

ADVANCE INFORMATION

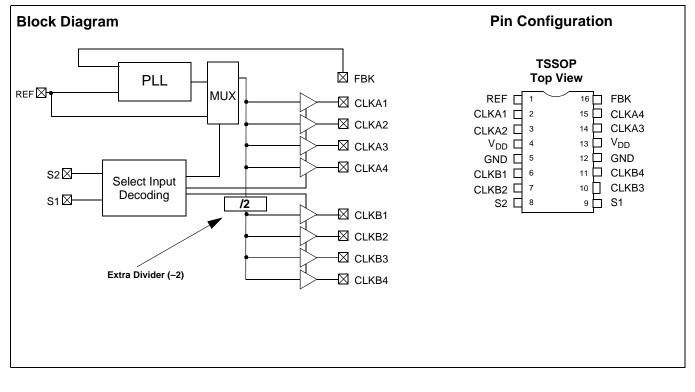
CY2308A

3.3V 200-MHz Zero Delay Buffer

Features

- 10-MHz to 200-MHz operating range
- Multiple configurations (see "Available CY2308A Configurations" table on page 2 of this data sheet)
- Total Timing Budget Impact (TTBI) @ 200 MHz < 650 ps
- · Eight low-skew outputs
 - Output-output skew < 200 ps
 - Device-device skew < 500 ps
- Input-output skew < 250 ps
- Cycle-cycle jitter < 100 ps
- Three-stateable outputs
- < 50uA shutdown current
- Phase-locked loop (PLL) bypass mode (see page 2)
- Spread Aware[™]
- 16-pin TSSOP
- 3.3V operation
- · Industrial temperature available

Functional Description


The CY2308A is a high-performance 200-MHz zero delay buffer designed for high-speed clock distribution. The integrated PLL is designed for low jitter and optimized for noise rejection. These parameters are critical for reference clock distribution in systems using high-performance ASICs and microprocessors. The CY2308A PLL feedback is external and is obtained at FBK.

The CY2308A has two banks of four outputs each that can be controlled by the Select inputs as shown in the table "Selected Input Decoding." If all output clocks are not required, Bank B can be three-stated. The select inputs also allow the input clock to be directly applied to the output for chip and system testing purposes.

The CY2308A PLL enters a power-down state when there are no rising edges on the REF input. In this mode, all outputs are three-stated and the PLL is turned off, resulting in less than 50 μ A of current draw. The PLL shuts down in two additional cases, as shown in the "Select Input Decoding" table.

The CY2308A is available in five different configurations, as shown in the "Available CY2308A Configurations" table on page 2. CY2308A–1 is the base part, where the output frequencies equal the reference if there is no counter in the feedback path. The CY2308A–1H is the high-drive version of the –1, and rise and fall times on this device are much faster.

The CY2308A–2 allows the user to obtain 2X and 1X frequencies on each output bank. The exact configuration and output frequencies depends on which output drives FBK.

Cypress Semiconductor Corporation • Document #: 38-07377 Rev. **

3901 North First Street
San Jose
CA 95134
408-943-2600
Revised March 21, 2002

Select Input Decoding

S2	S1	CLOCK A1-A4	CLOCK B1–B4	Output Source	PLL Shutdown
0	0	Three-state	Three-state	PLL	Y
0	1	Driven	Three-state	PLL	N
1	0	Driven	Driven	Reference	Y
1	1	Driven	Driven	PLL	N

Available CY2308A Configurations

Device	Feedback From	Bank A Frequency	Bank B Frequency
CY2308A-1	Bank A or Bank B	Reference	Reference
CY2308A-1H	Bank A or Bank B	Reference	Reference
CY2308A-2	Bank A	Reference	Reference/2
CY2308A-2	Bank B	2 X Reference	Reference

Pin Description

Pin	Signal	Description
1	REF ^[1]	Input reference frequency, 5V-tolerant input
2	CLKA1 ^[2]	Clock output, Bank A
3	CLKA2 ^[2]	Clock output, Bank A
4	V _{DD}	3.3V supply
5	GND	Ground
6	CLKB1 ^[2]	Clock output, Bank B
7	CLKB2 ^[2]	Clock output, Bank B
8	S2 ^[1]	Select input, bit 2, 5V-tolerant input
9	S1 ^[1]	Select input, bit 1, 5V-tolerant input
10	CLKB3 ^[2]	Clock output, Bank B
11	CLKB4 ^[2]	Clock output, Bank B
12	GND	Ground
13	V _{DD}	3.3V supply
14	CLKA3 ^[2]	Clock output, Bank A
15	CLKA4 ^[2]	Clock output, Bank A
16	FBK ^[1]	PLL feedback input

Notes:

Weak pull-ups.
Weak pull-downs.

