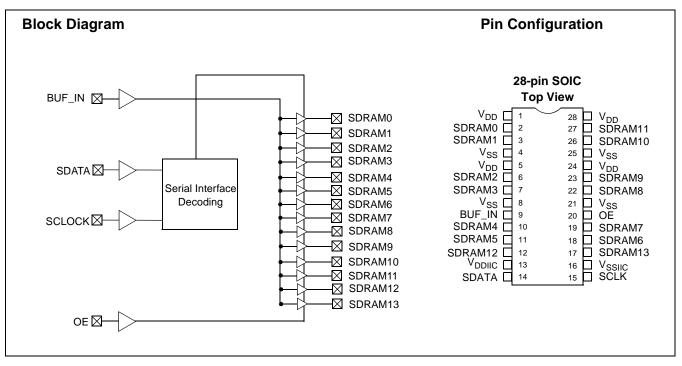


CY2314ANZ

14 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs


Features

- One input to 14 output buffer/driver
- Supports up to three SDRAM DIMMs
- Two additional outputs for feedback
- Serial interface for output control
- · Low skew outputs
- Up to 100-MHz operation
- Multiple V_{DD} and V_{SS} pins for noise reduction
- Dedicated OE pin for testing
- Low EMI outputs
- 28-pin SOIC (300-mil) package
- 3.3V operation

Functional Description

The CY2314ANZ is a 3.3V buffer designed to distribute high-speed clocks in desktop PC applications. The part has 14 outputs, 12 of which can be used to drive up to three SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, thus making it compatible with Pentium[®] II processors. The CY2314ANZ can be used in conjunction with the CY2280, CY2281, CY2282 or similar clock synthesizer for a complete Pentium II motherboard solution.

The CY2314ANZ also includes a serial interface which can enable or disable each output clock. On power-up, all output clocks are enabled. A separate Output Enable pin facilitates testing on ATE.

Pentium is a registered trademark of Intel Corporation.

et • San Jose

Pin Summary

Name	Pins	Description		
V _{DD}	1, 5, 24, 28	3.3V Digital voltage supply		
V _{SS}	4, 8, 21, 25	Ground		
V _{DDIIC}	13	Serial interface voltage supply		
V _{SSIIC}	16	Ground for serial interface		
BUF_IN	9	Input clock		
OE	20	Output Enable, three-states outputs when LOW. Internal pull-up to V_{I}		
SDATA	14	Serial data input, internal pull-up to V _{DD}		
SCLK	15	Serial clock input, internal pull-up to V _{DD}		
SDRAM [0-13]	2, 3, 6, 7, 10, 11, 18, 19, 22, 23, 26, 27, 12, 17	SDRAM clock outputs		

Device Functionality

OE	SDRAM [0-13]
0	High-Z
1	1 x BUF_IN

Serial Configuration Map

• The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved and unused bits should be programmed to "0"
- Serial interface address for the CY2314ANZ is:

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	0	1	

Byte 0:SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enabled

Bit	Pin #	Description
Bit 7	11	SDRAM5 (Active/Inactive)
Bit 6	10	SDRAM4 (Active/Inactive)
Bit 5		Reserved, drive to 0
Bit 4		Reserved, drive to 0
Bit 3	7	SDRAM3 (Active/Inactive)
Bit 2	6	SDRAM2 (Active/Inactive)
Bit 1	3	SDRAM1 (Active/Inactive)
Bit 0	2	SDRAM0 (Active/Inactive)

Byte 1: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	27	SDRAM11 (Active/Inactive)	
Bit 6	26	SDRAM10 (Active/Inactive)	
Bit 5	23	SDRAM9 (Active/Inactive)	
Bit 4	22	SDRAM8 (Active/Inactive)	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1	19	SDRAM7 (Active/Inactive)	
Bit 0	18	SDRAM6 (Active/Inactive)	

Byte 2: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	17	SDRAM13 (Active/Inactive)	
Bit 6	12	SDRAM12 (Active/Inactive)	
Bit 5		Reserved, drive to 0	
Bit 4		Reserved, drive to 0	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1		Reserved, drive to 0	
Bit 0		Reserved, drive to 0	

Maximum Ratings

Supply Voltage to Ground Potential0.5V to +7.0V	
DC Input Voltage (Except BUF_IN)0.5V to V _{DD} + 0.5V	
DC Input Voltage (BUF_IN)0.5V to +7.0V	

Storage Temperature65°C to	+150°C
Junction Temperature	150°C
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2000V
	- 2000 1

Operating Conditions^[1]

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance		30	pF
C _{IN}	Input Capacitance		7	pF

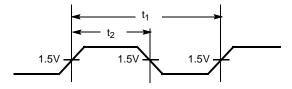
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage ^[2]	Except serial interface pins		0.8	V
V _{ILiic}	Input LOW Voltage	For serial interface pins only		0.7	V
V _{IH}	Input HIGH Voltage ^[2]		2.0		V
IIL	Input LOW Current (BUF_IN input)	V _{IN} = 0V	-10	10	μΑ
I _{IL}	Input LOW Current (Except BUF_IN Pin)	V _{IN} = 0V		100	μΑ
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$	-10	10	μΑ
V _{OL}	Output LOW Voltage ^[3]	I _{OL} = 25 mA		0.4	V
V _{OH}	Output HIGH Voltage ^[3]	I _{OH} = -36 mA	2.4		V
I _{DD}	Supply Current ^[3]	Unloaded outputs, 100 MHz		200	mA
I _{DD}	Supply Current ^[3]	Loaded outputs, 100 MHz		290	mA
I _{DD}	Supply Current ^[3]	Unloaded outputs, 66.67 MHz		150	mA
I _{DD}	Supply Current ^[3]	Loaded outputs, 66.67 MHz		185	mA
I _{DDS}	Supply Current	BUF_IN=V _{DD} or V _{SS} All other inputs at V _{DD}		500	μA

