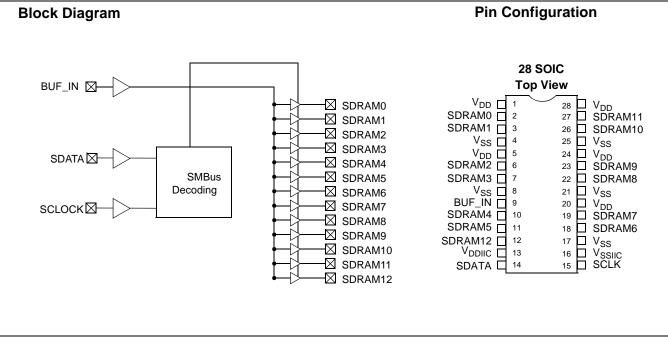


CY2313BNZ

13 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs


Features

- One input to 13 output buffer/driver
- Supports up to three SDRAM DIMMs
- One additional outputs for feedback
- SMBus interface for output control
- Low skew outputs
- Up to 100 MHz operation
- Multiple V_{DD} and V_{SS} pins for noise reduction
- Low EMI outputs
- 28-pin SOIC (300-mil) package
- 3.3V operation

Functional Description

The CY2313BNZ is a 3.3V buffer designed to distribute high-speed clocks in desktop PC applications. The part has 13 outputs, 12 of which can be used to drive up to three SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 100 MHz, thus making it compatible with Pentium® II processors. The CY2313BNZ can be used in conjunction with the CY2280, CY2281, CY2282 or similar clock synthesizer for a complete Pentium II motherboard solution.

The CY2313BNZ also includes an SMBus interface which can enable or disable each output clock. On power-up, all output clocks are enabled.

Pentium is a registered trademark of Intel Corporation.

3901 North First Street

San Jose • C

CA 95134 • 408-943-2600 Revised September 27, 2001

Pin Summary

Name	Pins	Description
V _{DD}	1, 5, 20, 24, 28	3.3V Digital voltage supply
V _{SS}	4, 8, 17, 21, 25	Ground
V _{DDIIC}	13	SMBus Voltage supply
V _{SSIIC}	16	Ground for SMBus
BUF_IN	9	Input clock
SDATA	14	SMBus data input, internal pull-up to V _{DD}
SCLK	15	SMBus clock input, internal pull-up to V _{DD}
SDRAM [0-12]	2, 3, 6, 7, 10, 11, 12, 18, 19, 22, 23, 26, 27	SDRAM clock outputs

Serial Configuration Map

• The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved and unused bits should be programmed to "0"
- SMBus Address for the CY2313BNZ is:

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	0	1	

Byte 0: SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enabled

Bit	Pin #	Description
Bit 7	11	SDRAM5 (Active/Inactive)
Bit 6	10	SDRAM4 (Active/Inactive)
Bit 5		Reserved, drive to 0
Bit 4		Reserved, drive to 0
Bit 3	7	SDRAM3 (Active/Inactive)
Bit 2	6	SDRAM2 (Active/Inactive)
Bit 1	3	SDRAM1 (Active/Inactive)
Bit 0	2	SDRAM0 (Active/Inactive)

Byte 1: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7	27	SDRAM11 (Active/Inactive)	
Bit 6	26	SDRAM10 (Active/Inactive)	
Bit 5	23	SDRAM9 (Active/Inactive)	
Bit 4	22	SDRAM8 (Active/Inactive)	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1	19	SDRAM7 (Active/Inactive)	
Bit 0	18	SDRAM6 (Active/Inactive)	

Byte 2: SDRAM Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	Pin #	Description	
Bit 7		Reserved, drive to 0	
Bit 6	12	SDRAM12 (Active/Inactive)	
Bit 5		Reserved, drive to 0	
Bit 4		Reserved, drive to 0	
Bit 3		Reserved, drive to 0	
Bit 2		Reserved, drive to 0	
Bit 1		Reserved, drive to 0	
Bit 0		Reserved, drive to 0	

Maximum Ratings

Supply Voltage to Ground Potential	–0.5V to +7.0V
DC Input Voltage (Except BUF_IN)0.5	SV to V_{DD} + 0.5V
DC Input Voltage (BUF_IN)	–0.5V to +7.0V