ADVANCE INFORMATION

CY2308A

Maximum Ratings

Supply Voltage to Ground Potential0.5V to +7.0V
DC Input Voltage (Except Ref, S1, S2)–0.5V to V _{DD} + 0.5V
DC Input Voltage (REF, S1, S2)0.5 to 7V
Storage Temperature65°C to +150°C

Operating Conditions for CY2308AZC-XX Commercial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance (F _{OUT} < 133 MHz)		30	pF
	Load Capacitance (F _{OUT} > 133 MHz)		15	pF
C _{IN}	Input Capacitance		7	pF

Electrical Characteristics for CY2308AZC–XX Commercial Temperature Devices

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage	CMOS Levels, 30% of V _{DD}		0.3	V _{DD}
V _{IH}	Input HIGH Voltage	CMOS Levels, 70% of V _{DD}	0.7		V _{DD}
I _{IL}	Input LOW Current	V _{IN} = 0V (100k pull-up only)		50.0	μΑ
I _{IH}	Input HIGH Current	V _{IN} = V _{DD} (100k pull-up only)		10.0	μA
I _{OL}	Output LOW Current ^[3] (-1, -2)	V _{OL} = 0.5V	12		mA
	(–1H)		18		
I _{OH}	Output HIGH Current ^[3] (-1, -2)	$V_{OH} = V_{DD} - 0.5V$		-12	mA
	(–1H)			-18	
I _{DDS}	Power Down Supply Current	All inputs are @ 0V, excludes current through pull-downs		50	μA
I _{DD}	Supply Current	Unloaded outputs @ 200 MHz		75.0	mA
		Loaded outputs @ 200 MHz, C _L = 15 pF		140.0	

Notes:

3. Parameter is guaranteed by design and characterization. Not 100% tested in production.

Switching Characteristics for CY2308AZC–XX Commercial Temperature Devices^[4]

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit	
	Reference Frequency		10		200	MHz	
	Reference Edge Rate	30% to 70% of V _{DD}	0.5		4	V/ns	
	Reference Duty Cycle		25		75	%	
t ₁	Output Frequency	C _L = 30 pF	10		133	MHz	
		C _L = 15 pF	10		200		
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	45.0	50.0	55.0	%	
t ₃	Rising Edge Rate ^[3]	20% to 80% of V_{DD} , $C_L = 30 \text{ pF}$	0.5		3	V/ns	
	(-1, -2)	C _L = 15 pF	0.8		4		
t ₃	Rising Edge Rate ^[3]	20% to 80% of V_{DD} , $C_L = 30 \text{ pF}$	TBD		TBD	V/ns	
	(–1H)	C _L = 15 pF	TBD		TBD		
	Falling Edge Rate ^[3]	80% to 20% of V_{DD} , $C_L = 30 \text{ pF}$	0.5		3	V/ns	
	(-1, -2)	CL = 15 pF	0.8		4		
t ₄	Falling Edge Rate ^[3] (–1H)	80% to 20% of V_{DD} , $C_L = 30 \text{ pF}$	TBD TE		TBD	V/ns	
		C _L = 15 pF	TBD		TBD		
ТТВІ	Total Timing Budget Impact, Bank A and B Same Frequency	Outputs @ 200 MHz, Tracking Skew Not Included			650	ps	
	Total Timing Budget Impact, Bank A and B Different Frequency				850		
t ₅	Output to Output Skew ^[3]	All Outputs Equally Loaded			200	ps	
t ₆	Input to Output Skew (Static Phase Offset) ^[3]	Measured at V _{DD} /2, REF to FBK			250	ps	
t ₇	Device to Device Skew ^[3]	Measured at V _{DD} /2			500	ps	
tj	Cycle to Cycle Jitter, ^[3]	Loaded Outputs			200	ps	
	Bank A and B Same Frequency				35	ps _{RMS}	
tj	Cycle to Cycle Jitter, ^[3]	Loaded Outputs			400	ps	
	Bank A and B Different Frequency				67	ps _{RMS}	
t _{tsk}	Tracking Skew	Input Reference Clock @ < 50-KHz Modulation with ±3.75% Spread			200	ps	
t _{LOCK}	PLL Lock Time ^[3]	Stable Power Supply, Valid Clock at REF			1.0	ms	

Notes:

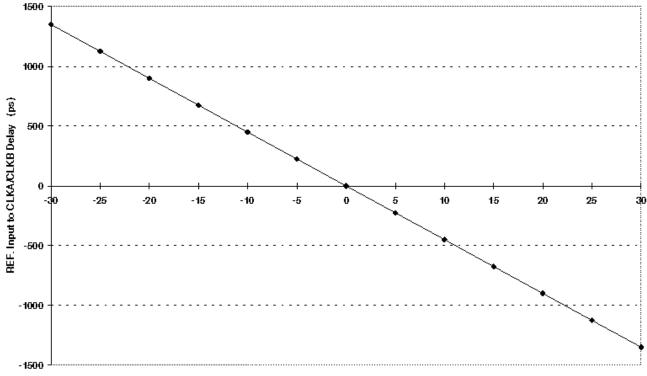
4. All parameters are specified with loaded outputs.

Operating Conditions for CY2308AZI–XX Industrial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance (F _{OUT} < 100 MHz)		30	pF
	Load Capacitance (F _{OUT} > 100 MHz)		15	pF
C _{IN}	Input Capacitance		7	pF

Electrical Characteristics for CY2308AZI-XX Industrial Temperature Devices

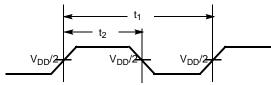
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{IL}	Input LOW Voltage	CMOS Levels, 30% of V _{DD}		0.3	V _{DD}
V _{IH}	Input HIGH Voltage	CMOS Levels, 70% of V _{DD}	0.7		V _{DD}
IIL	Input LOW Current	V _{IN} = 0V (100k pull-ups only)		50.0	μA
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$ (100k pull-ups only)		10.0	μA
I _{OL}	Output LOW Current ^[3] (-1, -2)	V _{OL} = 0.5V	12		mA
	(–1H)	1	18		
I _{OH}	Output HIGH Current ^[3] (-1, -2)	$V_{OH} = V_{DD} - 0.5V$		-12	mA
	(–1H)			-18	1
I _{DDS}	Power Down Supply Current	All inputs are @ 0V, excludes current through pull-downs		50	μA
I _{DD}	Supply Current	Unloaded outputs @ 166 MHz		60.0	mA
		Loaded outputs @ 166 MHz, $C_L = 15 \text{ pF}$		120.0	



Switching Characteristics for CY2308AZI–XX Industrial Temperature Devices ^[4]

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
	Reference Frequency		10		170	MHz
	Reference Edge Rate	30% to 70% of V _{DD}	0.5		4	V/ns
	Reference Duty Cycle		25		75	%
t ₁	Output Frequency	C _L = 30 pF	10		100	MHz
		C _L = 15 pF	10		170	
	Duty Cycle ^[3] = $t_2 \div t_1$	Measured at V _{DD} /2	40.0	50.0	60.0	%
t ₃	Rising Edge Rate ^[3]	20% to 80% of V_{DD} , $C_L = 30 \text{ pF}$	0.5		3	V/ns
	(-1, -2)	C _L = 15 pF	0.8		4	
t ₃	Rising Edge Rate ^[3]	20% to 80% of V_{DD} , C_{L} = 30 pF	TBD		TBD	V/ns
-	(–1H)	C _L = 15 pF	TBD		TBD	
	Falling Edge Rate ^[3]	80% to 20% of V_{DD} , C_{L} = 30 pF	0.5		3 V/	
	(-1, -2)	CL = 15 pF	0.8		4	1
t ₄	Falling Edge Rate ^[3]	80% to 20% of V_{DD} , C_{L} = 30 pF	TBD TBD		TBD	V/ns
	(–1H)	C _L = 15 pF	TBD		TBD	7
ТТВІ	Total Timing Budget Impact, Bank A and B Same Frequency	Outputs @ 166 MHz, Tracking Skew Not Included			650	ps
	Total Timing Budget Impact, Bank A and B Different Frequency				850	
t ₅	Output to Output Skew ^[3]	All Outputs Equally Loaded			200	ps
t ₆	Input to Output Skew (static phase offset) ^[3]	Measured at V _{DD} /2, REF to FBK			250	ps
t ₇	Device to Device Skew ^[3]	Measured at V _{DD} /2			500	ps
tj	Cycle to Cycle Jitter ^[3] , Bank	Loaded Outputs			200	ps
	A and B Same Frequency				35	ps _{RMS}
tj	Cycle to Cycle Jitter ^[3] , Bank	Loaded Outputs			400	ps
	A and B Different Frequency				67	ps _{RMS}
t _{tsk}	Tracking Skew	Input Reference Clock @ < 50-KHz Modulation with ±3.75% Spread			200	ps
t _{LOCK}	PLL Lock Time ^[3]	Stable Power Supply, Valid Clock at REF			1.0	ms