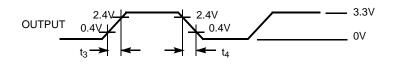
Notes:

Electrical parameters are guaranteed under the operating conditions specified.
BUF_IN input has a threshold voltage of V_{DD}/2.
Parameter is guaranteed by design and characterization. Not 100% tested in production.

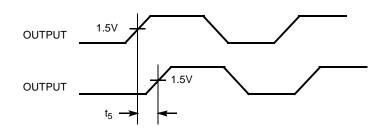
Switching Characteristics^[4] Over the Operating Range


Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
	Maximum Operating Frequency				100	MHz
	Duty Cycle ^[3, 5] = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t ₃	Rising Edge Rate ^[3]	Measured between 0.4V and 2.4V	0.9	1.5	4.0	V/ns
t ₄	Falling Edge Rate ^[3]	Measured between 2.4V and 0.4V	0.9	1.5	4.0	V/ns
t ₅	Output to Output Skew ^[3]	All outputs equally loaded	-250		+250	ps
t ₆	SDRAM Buffer LH Prop. Delay ^[3]	Input edge greater than 1 V/ns	1.0	3.5	5.0	ns
t ₇	SDRAM Buffer HL Prop. Delay ^[3]	Input edge greater than 1 V/ns	1.0	3.5	5.0	ns
t ₈	SDRAM Buffer Enable Delay ^[3]	Input edge greater than 1 V/ns	1.0	5	12	ns
t ₉	SDRAM Buffer Disable Delay ^[3]	Input edge greater than 1 V/ns	1.0	20	30	ns

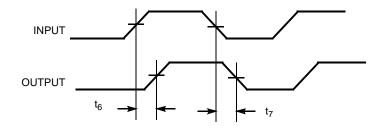
Notes:

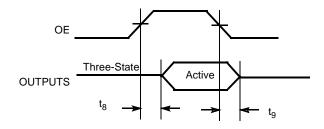

All parameters specified with loaded outputs.
Duty cycle of input clock is 50%. Rising and falling edge rate of the input clock is greater than 1 V/ns.

Switching Waveforms

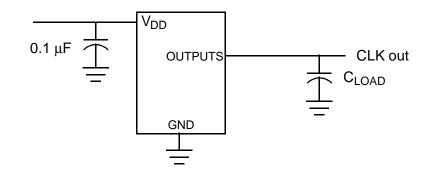

Duty Cycle Timing

All Outputs Rise/Fall Time


Output-Output Skew

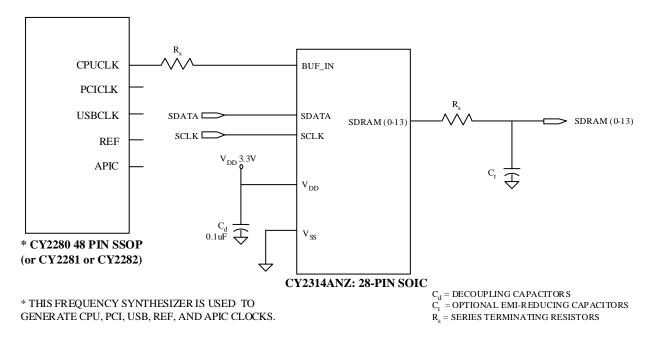


Switching Waveforms (continued)


SDRAM Buffer LH and HL Propagation Delay

SDRAM Buffer Enable and Disable Times

Test Circuit

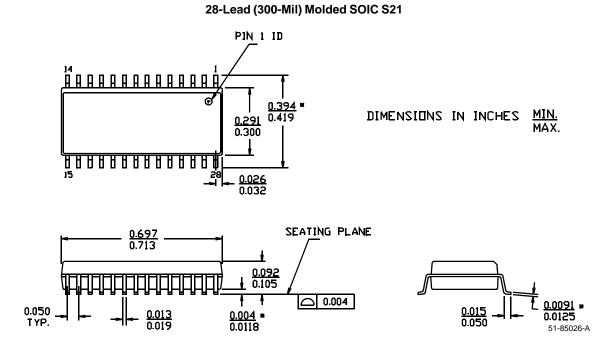


Application Information

Clock traces must be terminated with either series or parallel termination, as is normally done.

Application Circuit

Summary


- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 μF. In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance of the trace, Rout is the output impedance of the buffer (typically 25Ω), and Rseries is the series terminating resistor. Rseries > Rtrace – Rout
- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7 pF to 22 pF.
- A Ferrite Bead **may** be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50 Ω impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a 10 μF–22 μF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

Ordering Information


Ordering Code	Package Name	Package Type	Operating Range
CY2314ANZSC-1	S28	28-Pin SOIC	Commercial

Package Diagram

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY2314ANZ 14 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs Document Number: 38-07143				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	110252	11/18/01	DSG	Change from Spec number: 38-00687 to 38-07143