Storage Temperature $-65^{\circ}C$ to $+150^{\circ}C$
Static Discharge Voltage
(per MIL-STD-883, Method 3015)>2000V
Ambient Temperature under BIAS55°C to +125°C

Operating Conditions^[1]

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance		30	pF

Absolute Maximum Ratings

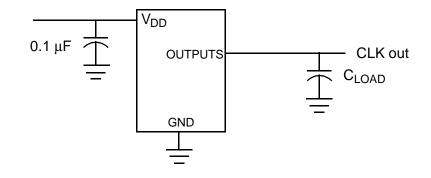
Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability

Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
T _A	Operating Temperature	0 to +70	°C
Т _В	Ambient Temperature under Bias	-55 to +125	°C

DC Electrical Characteristics: $T_A = -40$ °C to +85°C, $V_{DD} = 3.3V \pm 5\%$

Description	Test Condition/Comments	Min.	Тур.	Max.	Unit
3.3V Supply Current	BUF_IN = 100 MHz			250	mA
Input Low Voltage		GND-0.3		0.8	V
Input High Voltage		2.0		V _{DD} +0.5	V
Input Leakage Current, BUF_IN		-5		+5	μA
Input Leakage Current ^[1]		-20		+5	μA
ts (SDRAM0:12)					
Output Low Voltage	I _{OL} = 1 mA			50	mV
Output High Voltage	I _{OH} = -1 mA	3.1			V
Output Low Current	V _{OL} = 1.5V	65	100	160	mA
Output High Current	V _{OH} = 1.5V	70	110	185	mA
nce/Inductance					
Input Pin Capacitance				5	pF
Output Pin Capacitance				6	pF
Input Pin Inductance				7	nH
	3.3V Supply Current Input Low Voltage Input High Voltage Input Leakage Current, BUF_IN Input Leakage Current ^[1] is (SDRAM0:12) Output Low Voltage Output High Voltage Output High Voltage Output High Current Output High Current Input Pin Capacitance Output Pin Capacitance	3.3V Supply Current $BUF_IN = 100 \text{ MHz}$ Input Low Voltage Input High Voltage Input Leakage Current, BUF_IN Input Leakage Current ^[1] Input Leakage Current ^[1] Input Leakage Current ^[1] Is (SDRAM0:12) $I_{OL} = 1 \text{ mA}$ Output Low Voltage $I_{OH} = -1 \text{ mA}$ Output High Voltage $I_{OH} = -1 \text{ mA}$ Output Low Current $V_{OL} = 1.5V$ Output High Current $V_{OH} = 1.5V$ Input Pin Capacitance Output Pin Capacitance	3.3V Supply Current $BUF_IN = 100 \text{ MHz}$ Input Low Voltage $GND-0.3$ Input High Voltage 2.0 Input Leakage Current, BUF_IN -5 Input Leakage Current ^[1] -20 is (SDRAM0:12) $Output Low Voltage$ $I_{OL} = 1 \text{ mA}$ Output High Voltage $I_{OH} = -1 \text{ mA}$ 3.1 Output Low Current $V_{OL} = 1.5V$ 65 Output High Current $V_{OH} = 1.5V$ 70 nce/InductanceInput Pin Capacitance $I_{OH} = 0$ Output Pin Capacitance $I_{OH} = 0$ $I_{OH} = 0$	3.3V Supply Current $BUF_IN = 100 \text{ MHz}$ Inverse in the second se	3.3V Supply Current BUF_IN = 100 MHz 250 Input Low Voltage GND-0.3 0.8 Input High Voltage 2.0 V_{DD} +0.5 Input Leakage Current, BUF_IN -5 +5 Input Leakage Current ^[1] -20 +5 is (SDRAM0:12) -20 +5 Output Low Voltage $I_{OL} = 1 \text{ mA}$ 3.1 Output High Voltage $I_{OH} = -1 \text{ mA}$ 3.1 Output Low Current $V_{OL} = 1.5V$ 65 100 160 Output High Current $V_{OH} = 1.5V$ 70 110 185 Input Pin Capacitance 50 50 64 64