REF. Input to CLKA/CLKB Delay vs. Difference in Loading Between FBK Pin and CLKA/CLKB Pins

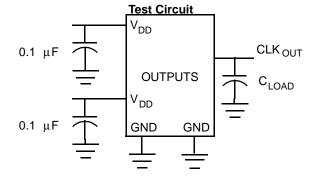

Output Load Difference: FBK Load - CLKA/CLKB Load (pF)

Zero Delay and Skew Control

To close the feedback loop of the CY2308A, FBK can be driven from any of the eight available output pins. The output driving FBK will be driving a total load of 7 pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay. See *REF Input to CLK Delay vs. Loading Difference*. For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. If inputoutput delay adjustments are required, use the above graph to calculate loading differences between the feedback output and remaining outputs.

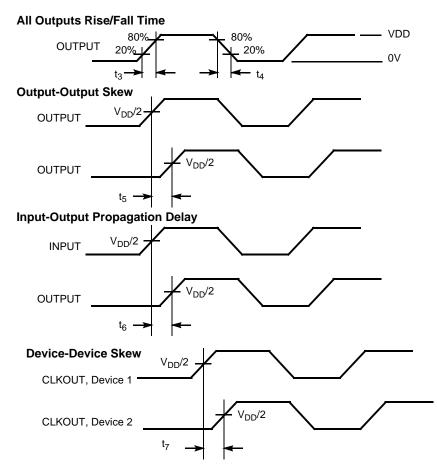
For zero output-output skew, be sure to load outputs equally. For further information on using CY2308A, refer to the application note "CY2308: Zero Delay Buffer."

Duty Cycle Timing



Typical Duty Cycle and I_{DD} Trends

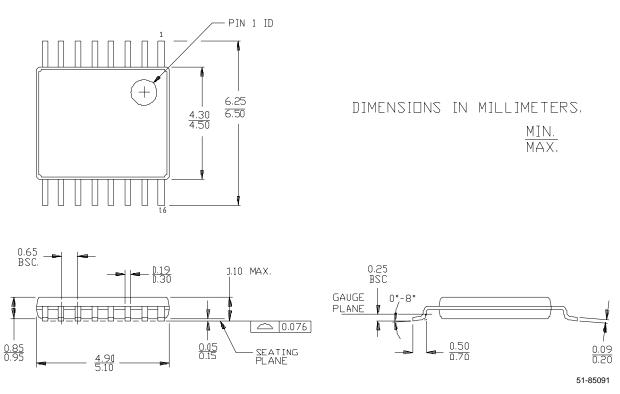
<Add the following graphs later...>


- Duty cycle vs. V_{DD} (conditions: 30 pF or 15 pF load, 25°, Freq = 33 MHz, 66 MHz, 133 MHz, 166 MHz, 200 MHz)
- Duty cycle vs. Freq. (conditions: 30 pF or 15 pF load, V_{DD} = 3.3V, -40 to 85°, Freq = 33 MHz, 66 MHz, 133 MHz, 166 MHz, 200 MHz)
- I_{DD} vs. number of outputs loaded (conditions: 30 pF or 15 pF load, 3.3V, 25°, Freq = 33 MHz, 66 MHz, 133 MHz, 166 MHz, 200 MHz)

Test Circuits

Switching Waveforms

Ordering Information


Ordering Code	Package Name	Package Type	Operating Range
CY2308AZC-1	Z16	16-pin 4.4-mm TSSOP	Commercial
CY2308AZI-1	Z16	16-pin 4.4-mm TSSOP	Industrial
CY2308AZC-1H	Z16	16-pin 4.4-mm TSSOP	Commercial
CY2308AZI–1H	Z16	16-pin 4.4-mm TSSOP	Industrial
CY2308AZC-2	Z16	16-pin 4.4-mm TSSOP	Commercial
CY2308AZI-2	Z16	16-pin 4.4-mm TSSOP	Industrial

ADVANCE INFORMATION

Package Diagram

16-pin Thin Shrunk Small Outline Package (4.40-mm Body) Z16

Spread Aware is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor products not adultorize to convey or imply any license under patent or other rights. Cypress Semiconductor des not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY2308A 3.3V 200-MHz Zero Delay Buffer Document Number: 38-07377

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	112938	04/02/02	СТК	New Data Sheet