025".







### Summary of nominal dimensions in inches:

Body Width: 0.296 Lead Pitch: 0.025 Body Length: 0.625 **Body Height: 0.102** 

| -0 m K + 10    |      | COMMO     |       |     | ī |
|----------------|------|-----------|-------|-----|---|
| M<br>B         |      | IMENSIOI  | NS    | Νп. |   |
| 9              | MIN. | NOM.      | MAX.  | 1,  |   |
| A              | .095 | .102      | .110  |     |   |
| A۱             | .008 | .012      | .016  |     | ī |
| A.             | .088 | .090      | .092  |     | Г |
| ь              | .008 | .010      | .0135 |     |   |
| b              | .008 | .010      | .012  |     |   |
| С              | .005 | -         | .010  |     |   |
| C <sub>1</sub> | .005 | .006      | .0085 |     |   |
| D<br>E<br>e    | SEE  | VARIATION | is    | 4   |   |
| Е              | .292 | .296      | .299  |     |   |
| е              |      | .025 BSC  |       |     |   |
| Н              | .400 | .406      | .410  |     |   |
| h              | .010 | .013      | .016  |     |   |
| L              | .024 | .032      | .040  |     |   |
| Ν              |      | VARIATION |       | 6   |   |
| χ              | .085 | .093      | .100  | 10  |   |
| oε             | 0°   | 5°        | 8°    |     |   |

|         |      | COMMO     | V     | 1              | INUIE  |       | 4        |        |    |
|---------|------|-----------|-------|----------------|--------|-------|----------|--------|----|
| A<br>B  | D    | IMENSIO   | NS    | N <sub>D</sub> | VARI-  |       | D        |        | N  |
| ٩       | MIN. | NOM.      | MAX.  | 1.             | ATIONS | MIN.  | NOM.     | MAX.   |    |
| 4       | .095 | .102      | .110  |                | AA     | .620  | .625     | .630   | 48 |
| ٩,      | .008 | .012      | .016  |                | AB     | .720  | .725     | .730   | 56 |
| ٩.      | .088 | .090      | .092  |                |        |       |          |        |    |
| וכ      | .008 | .010      | .0135 |                |        | TILLO | T451 F 1 |        |    |
| οį      | .008 | .010      | .012  |                |        | 1HIS  | TABLE I  | NINCHE | S  |
| 0       | .005 | -         | .010  |                |        |       |          |        |    |
| ٥,      | .005 | .006      | .0085 |                |        |       |          |        |    |
| D       |      | VARIATION |       | 4              |        |       |          |        |    |
| S D E o | .292 | .296      | .299  |                |        |       |          |        |    |
|         |      | .025 BSC  |       |                |        |       |          |        |    |
| Н       | .400 | .406      | .410  |                |        |       |          |        |    |
| h       | .010 | .013      | .016  |                |        |       |          |        |    |
| L       | .024 | .032      | .040  |                |        |       |          |        |    |
| Ν       |      | VARIATION |       | 6              |        |       |          |        |    |
| Ķ       | .085 | .093      | .100  | 10             |        |       |          |        |    |
| č       | 0°   | 5°        | 8°    |                |        |       |          |        |    |
|         |      |           |       |                |        |       |          |        |    |

| S      |       | COMMO     |       |      | NOTE   |           | 4       |           | 6   |
|--------|-------|-----------|-------|------|--------|-----------|---------|-----------|-----|
| M<br>B | D     | IMENSIO   | NS    | ١. ٥ | VARI-  |           | D       |           | N   |
| 입      | MIN.  | NOM.      | MAX.  | 'E   | ATIONS | MIN.      | NOM.    | MAX.      |     |
| Α      | 2.41  | 2.59      | 2.79  |      | AA     | 15.75     | 15.88   | 16.00     | 48  |
| Αı     | 0.20  | 0.31      | 0.41  |      | AB     | 18.29     | 18.42   | 18.54     | 56  |
| A,     | 2.24  | 2.29      | 2.34  |      |        |           |         |           |     |
| b      | 0.203 | 0.254     | 0.343 |      |        | T. 110 T. |         |           |     |
| b₁     | 0.203 | 0.254     | 0.305 |      |        | THIS TAI  | RLFININ | IILLIIVIE | ERS |
| С      | 0.127 | -         | 0.254 |      |        |           |         |           |     |
| Ci     | 0.127 | 0.152     | 0.216 |      |        |           |         |           |     |
| P      | SEE   | VARIATION | IS    | 4    |        |           |         |           |     |
| E      | 7.42  | 7.52      | 7.59  |      |        |           |         |           |     |
| е      |       | 0.635 BSC |       |      |        |           |         |           |     |
| H      | 10.16 | 10.31     | 10.41 |      |        |           |         |           |     |
| h      | 0.25  | 0.33      | 0.41  |      |        |           |         |           |     |
| L      | 0.61  | 0.81      | 1.02  |      |        |           |         |           |     |
| N      | SEE   | VARIATION | is    | 6    |        |           |         |           |     |
| X      | 2.16  | 2.36      | 2.54  | 10   |        |           |         |           |     |
| ď      | 0°    | 5°        | 8°    |      |        |           |         |           |     |

CY28318

|      | Document Title: CY28318 Spread Spectrum FTG for VIA Chipset Document Number: 38-07272 |  |  |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| REV. | REV. ECN NO. Issue Orig. of Change Description of Change                              |  |  |  |  |  |  |  |  |  |
| **   | ·                                                                                     |  |  |  |  |  |  |  |  |  |

Document #: 38-07272 Rev. \*\*