

27-MHz Clock Generator with Serial Programming Interface

Features			Benefits		
Integrated phase-locked loop			High-performance PLL tailored for multimedia applications		
Low jitter, high accuracy outputs		acy outputs	Meets critical timing requirements in complex system designs		
Serial Programming Interface (SPI)		nterface (SPI)	Dynamic Digital VCXO control		
3.3V Operation			Enables application compatibility in low power systems		
Part Number	Outputs	Input Frequency Range	Output Frequencies		
CY24202	2	13.5-MHz pullable crystal input per Cypress Specification	2 copies of 27 MHz		

Logic Block Diagram

Pin Configuration

CY2	4202
8-pin	SOIC

		_ хоит
VDD 🗌 2	2 7	CLK2
SDAT 🔤 3	3 6	CLK1
VSS 🗖 4	1 5	SCLK

3901 North First Street •

San Jose

CA 95134 • 408-943-2600 Revised February 13, 2002

Summary

Name	Pin Number	Description
XIN	1	Reference Crystal Input
VDD	2	Voltage Supply
SDAT	3	Digital VCXO Serial Data Input
VSS	4	Ground
SCLK	5	Digital VCXO Serial Clock Input
CLK1	6	Clock Output 1 @ 27 MHz
CLK2	7	Clock Output 2 @ 27 MHz
XOUT ^[1]	8	Reference Crystal Output

Pullable Crystal Specifications

Parameter	Description	Min.	Тур.	Max.	Unit
CR _{load}	Crystal Load Capacitance		14		pF
C0/C1			240		
ESR	Equivalent Series Resistance		35		Ω
T _o	Operating Temperature	0		70	°C
Crystal Accuracy	Crystal Accuracy			±20	ppm
TTs	Stability over temperature and aging			±50	ppm

Absolute Maximum Conditions

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	Voltage -0.5		V
T _S	Storage Temperature ^[2]	-65	125	°C
TJ	Junction Temperature		125	°C
	Digital Inputs	V _{SS} – 0.3	V _{DD} + 0.3	V
	Digital Outputs referred to V _{DD}	V _{SS} – 0.3	V _{DD} + 0.3	V
	Electro-Static Discharge	2		kV

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0		70	°C
C _{LOAD}	Max. Load Capacitance			15	pF
f _{REF}	Reference Frequency		13.5		MHz

Notes:

Float XOUT if XIN is externally driven.
Rated for 10 years.

DC Electrical Characteristics

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
I _{ОН}	Output High Current	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V$	12	24		mA
I _{OL}	Output Low Current	V _{OL} = 0.5, V _{DD} = 3.3V	12	24		mA
C _{IN}	Input Capacitance				7	pF
I _{IZ}	Input Leakage Current			5		μΑ
I _{VDD}	Supply Current			20	30	mA

AC Electrical Characteristics ($V_{DD} = 3.3V$)

Parameter ^[3]	Name	Description	Min	Тур	Max	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 4, 50% of VDD	45	50	55	%
t ₃	Rising Edge Slew Rate	Output Clock Rise Time, 20% - 80% of VDD	0.8	1.4		V/ns
t ₄	Falling Edge Slew Rate	Output Clock Fall Time, 80% - 20% of VDD	0.8	1.4		V/ns
t ₉	Clock Jitter	Peak to Peak period jitter			175	ps
t ₁₀	PLL Lock Time				3	ms

Note:

3. Not 100% tested.

Serial Programmable Interface Protocol

The CY24202 utilizes a 2-wire interface SDAT and SCLK that operates up to 400 kbits/sec in Read or Write mode. The basic Write serial format is as follows: Start Bit; 7-bit Device Address (DA); R/W Bit; Slave Clock Acknowledge (ACK); 8-bit Memory Address (MA); ACK; 8-bit Data; ACK; 8-bit Data in MA+1 if desired; ACK; 8-bit Data in MA+2; ACK; etc. until STOP Bit, as illustrated in *Figure 1*.

Figure 1. Data Frame Architecture

Data Valid

Data is valid when the Clock is HIGH, and may only be transitioned when the clock is LOW as illustrated in *Figure 2*.

Data Frame

Every new data frame is indicated by a start and stop sequence, as illustrated in *Figure 3*.

Start Sequence

Start Frame is indicated by SDAT going LOW when SCLK is HIGH. Every time a start signal is given the next 8-bit data must be the device address (7 bits) and a R/w bit (0 for write), followed by register address (8 bits) and register data (8 bits). See Figure 3.

Stop Sequence

Stop Frame is indicated by SDAT going high when SCLK is high. A Stop Frame frees the bus for writing to another part on the same bus or writing to another random register address. See *Figure 3.*

Acknowledge Pulse

During Write Mode the CY24202 will respond with an Acknowledge pulse after every 8 bits. This is accomplished by pulling the SDAT line low during the next clock cycle after the 8th bit is shifted in.

Device Address

The 7 bit device address is 1101001.

Register Address

The 8 bit address for the VCXO register is 00010011.

Register Data

The register data can be any value between 00H - FFH. As you increase the value, the capacitance on the XIN and XOUT pins will increase, thereby <u>decreasing</u> the xtal frequency.

Figure 2. Data Valid and Data Transition Periods

Serial Programming Interface Timing Specifications

Parameter	Description	Min.	Max.	Unit
f _{SCL}	Frequency of SCLK		400	kHz
	Start Mode Time from SDAT LOW to SCLK LOW	0.6		μs
CLK _{LOW}	SCLK LOW Period	1.3		μs
CLK _{HIGH}	SCLK HIGH Period	0.6		μs
t _{SU}	Data Transition to SCLK HIGH	100		ns
t _{DH}	Data Hold (SCLK LOW to Data Transition)	0		ns
	Rise Time of SCLK and SDAT		300	ns
	Fall Time of SCLK and SDAT		300	ns
	Stop Mode Time from SCLK HIGH to SDA HIGH	0.6		μs
	Stop Mode to Start Mode	1.3		μs

Test Circuit

Figure 5. Rise and Fall Time Definitions

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range	Operating Voltage
CY24202SC	S8	8-Pin SOIC	Commercial	3.3V

Package Diagram

8-Lead (150-Mil) SOIC S8

Document #: 38-07198 Rev. **

Page 5 of 6

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor product not contained herein is products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

Document Title: CY24202 27-MHz Clock Generator with Serial Programming Interface Document Number: 38-07198				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	111424	02/27/02	CKN	New data sheet