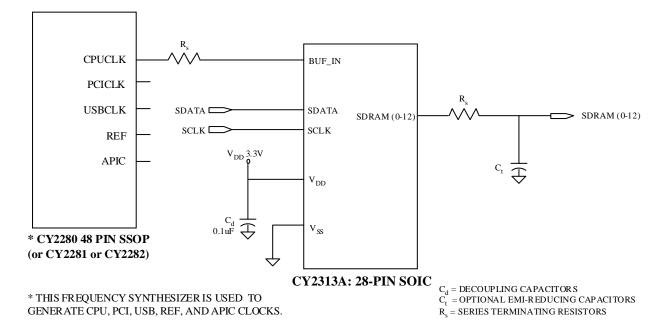
Note:


1. SDATA and SCLOCK logic pins have 250-k Ω internal pull-up resistors.

AC Electrical Characteristics: $T_A = -40$ °C to +85 °C, $V_{DD} = 3.3$ V±5% (Lump Capacitance Test Load = 30 pF)

Parameter	Description	Test Condition	Min	Тур	Max	Unit
f _{IN}	Input Frequency		0		133	MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1.5		4.0	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1.5		4.0	V/ns
t _{SR}	Output Skew, Rising Edges				250	ps
t _{SF}	Output Skew, Falling Edges				250	ps
t _{EN}	Output Enable Time		1.0		8.0	ns
t _{DIS}	Output Disable Time		1.0		8.0	ns
t _{PR}	Rising Edge Propagation Delay		1.0		5.0	ns
t _{PF}	Falling Edge Propagation Delay		1.0		5.0	ns
t _D	Duty Cycle	Measured at 1.5V	45		55	%
Z _o	AC Output Impedance			15		Ω
t _{PR}	Rising Edge Propagation Delay		1.0		5.0	ns

Test Circuit



Application Information

Clock traces must be terminated with either series or parallel termination, as they are normally done.

Application Circuit

Summary

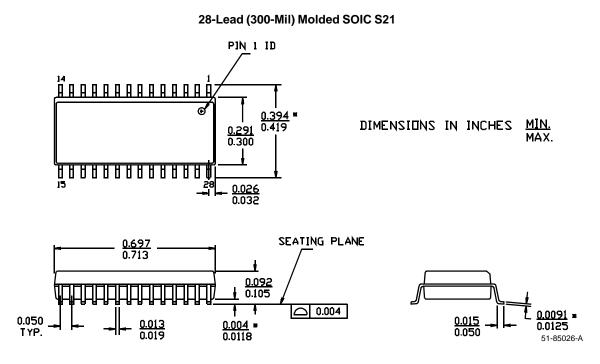
- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 mF. In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance of the trace, Rout is the output impedance of the buffer (typically 25W), and Rseries is the series terminating resistor.

Rseries > Rtrace - Rout

 Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating capacitors range from 4.7 pF to 22 pF.
A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead

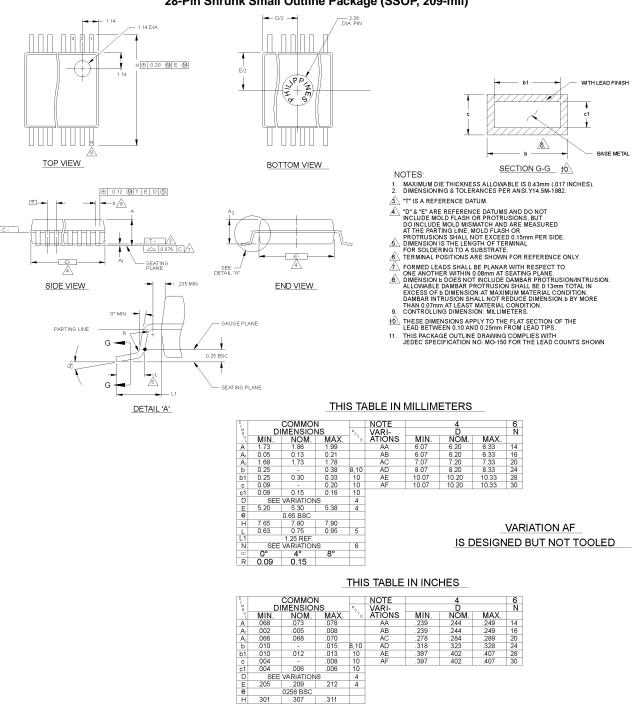
resistor as is physically possible. Typical values of these

- the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50W impedance at the clock frequency, under loaded DC conditions. Please refer to the application note "Layout and Termination Techniques for Cypress Clock Generators" for more details.
- If a Ferrite Bead is used, a 10 mF-22 mF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.


Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY2313BNZSI	S21	28-Pin SOIC	Industrial
CY2313BNZPVI*		28-Pin SSOP	Industrial
CY2313BNZZI*		28-Pin TSSOP	Industrial

*Call factory for availability



Package Diagram

Package Diagram

.212

.311 .037

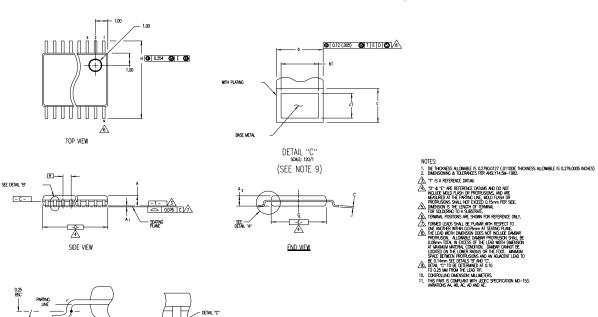
8

5

6

0256 BSC .301 .307 .025 .030 .049 REF. SEE VARIATIONS 0° 4° .004 .006

L1 N


R

28-Pin Shrunk Small Outline Package (SSOP, 209-mil)

DETAIL 'A'

Package Diagram

28-Pin Thin Shrunk Small outline Package (TSSOP 173 mi)

PACKAGE OUTLINE, 4.40mm (.173") BODY, 0.65mm LEAD PITCH, TSSOP

THIS TABLE IN MILLIMETERS

S Y	COMMON DIMENSIONS				NOTE	TE 4		
MB				No	VARI-	D		
0 L	MIN.	NOM.	MAX.	ŤΕ	ATIONS	MIN.	NOM.	MAX.
Α			1.10		AA	2.90	3.00	3.10
A t	0.05	0.10	0.15		AB	4.90	5.00	5.10
A ₂	0.85	0.90	0.95		AC	4.90	5.00	5.10
b	0.19	-	0.30	8	AD	6.40	6.50	6.60
b1	0.19	0.22	0.25		AE	7.70	7.80	7.90
С	0.090	-	0.20		AF	9.60	9.70	9.80
c1	0.090	0.127	0.135					
D	SEE VARIATIONS							
Ε	4.30	4.40	4.50	4	1			
е	0.65 BSC							
Н	6.25	6.40	6.50					
L	0.50	0.60	0.70	5				
Ŋ	SEE VARIATIONS			6]			
30	0	4	8]			

THIS TABLE IN INCHES

S Y	COMMON				NOTE 4				6
M B	DIMENSIONS			No VARI-			Ν		
0 L	MIN.	NOM,	MAX.	Γ, Γ	ATIONS	MIN.	NOM,	MAX.	
Α			.0433		AA	.114	.118	.122	8
A 1	.002	.004	.006		AB	.193	.197	.201	14
A ₂	.0335	.0354	.0374		AC	.193	.197	.201	16
b	.0075	-	.0118	8	AD	.252	.256	.260	20
b1	.0075	.0087	.0098		AE	.303	.307	.311	24
С	.0035	-	.0079		AF	.378	.382	.386	28
c1	.0035	.0050	.0053			•			
D	SEE VARIATIONS			4					
E	.169	.173	.177	4					
е	.0256 BSC]				
Н	.246	.252	.256]				
	.020	.024	.028	5					

Document #: 38-07261 Rev. **

Page 8 of 9


14 16

20 24

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

SEE VARIATIONS

N oc

Document Title: CY2313BNZ 13 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMS Document Number: 38-07261						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	110526	02/20/02	SZV	Change from Spec number: 38-01090 to 38-07261		